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A. Cloning transcription factors into pMAGIC1

Full-length transcription open reading frames or their DNA binding domains, consisting of the
Pfam-defined DNA-binding domain (DBD) plus 15 amino acids of N-term and of C-term
flanking sequence (or to the end of the full open reading frame) were cloned into pMAGIC1 (2)
by either RT-PCR from pooled mouse mRNA (3) followed by ligation-independent cloning, or
by gene synthesis (DNA 2.0) followed by conventional cloning using BamHI and Notl
restriction sites. All clones were sequence-verified in pMAGICI and are provided in Table S2.
The inserts were then transferred into a T7-GST-tagged variant of pML280 according to
protocols described in (2). The resulting recipient plasmids after transfer express N-terminal
GST fusion proteins fused to the DBD flanked by H3 and H4 regions used in the recombination
step (bold):
MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYI
DGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLK
VDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKL
VCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLVPRPCELKLDVHML
VPRGSLEVLFQGPEGDATMGHMVHRPWIQ - DBD region -
AWPQGGRTRIVSAHNSENLYFQGDLRGSITN GSGC*



B. Protein production, Western blots, and quantification

We produced proteins by two methods that yielded essentially identical results: Expression and

purification from E. coli, and expression by in vitro transcription/translation.

Expression and purification in E. coli. We transformed TF-encoding constructs into E. coli
C41 DE3 cells (Lucigen). Freshly-transformed cultures were grown overnight in LB medium
containing 50 mg/ml ampicillin and diluted 1:100 in fresh LB medium. The cells were grown at
25°C to a final concentration of ODgy ~0.8 and then induced with IPTG (Bioshop) to a final
concentration of 1 mM. These cultures were then grown overnight at 14°C. Cell pellets were
obtained by centrifugation at 4°C for 15 minutes at 4000 rpm. Each pellet was resuspended in
cold lysis buffer (50 mM Tris pH 8, 150 mM NaCl, 2 mM DTT, and 12.8 mg of lysozyme). The
resuspension was incubated in ice for 20 minutes and lysed by sonication. Cell lysates were
centrifuged at 4°C for 15 minutes at 4000 rpm and soluble fraction was collected. GST resin
slurry (Amersham) was added to the fraction and binding proceeded at 4°C for 45 minutes. The
beads were washed 2-3 times with PBS with 2 mM DTT and then incubated with elution buffer
(50 mM Tris pH7.5, 10 mM reduced glutathione, Roche protease inhibition and 2 mM DTT) at
4°C for 1 hr. Concentration of GST-tagged DBD was calculated for each protein relative to a
dilution series of GST standards on Coomassie-stained SDS-PAGE gels.

In vitro transcription/translation. For in vitro translation reactions, the manufacturer’s
protocol (Ambion ActivePro Kit) was followed. Molar concentrations of all in vitro translated
proteins were determined by Western blot utilizing a dilution series of recombinant GST
(Sigma). Equal volumes of sample and known concentrations of GST were suspended in 1x
NuPAGE LDS Sample Buffer (Invitrogen), heated to 95°C for 5 minutes, and loaded on a
precast 4-12% Bis-Tris Criterion gel (Bio-Rad). Samples were electrophoresed at 200 V for 25
minutes and then transferred to a nitrocellulose membrane (Sigma) at 30 V for 3 hours.
Membranes were visualized using the SuperSignal West Femto Maximum Sensitivity Substrate
kit (Pierce) according to the manufacturer’s protocols. Primary antibody was added at a final
concentration of 20 ng/ml (anti-GST produced in rabbit; Sigma), and secondary antibody was

added at a final concentration of 5 ng/ml (anti-GST produced in rabbit; Sigma). Film was



scanned and concentrations were determined using Quantity One software version 4.5.0 (Bio-

Rad) according to the GST standard curve.

Glycerol was added to a final concentration of 30% to both IVT and purified protein samples

prior to storage.



C. Protein Binding Microarrays
Design of universal ‘all 10-mer’ universal protein binding microarrays (PBMs):

The design of ‘all 10-mer’ universal protein binding microarrays (PBMs) using a de Bruijn
sequence of order 10 has been described previously (4) and is described in detail in conference
proceedings (RECOMB 2007) published in a separate paper (5). For this study, we created two
separate designs for replicate experiments, which we optimized to achieve maximal coverage of
gapped k-mers, as described below. A de Bruijn sequence of order K is a circular string of length
4% that contains every k-mer exactly once when overlaps are considered. To generate de Bruijn
sequences of order 10 for our universal PBMs, we used a linear-feedback shift register
corresponding to the primitive polynomial:

3x 93 x 0+ 2x B+ 1 X+ 2x 0425 +H3x 3 XK+ 1xP+2x

The two de Bruijn sequences for our two PBMs differ by cyclic permutations of A, C, G, and T.
We empirically selected these particular de Bruijn sequences because they cover all contiguous
10-mers and all gapped 10-mers spanning 11 total positions. Furthermore, they exhibit optimal
coverage of contiguous and gapped 8-mers. Any 8-mer is guaranteed to occur 32 times in a
deBruijn sequence of order 10 (16 times for palindromes). Our de Bruijn sequences exhibit this
16/32-fold redundancy for all gapped 8-mers spanning up to 12 total positions (except for
sequence variants of the single pattern 1111-1-1--11), as well as all gapped 8-mers of the pattern
1111-gap-1111 with a gap of up to 20 positions. Thus, all 4* sequence variants for each of these

341 patterns (more than 22.3 million 8-mers) occur at least 16 times each.

After generating these de Bruijn sequences in silico, we partitioned them into subsequences of
length 36 nucleotides (nt) and overlapping by 11 nt, resulting in 41,944 36-mers for each
microarray. Any 36-mer with a run of five or more consecutive guanines was replaced by its
reverse complement to avoid problems in double-stranding (see below). We appended a
common 24-nt sequence to each 3’ end (5’-gtctgtgttcegttgtccgtgctg-3’) complementary to our
primer for double-stranding (5’-cagcacggacaacggaacacagac-3’) in order to create 60mer

sequences that would become the probes on our custom-designed microarrays. These



microarrays were synthesized by Agilent technologies in their “4x44K” format, with probes
attached to the glass slide at the 3’ end. Each slide contains the entire complement of all possible
10mers in four identical subgrids of approximately 44,000 probes each, which can be physically
separated into four chambers for four separate experiments. The additional probes beyond the
set of 41,944 were designated as control sequences for a variety of purposes. All microarray

probe sequences used in this study are listed on our website, http://the_brain.bwh.harvard.edu.

Protein Binding Microarray Experiments:

Protein binding microarray (PBM) experiments were performed essentially as described
previously (4). First, single-stranded oligonucleotide microarrays were double-stranded by
primer extension and scanned on a microarray scanner (GSI Lumonics ScanArray 5000) prior to
protein incubation. Primer extension reactions consisted of 1.17 uM HPLC-purified common
primer (Integrated DNA Technologies), 40 uM dATP, dCTP, dGTP, and dTTP (GE Healthcare),
1.6 uM Cy3 dUTP (GE Healthcare), 32 Units Thermo Sequenase™ DNA Polymerase (USB),
and 90 ul 10x reaction buffer (260 mM Tris-HCI, pH 9.5, 65 mM MgCl,) in a total volume of
900 pl. The reaction mixture, microarray, stainless steel hybridization chamber, and single-
chamber gasket cover slip (Agilent) were pre-warmed to 85°C in a stationary hybridization oven
and assembled according to the manufacturer’s protocols. After a two-hour incubation (85°C for
10 min, 75°C for 10 min, 65°C for 10 min, and 60°C for 90 min), the hybridization chamber was
disassembled in a glass staining dish in 500 ml phosphate buffered saline (PBS) / 0.01% Triton
X-100 at 37°C. The microarray was transferred to a fresh staining dish, washed for 10 min in
PBS / 0.01% Triton X-100 at 37°C, washed once more for 3 min in PBS at 20°C, and spun dry

by centrifugation at 40 g for 1 min.

For protein binding reactions, double-stranded microarrays were first pre-moistened in PBS /
0.01% Triton X-100 for 5 min and blocked with PBS / 2% (wt/vol) nonfat dried milk (Sigma)
under LifterSlip cover slips (Erie Scientific) for 1 h. Microarrays were then washed once with

PBS / 0.1% (vol/vol) Tween-20 for 5 min and once with PBS / 0.01% Triton X-100 for 2 min.



Purified TFs were diluted to 100 nM (unless otherwise specified) in a 175-ul protein binding
reaction containing PBS / 2% (wt/vol) milk / 51.3 ng/ul salmon testes DNA (Sigma) / 0.2 pug/ul
bovine serum albumin (New England Biolabs). Preincubated protein binding mixtures were
applied to individual chambers of a four-chamber gasket cover slip in a steel hybridization
chamber (Agilent), and the assembled microarrays were incubated for 1 h at 20°C. Microarrays
were again washed once with PBS / 0.5% (vol/vol) Tween-20 for 3 min, and then once with PBS
/ 0.01% Triton X-100 for 2 min. Alexa488-conjugated rabbit polyclonal antibody to GST
(Invitrogen) was diluted to 50 pg/ml in PBS / 2% milk and applied to a single-chamber gasket
cover slip (Agilent), and the assembled microarrays were again incubated for 1 h at 20°C.
Finally, microarrays were washed twice with PBS / 0.05% (vol/vol) Tween-20 for 3 min each,
and once in PBS for 2 min. Slides were spun dry by centrifugation at 40 g for 5 min. After each
hour-long incubation step, microarrays and cover slips were disassembled in a staining dish filled
with 500 ml of the first wash solution. All washes were performed in Coplin jars at 20°C on an
orbital shaker at 125 r.p.m. Immediately following each series of washes, microarrays were
rinsed in PBS (slowly removed over approximately 10 seconds) to ensure removal of detergent
and uniform drying. Every protein in this study was assayed in duplicate, once on each of our

two separate microarray designs described above.

Microarray Stripping:

Protein and antibody were digested from double-stranded microarrays in a 70-ml stripping
solution consisting of 10 mM EDTA, 10% SDS, and 290 Units of protease (from Streptomyces
griseus; Sigma), shaking at 200 r.p.m. in a Coplin jar at 37°C for 16 hours. Microarrays were
then washed 3 times for 5 minutes each in PBS / 0.5% (vol/vol) Tween-20, once for 5 minutes in
PBS, and finally rinsed in PBS in a 500-ml staining dish (slowly removed over approximately 10
seconds) to ensure removal of detergent and uniform drying. All washes were performed in
Coplin jars at 20°C on an orbital shaker at 125 r.p.m. Before re-use, slides were scanned once at
the highest laser power for Alexa488 (488 nm excitation (ex), 522 nm emission (em)) to ensure
that no protein or antibody signal remained, and once for Cy3 (543 nm ex, 570 nm em) to ensure
that there was no appreciable loss in DNA quantity. For this study, all PBM experiments were

performed either on a fresh slide or a slide that had been stripped exactly once, which yielded



indistinguishable results (data not shown). At least one of the two duplicate experiments for

each protein was performed on a fresh slide.

Image Quantification and Data Normalization:

Protein-bound microarrays were scanned to detect Alexa488-conjugated antibody (488 nm ex,
522 nm em) using at least three different laser power settings to best capture a broad range of
signal intensities and ensure signal intensities below saturation for all spots. Separately, slides
were scanned after primer extension to quantify the amount of incorporated Cy3-conjugated
dUTP (543 nm ex, 570 nm em). Microarray TIF images were analyzed using GenePix Pro
version 6.0 software (Molecular Devices), bad spots were manually flagged and removed, and
data from multiple Alexa488 scans of the same slide were combined using masliner

(MicroaArray LINEar Regression) software (6).

Our two-step method of raw data normalization was described previously (4). First, we
normalize Alexa488 signal by the Cy3 signal for each spot to account for differences in the total
amount of double-stranded DNA. Because Cy3-dUTP incorporation is influenced both by the
total number of adenines and the sequence context of each adenine, we perform a linear
regression over all 41,944 variable spots to compute the relative contributions to the total signal
of all trinucleotide combinations (followed by adenine). Using these regression coefficients, we
calculate the ratio of observed-to-expected Cy3 intensity and use that as a normalization factor.
Second, to correct for any possible non-uniformities in protein binding, we further adjust the
Cy3-normalized Alexa488 signals according to their positions on the microarray. We calculate
the median normalized intensity of the 15 x 15 block centered on each spot and divide the spot’s
signal by the ratio of the median within the block to the median over the entire chamber. Raw
and normalized forms of the data for all experiments in this study are provided on our

supplementary website, http://the_brain.bwh.harvard.edu.




D. Comparisons to previous binding specificity data in TRANSFAC, JASPAR, and the

literature.

Identification of previously annotated binding data from TRANSFAC, JASPAR, and the

literature.

In order to determine the quantity and quality of previously known binding site information, we
performed a comprehensive search in the TRANSFAC (7) and JASPAR (8) databases for
matches to the 104 TFs used in this study. Because TRANSFAC hosts data derived from a
variety of experimental procedures and from a range of model organisms, we created four
categories, or “rings” to indicate (a) whether a quality matrix or single binding site was available
for given TF for which we generated PBM data, and (b) whether such a matrix or sequence was
derived from the specific mouse TF that we examined, a paralog of the TF, or an ortholog of the
TF. The TRANSFAC database assigns a BIOBASE quality score (1-6, 1 being the most
specific) to its annotated matrices and binding. In order to restrict our analysis to high quality
datasets, we filtered the TRANSFAC matrices by their BIOBASE quality score. We included
data of quality one and two, which were derived using purified or recombinant protein, and of
quality six, which predated the quality control system. We excluded categories three, four, and
five, which were attained using crude nuclear extracts. All of the matrices in the JASPAR
database were included. For each protein queried, all synonyms were also searched based on the

Mouse Genome Informatics (MGI) database to ensure comprehensiveness.

Binding site data from these two databases fell into one of the following 4 “rings” (see figure
below): Ring 1: All proteins which have a known matrix to the exact mouse protein. We found
that 25/104 (~24%) of the proteins in this study have previously annotated matrices in mouse.
Ring 2: All proteins which have a known matrix to a paralog in mouse. We found that 11
additional proteins used in this study have matrices available for paralogs in mouse. If the
protein being queried had no matrix for its paralogs in either database, we performed a BLASTP

search against the mouse genome to identify all proteins in mouse that had > 66% amino acid



identity, which we define as a paralog. Ring 3: All proteins which have a known matrix to an
orthologous protein. We found that 14 additional proteins in this study have matrices available
for orthologous factors. If the protein queried had no matrix available for known orthologs, we
performed a BLASTP search against all other organisms to identify proteins with >66% amino
acid similarity for which a matrix was available. Ring 4: All proteins which have sequence data
for the mouse protein, for a paralog, or for an ortholog, or has a binding sequence annotated in
the literature. We found that 44 additional proteins used in this study have known binding
sequences in the TRANSFAC database. If the protein queried had no matrix for the mouse
protein, paralog, or ortholog, we searched the database to see if there was a single binding
sequence known for the protein or any other protein which had >66% amino acid similarity
(paralogs and orthologs). At this point, in order to ensure that no binding site data were missed,
we searched the literature for all the proteins which did not fall into rings 1-4. We found
sequence data that were not annotated in either database for the mouse protein, paralog or
ortholog for 9 proteins, which were then partitioned into the appropriate rings based on the data
available. Note: If a TF is present in one ring, it is not present in any other ring. Outside the
rings: All proteins which did not fall into any of the 4 rings, and thus have no binding
information known according to our criteria. We found that 10/104 (~10%) of the proteins in
this study had no entry for the mouse protein, paralog, or ortholog, in either database according

to our criteria, and had no binding data reported in the literature.
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OUTSIDE RINGS

RING 4

44 Proteins

10 Proteins

Survey of known binding information for 104 TFs. In order to determine the extent of
binding information known for the 104 TFs, a systematic search was performed in the
TRANSFAC and JASPAR databases as well as the literature, and broken down into 4 “rings”
(see above for criteria). Ring 1 includes each protein for which there was a matrix available to
the exact mouse protein. Ring 2 includes each protein for which there was a matrix available to
a paralogous protein in mouse. Ring 3 includes each protein for which there was a matrix
available for an orthologous protein. Ring 4 includes each protein for which binding sequence
data was available for the mouse protein, paralog, or ortholog. Outside these rings represents
proteins for which there is no binding data according to our criteria (see above). A protein was
assigned to only the most specific ring possible, such that no protein is included in multiple
rings.
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Comparison of 104 TFs’ PBM k-mers versus prior binding data

We calculated area under ROC curve (AUC) values to assess the similarity between each of the
104 TFs and each of the previously annotated matrices in TRANSFAC, JASPAR, and the
literature. For these comparisons, we obtained all 834 matrices in TRANSFAC Professional
11.3, all 138 matrices in JASPAR CORE version 3.0, and 3 matrices from literature, where a
single matrix was taken from each of the following papers: Osaki et al., 1999 (9), Pengue et al.,
1993 (10), and Wolfe et al., 2005 (11). We derived PWMs from Pengue et al. and Wolfe et al.,
which did not publish a PWM or position frequency matrix, by running the available binding
sequence data through AlignACE 3.0 (12, 13) (http://atlas.med.harvard.edu/cgi-bin/alignace.pl)
and then passing the AlignACE output to enoLOGOS (14) (http://biodev.hgen.pitt.edu/cgi-

bin/enologos/enologos.cgi) for nucleotide position frequency determination.

In brief, the following procedure was used to compare matrices. For each of our 104 TFs, we
generated an indicator matrix across all contiguous 8-mers using a PBM E-score threshold > 0.37
(corresponding to a PBM Q-value threshold of ~0.001). For a given TF, every 8-mer above the
threshold was labeled as a positive hit, and all other 8-mers were labeled as negative hits. We
likewise generated GOMER (15) scores across all 8-mers for each previously annotated matrix,
which allowed us to rank the 8-mer preferences of these matrices. In order to assess the
relationship between a given TF indicator matrix and a set of matrix GOMER scores, used the
Lever software package (16) to obtain AUC statistics and Q-values via multiple hypothesis

testing for every paired combination of PBM TF with previously annotated matrix.
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E. EMSAs

EMSA probe sequences:

The sequences of the oligonucleotides that we used for EMSA probes were as follows:

Novel Motif VValidation

Zfp740 positive probe

5'- NNNNNNNNNNNNNNNNNNNNNCCCCCCCCNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3
Zfpl61 positive probe

5'- NNNNNNNNNNNNNNNNNNNGCGCGCGCGCNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3
GGCC repeat probe

5' - NNNNNNNNNNNNNNNNNNNGGCCGGCCNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'
Osr2 positive probe

5'- NNNNNNNNNNNNNNNNNTACAGTAGCNNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'
Sp100 positive probe

5'- NNNNNNNNNNNNNNNNNTTCTCGCGAAAANNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3

Secondary Motif Validation

Hnf4a primary probe
5' - NNNNNNNNNNNNNNNAGGGGTCACCNNNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'
Hnf4a secondary probe

5'- NNNNNNNNNNNNNNNAGGGGTCCACCNNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

13



Hnf4a hybrid probe

5' - NNNNNNNNNNNNNNNAGGGGTCCCACCNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Nkx1.3 primary probe

5' - NNNNNNNNNNNNNNNNNNNCCACTTAANNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3°

Nkx1.3 secondary probe

5' - NNNNNNNNNNNNNNNNNNAAGTACTTNNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Mybl1l and Myb primary probe

5' - NNNNNNNNNNNNNNNNNNAACCGTTANNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Mybl1 and Myb secondary probe

5' - NNNNNNNNNNNNNNNNNCCAACTGCCNNNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Foxj3 primary probe

5'- NNNNNNNNNNNNNNNNNNNGTAAACAANNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Foxj3 secondary probe

5" - NNNNNNNNNNNNNNNNNNNNCAAAACAANNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Rfxdc2 primary probe

5' - NNNNNNNNNNNNNNNNNNCCTAGCAACGNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

Rfxdc2 secondary probe

5'- NNNNNNNNNNNNNNNNNNCCTGGATACGNNNNNNNNNNNNGAAAGGATGGGTGCGACGCG - 3'

14



Universal Biotinylated Primer

5' - Biotin-CGCGTCGCACCCATCCTTTC - 3'

Probe Design:

EMSA probes were ordered as single-stranded 60 bp oligonucleotides from Integrated DNA
Technologies (IDT) containing a common 20 bp sequence at the 3’ end with which to anneal a
universal biotinylated primer. Probes were designed so that the binding sequence of interest was
imbedded in random flanking sequence (corresponding to “N” in sequence, or roughly 25% of

each of dATP, dCTP, dGTP, dTTP incorporated at that position for the pool of oligos).

Primer Extension

Lyophilized oligonucleotides from IDT were resuspended in TE pH 8.0 to a working stock of
100 uM. Extensions reactions were performed in 1x Thermopol Buffer (NEB; 20 mM Tris-HCI,
10 mM (NH4)2SO04,10 mM KCI, 2 mM MgSQOy, 0.1 % Triton X-100) using final concentrations
of 0.8 mM dNTPs (Amersham), 4 uM primer, and 4 uM oligo template in a 25 pL reaction.

Primer extension was performed in a thermocycler according the following protocol:

1) 95° C for 3 minutes
2) Ramp down to 60° C (0.1° C per second)
3) Hold at 60° C

At step 3, 8 units of BST polymerase (NEB) in 1x Thermopol buffer was added to each reaction

as a “hot start”. After polymerase was added the reaction was allowed to continue to step 4:

4) Incubate at 60° C for 90 minutes
5) Hold at 3° C

15



Oligos were filtered using MinElute PCR Purification Kit (Qiagen) according to the
manufacturer’s instructions, and diluted to a working concentration of 10 nM after concentrations

were determined using a spectrophotometer.

Electrophoretic Mobility Shift Assay (EMSA) experiments

EMSAs were performed using the LightShift© Chemiluminescent EMSA Kit (Pierce),
essentially according to the manufacturer’s protocols. Each 20 puL binding reaction contained 1x
Binding Buffer (10 mM Tris, 50 mM KCI, 1 mM DTT), 2.5% glycerol, 0.5 pg Salmon Testes
DNA (Sigma), 10 mM KCl, 4 png BSA (NEB), 0.05 % NP-40, and 50 uM zinc acetate (Sigma).
0.5 nM DNA probe was used, and 0.2 uM protein. The binding reactions were allowed to
incubate at room temperature for 1 hour. A precast 6% polyacrylamide DNA retardation gel
(Invitrogen) was pre-run for 30 minutes at 100 V, and then 5 pL of 5x loading buffer was added
to the binding reaction, and subsequently 20 uL of the reaction was run on the gel at 100 V for
45 minutes. The gel was then transferred to a charged modified 0.45 pm nylon membrane
(Sigma) for 1.5 hours at 100 V, and subsequently UV-crosslinked to the membrane at 120
pJ/em2. The membrane was then treated with developing buffers (Lightshift Blocking Buffer
with stabilized Streptavidin-Horse Radish Peroxidase conjugate, Wash Buffer, Substrate
Equilibration Buffer, Luminol/Enhancer Solution and Peroxide Solution) according to

manufacturer’s protocol, then exposed to film and developed.
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F. PBM k-mer scoring, combining replicate array data, and motif construction:

PBM k-mer scores

Every non-palindromic 8-mer occurs on at least 32 spots in each chamber of our universal PBM.
Because of this redundancy, we are able to provide a robust estimate of the relative preference of
a transcription factor for every contiguous and gapped 8-mer that is covered on our array. Here,
we provide several scores for each 8-mer: (1) median normalized signal intensity, (2) Z-score,

(3) enrichment score (E-score), and (4) False Discovery Rate Q-value.

Median normalized signal intensity refers to the median normalized signal intensity for the set of
probes containing a match to each 8-mer (usually ~32 probes, but some might be flagged
occasionally because of dust flecks, etc., and therefore removed from further consideration). We
have shown previously that higher PBM median signal intensity corresponds to stronger protein-
DNA binding affinity (4). The distribution of log(median intensity) over all 8-mers is used to
compute a Z-Score for each 8-mer according to the following formula:

log median intensity of kmer —log median intensity of all kmers

Z -Score = - —
robust estimate of standard deviation

Here, our robust estimate of the standard deviation is the median absolute deviation (MAD),
multiplied by 1.4826 for normally distributed data (17). Both the median signal intensity and Z-
score are advantageous because they retain information regarding relative differences in signal
intensity, and thus probe occupancy and relative affinity as well. However, experimental
variability and differences in absolute signal intensities and nonspecific binding can make these

measures difficult to compare for different transcription factors.

Our E-score is a rank-based, non-parametric statistical measure that is invariant to protein
concentration and readily allows different experiments to be compared on the same scale. This
enrichment score has been described previously in detail (4). Briefly, for each 8-mer (ungapped
or gapped) we consider the collection of all probes containing a match as the “foreground”

feature set and the remaining probes as the “background” feature set. We compare the ranks of
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the top half of the foreground with the ranks of the top half of the background by computing a
modified form of the Wilcoxon-Mann-Whitney (WMW) statistic scaled to be invariant of
foreground and background sample sizes. The E-score ranges from +0.5 (most favored) to -0.5

(most disfavored).

Finally, we compute a False Discovery Rate Q-value for each k-mer E-score by comparing it to
the null distribution of E-scores calculated from the distribution of E-scores from negative
control PBMs performed using GST in binding buffer (duplicate negative control PBMs on array
version 1 plus duplicate negative control PBMs on array version 2). Q-values for the k-mer data
from array version 1 were calculated using the GST negative control PBM data from array vl,
Q-values for the k-mer data from array version 2 were calculated using the GST negative control
PBM data from array v2, and Q-values for the k-mer data from the combined array data (from
version 1 and version 2) were calculated using the GST negative control PBM data from the
combined array data. Negative control PBM data using GST in binding buffer versus a mock
IVT reaction gave indistinguishable distributions by a Kolmogorov-Smirnov (KS) test (data not
shown). We note that in computing all of the above scores, we do not consider probes for which
the 8-mer occupies the most distal position (relative to the slide surface) on the probe or for

which the 8-mer overlaps the 24-nt constant primer region.

In essence, the E-score and Z-score capture essentially the same information, but the E-score

representation is compressed as E-scores approach 0.5.

Combining data from replicate arrays

As described above, we performed duplicate experiments for every transcription factor using
microarrays created with independent sequence designs. In order to combine the data from
multiple experiments, we first computed E-scores and Z-scores for all 8-mers for each separate
experiment. We then calculated the mean E-score for each 8-mer directly and calculated the
mean Z-score for each 8-mer after first performing variance stabilizing normalization (18) on the

Z-score measurements for the set of arrays.
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Motif construction using Seed-and-Wobble

In addition to reporting scores for each individual 8-mer, we compactly represent these data as

position weight matrices (PWMs) for each TF.

Our “Seed-and-Wobble” algorithm has been described previously (4, 19). The algorithm works
in two stages. In the first stage (the “Seed” stage), we identify the single 8-mer (ungapped or
gapped) with the greatest enrichment score. For this study, we considered all 8-mers spanning
up to 10 total positions as candidate seeds. In the second stage (the “Wobble” stage), we
systematically test the relative preference of each nucleotide variant at each position, both within
and outside the seed. This is accomplished by examining each of the four nucleotides at each
position within the 8-mer seed (keeping the other 7 positions fixed) and computing the modified
WMW statistic using the entire set of probes containing one of the four variants. For positions
outside the 8-mer seed, we first identify the single position within the seed with the lowest
information content, treat it as a gapped position, and query every other position for which the
resulting 8-mer is covered in our de Bruijn sequence (i.e., all 4° sequence variants of that pattern
exhibit 32-fold redundancy). Finally, we transform the motif derived from this method into a
PWM using a Boltzmann distribution (20, 21). Importantly, this method takes advantage of the
fact that all sequence variants occur an equal number of times on the microarray, and it considers
all features without applying any arbitrary cutoffs. In order to derive a single motif combined
from separate experiments, we choose the 8-mer with the greatest average E-score as a seed,

build a PWM on each separate array, and average the matrix elements, as described previously

(4).

To derive “secondary” motifs (and in the case of Oct-1, a “tertiary” motif) using Seed-and-
Wobble, we first score all microarray probes according to how well they match the primary
motif. For this we use the GOMER scoring framework, which calculates binding probabilities
over the entire length of the probe according to position weight matrices (15). We then re-rank

all probe sequences by their ratios of observed-to-expected ranks, based on the scores assigned
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by the primary motif. Consequently, the top of the re-ranked list is populated by probes with
high signal intensity but without a strong match to the primary motif. We identify the 8-mer
with the highest enrichment score in the new list and use Seed-and-Wobble to construct a

secondary PWM in the new ranking. This process can be iterated multiple times to generate

additional motifs.

To derive secondary motifs combined from separate experiments, we use the combined primary
PWM to separately re-rank each set of probes, identify the 8-mer with the greatest average E-

score, build a PWM on each separate array, and average the matrix elements as before.

“Trimming” Seed-and-Wobble motifs

Due to the extensive set of gapped patterns covered by our universal PBM designs, the PWMs
generated by our Seed-and-Wobble algorithm can contain up to 17 columns. Since many of
these positions often show very little preference for any nucleotide, we devised two methods for
trimming these distal positions in order to more compactly represent the binding specificity. The
first method is based on optimizing AUC statistics to minimize misclassification of k-mers over
all possible trimmed motifs, and the second method utilizes an optimized information content

(IC) threshold of the distal nucleotide positions of the motif.

In the first method, in order to calculate AUC statistics, we had to first define a foreground (class
1) and background (class 0) set of 8-mers. We defined class 1 and class 0 as all 8-mers with
False Discovery Rate Q-values less than 0.005 and greater than 0.5, respectively. Separately,
each PWM under consideration (see below) was used to score all 8-mers according to the
GOMER framework (15). We tested every possible trimmed version of the original PWM,
where trimming proceeded in single-nucleotide increments from the 5’ and 3’ ends (up to any
position with an information content of 1). 8-mers were ranked according to their PWM scores,

and we calculated AUC statistics according to their class 1 and class 0 assignments.
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In the second method we sought to determine an optimal IC threshold for trimming that could be
uniformly applied to all PWMs. For any single IC threshold, PWMs were trimmed from both the
5 and 3’ ends until a position exceeding the threshold was reached. We inspected all 111 TFs in
our dataset using a wide range of information content thresholds (0 to 1, increments of 0.05).

We calculated AUC statistics for each trimmed motif as described above, and for each IC
threshold, we determined the difference between the mean AUC for the 111 trimmed motifs and
the mean AUC for the 111 untrimmed motifs. By this measure, we found that an IC threshold of

0.3 was optimal.

Primary PWMs trimmed by each method were used to re-rank the microarray probes in order to
derive a secondary PWM according to the approach described above. We then trimmed these

secondary PWMs using an IC threshold of 0.3.

Motif construction using RankMotif++

RankMotif++ is a motif finding algorithm that learns PWMs from PBM intensity data. These
binding preferences are represented using probe preference pairs: pairs of probes where the first
probe has significantly higher intensity than the second probe and, as such, is much more likely
to be bound by the DBD than the second probe. RankMotif++ fits PWMs that are, to the greatest
extent possible, consistent with these pairs by maximizing the average log likelihood of these

pairs given a PWM assuming a particular model of probe binding.

Using RankMotif++ on single arrays

We used the RankMotif++ version 3.0 software (22) to fit PWMs to the PBM intensity data for

individual arrays.

Extracting probe preference pairs
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We used robust Z-scores derived from the PBM intensity data to identify the probe preference
pairs. The calculation of the robust Z-scores and the subsequent identification of the probe
preference pairs are based on the settings of four input parameters to the RankMotif++ software:
the log-transform flag “-u”, the positive probe threshold “-p”, the confidence interval scale “-c”,

and the number of negative probes “-n”.

To run RankMotif++ on the PBM intensity data from single arrays, we set the log-transform flag
to “-u 17, indicating to the RankMotif++ software that it should log-transform the normalized
intensities before converting them into robust Z-scores. After the log-transformation, the
software sets the Z-score of the probe with the median log intensity to 0 and it sets the Z-scores
of the other probes by first calculating the difference of the log intensity of the probe and the
median log intensity and then dividing this difference by a robust estimate of the standard
deviation of the log intensities (see (22) for details). We set the positive probe threshold to “-p
3”, indicating that only probes with Z-score > 3 can appear as the first probe in a binding
preference pair. We set the confidence interval scale to 3, using “-c 1.5, to indicate that only
pairs of probes whose Z-scores difference is at least 2 x 1.5 = 3 can appear at probe pairs. For
efficiency, we also restrict the number of probes with Z-score < 0 that can appear in preference
pairs by setting the number of negative probes to 400, using “-n 400”, indicating to the software
that it should select 400 random probes with Z-scores < 0 to appear in preference pairs. The
software then identifies all pairs of probes that satisfy these constraints, i.e. the first probe must
have Z-score > 3, the Z-score difference must be at least 3, and if the second probe has a Z-score
< 0 then it must be one of the 400 negative probes, and fits the PWM model to these probe pairs.

Note that it is possible for both probes in the pair to have Z-scores > 0, or even >3.

Note that for one of the proteins, Sp100, the above parameter settings yielded no probe
preference pairs for either of the two different De Bruijn sequence universal array designs. In

order to run RankMotif++ for Sp100, we set “-p 2.0” and “-c 0.5”.
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Fitting PWMs to probe preference pairs

To guide RankMotif++ in fitting the PWM model, we set three further parameters: the range of
PWM widths to try, the number of PWMs fit at each width, and the reverse complement flag “-
r”. The width range was set to 6-13, “-w 6-13”, indicating that RankMotif++ should fit PWMs
of 6 to 13 columns; the number of PWMs fit at each width was set to 5 using “-s 5; and the
reverse complement flag was set to “true” indicating that RankMotif++ should scan both the
probe sequence and its reverse complement for binding site. The flag was set using “-r TGCA”

which indicates the complements for nucleotides “ACGT”, respectively.

PWMs for trimmed and untrimmed RankMotif++ primary motifs

RankMotif++ returns the PWM at each width that assigns the highest average log likelihood to
the probe preference pairs. For the untrimmed RankMotif++ motifs learned from 59-mers
(removing the most distal nucleotide, relative to the slide surface, from the 60-mer probe
sequences on the arrays), we chose the PWM with the highest likelihood. For the trimmed
RankMotif++ motifs learned from 59-mers, we subtracted a complexity penalty equal to 0.007
times the width from the average log likelihood of each PWM and chose the PWM with the
highest penalized likelihood.

PWMs for trimmed and untrimmed RankMotif++ secondary motifs

In order to calculate the likelihood for a PWM, RankMotif++ uses the PWM to assign each
probe preference pair a probability that reflects how likely a DBD with the given PWM is to
show a binding preference for the first probe over the second probe; as such this probability is a
measure of how well the observed preference is explained by the PWM. In order to compute the
trimmed and untrimmed RankMotif++ secondary motifs, we assigned the probe preference pairs
weights equal to one minus the probability for the preference pair under the corresponding
primary RankMotif++ PWM (trimmed or untrimmed) and used the RankMotif++ software to fit

the best PWM to the re-weighted preference pairs. To derive the trimmed secondary
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RankMotif++ motif, we selected the PWM with the highest penalized likelihood as described

above.
Using RankMotif++ on the combined array data

In order to fit the RankMotif++ PWMs to both arrays at once, we took the union of the sets of
probe preference pairs identified on each of the single arrays and followed the same PWM
procedures described above except that we used a complexity penalty of 0.005 times the PWM
width instead of 0.007.

Availability of RankMotif++

The RankMotif++ code and AMD x64 Linux binaries used above are available from

http://morrislab.med.utoronto.ca as Bash shell scripts that implement all the steps described

above.

Motif construction using Kafal

Kafal (K-mer affinity align) finds motifs models by clustering DNA sequences using affinity
propagation (23) and then aligning all sequences in each cluster found using ClustalW (24).
Highly preferred 8-mers were defined for each PBM experiment by selecting those with an E-
score above 0.45 or the top 100 8-mers (choosing the method that selected more 8-mers). These
8-mers and their reverse complements are then used as input into the following steps. First, a
distance matrix was constructed by computing the modified Levenshtein distance (25) between
all the selected 8-mers. The Levenshtein distance (also known as edit distance) measures the
similarity between two strings and was modified here to highly penalize insertions. Affinity
propagation (23) was then used to cluster the distance matrix using the following parameters:
maximum number of iterations to 3000, the number of iterations required to converge to 20, and
the damping factor to 0.99. The resulting clusters were aligned using ClustalW and the
alignments were then converted to probability matrices using the base counts at each position.

Default values where used for ClustalW.
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Assessing the predictive power of different motif representations

The predictive power of primary to n-ary PWMs trained by Seed-and-Wobble (4) (and trimmed
as described above), RankMotif++ (22), and Kafal on one array (array design #1) were evaluated
by testing for their ability to predict the 8-mer intensities on a replicate array (array design #2)
and vice versa using precision-recall (PR) statistics and using area under receiver operator
characteristic curve (AUC) statistics. Briefly, given a PWM model for a TF binding, a value for
each 8-mer was calculated, using the GOMER scoring function (15), that measures the
probability of transcription factor binding to any site in the genome. For the PR analysis, the
precision at a fixed 70% recall was calculated for 100 bins representing class 1 from a minimum
E-score value of 0.2 (all of the 8-mers with E-score < 0.2 were classified as class 0) or a
minimum Z-score of 2 (all of the 8-mers with Z-score < 2 were classified as class 0), to the
maximum E- or Z-score for each PBM experiment (thus, the bins were of varying sizes across
the different TFs but of equal size within each TF). At each E-score or Z-score threshold (i.e.,
each point on the graph) the Precision (= True Positives / (True Positives + False Positives)) was
determined for the value at which the Recall (= True Positives / (True Positives + False
Negatives)) is 70%. Similarly, for the AUC analysis, the AUC statistics measuring the
probability that an example from class 1 scores higher than an example from class 0 were
calculated for 40 bins representing class 1 from a minimum of 10 top to a maximum of 10,000
top 8-mers (0.1 increment on a log;o scale), and the bottom 22,896 8-mers represent class 0. At
each threshold (i.e., each point on the graph), the Sensitivity (= True Positives / (True Positives +
False Negatives)) and 1-Specificity (= false positive rate = False Positives / (False Positives +

True Negatives)) were calculated.

We asked how well the motif models derived from each method (SW, RM, K, 8-mer scores and
regression-derived combination of PWM motif models) learned from one array, were able to
recapitulate array 8-mer binding data of the other array by precision/recall analysis, by
measuring the percent of variance explained, and by area under receiver operating characteristic
plots (AUC) analysis. In both PR and AUC analyses, 8-mer E-scores from one array replicate

were evaluated against the E-scores of the other array replicate.
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Our overall conclusion is that, in virtually every case, none of the PWMs learned from either the
original 35-mer data or the 8-mer transformed data is capable of reproducing the 8-mer ranks on
the opposite array (for array A vs. B, or B vs. A comparisons) nearly as well as the 8-mer scores
derived from the first array, although virtually all of the dominant motifs vastly outperform
random guessing (i.e., the dominant motifs account for a good proportion of the variation in the
other replicate and almost all motifs weighted by Lasso explain 10% or greater the variation in
the replicate 8-mer data; if there was no relationship between the motif and the 8-mer data, the

correlation and percent of variance explained would be at or around zero).

For the majority of the proteins in this study, RankMotif++ PWMs yielded better performance
measures over the full range of preference scores (i.e., highest through lowest affinities) as
compared to Seed-and-Wobble PWMs or Kafal PWMs, although for some proteins there was no
clear distinction which algorithm captured the whole range of data best — sometimes Seed-and-
Wobble PWMs would capture the highest affinity sites best while the PWMs from other
algorithms captured the lower affinities better. We used TomTom (26) to evaluate the pairwise
similarity between PWMs, using an E-value threshold of 0.01 to classify motifs as related or un-
related. Surprisingly, motifs that are clearly related can yield very different performance
measures. 37% of pairwise PWM similarity comparisons (for the same TF by the three methods)
with a TomTom E-value < 0.01 (i.e. the PWMs are considered to be the same) have differences >
10% in variance explained on the 8-mer ranks of the opposite array, suggesting that small
differences between motif models have an effect on their explanatory power. Conversely, motifs
that did not meet this similarity threshold may score highly on the same data set. 42% of pairwise
PWM similarity comparisons with a TomTom E-value > 0.01 (i.e., the PWMs are considered to
be distinct) differed no more than 10% in variance explained on the 8-mer ranks when
considering PWMs derived from one array replicate compared to the data from the other array.
Kafal most often yielded diverse PWMs that captured the binding data well as compared to other
motif finders, as 35% of Kafal PWMs are given positive weights by the linear regression model,

while 30% and 19% respectively of RM and SW PWMs have non-zero weights.

Lasso analysis to build multiple-motif model representations of the PBM data
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Weighted combinations of PWMs were built by using the least absolute shrinkage and selection
operator (Lasso) algorithm (27), which learns the weighting of each PWM by linear regression,
where the independent variables were the 8-mer GOMER scores (15), which is an estimate of the
probability of transcription factor binding, derived from the PWMs learned from each array
experiment and the dependent variables were the 8-mer Z-scores and E-scores. Lasso only
weights the motifs that contribute to explaining the variance. A bootstrap procedure was

employed to assess the stability of the learned weights.
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G. Analysis of simulated 14-bp motif PBM data

One concern with the interpretation of multiple motifs is that proteins may recognize DNA
binding sites longer than the 10 bases that our PBM designs fully sample. To investigate whether
the secondary motifs we discovered using Seed-and-Wobble may have been due to artifacts
stemming from potentially longer motifs, we performed Seed-and-Wobble analysis on two
different sets of 50 simulated, 14-bp motifs, to search for primary and secondary motifs in
simulated data for simulated ‘long’ (14-bp) motifs. The 1* set of 50 simulated motifs
corresponded to motifs that we assembled by stitching together various existing motifs, in one of

3 different ways:

1. We combined the primary and secondary motifs from the 6 TFs (Hnf4a, Nkx3.1, Mybl1,
Foxj3, Foxk1 and Rfxdc2) in our paper for which we verified the secondary motifs by EMSA,

trimming the flanking positions so that the resulting motifs were 14 bp long.

2. We took 24 long motifs from JASPAR (widths 11 to 17) and either removed the flanking
positions or added new columns to the end of the motif from columns derived from the middle of
the motif to get a final width of 14. Some motifs had exactly 14 positions, in which case nothing

was done to the columns.

3. We combined 40 pairs of shorter motifs (widths 5 to 11) and either removed the flanking
positions or added new columns to the end of the motif from columns derived from the middle of
the motif to get a final width of 14. Some concatenated motif pairs totaled exactly 14 positions,
in which case nothing was done to the columns. The ordering of the motif pair concatenation was

random.

We used real motifs in these ways to generate simulated motifs, since we have found in the past
(Bulyk Lab, unpublished results) that purely synthetically simulated motifs are not ‘round’ in

terms of ‘Hamming ball” motif space, and thus are not a highly accurate simulation of true
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motifs. The 2™ set of 50 simulated motifs corresponded to shuffled versions (positions, or

‘columns’, of the PWM were shuffled) of the 1% set of 50 simulated motifs.

Since PBM data from different de Bruijn sequences are highly reproducible, and since the
requested analysis does not depend on the particular de Bruijn sequence used, we used the
GOMER scoring scheme to score each of these 100 simulated motifs against the probe sequences
of array #1 (de Bruijn sequence #1, arbitrarily). For both sets of motifs, the data were ‘noised’ to
simulate PBM data. Specifically, the simulated motifs were scored against all the 60-mer array
probes using GOMER. The log(GOMER) scores were then converted into z-scores and split into
100 bins. The standard deviation within each bin was calculated and noise was added by
generating random Gaussian z-scores using the mean and standard deviation in the bin. The
standard deviation was scaled with a multiplicative factor such that the scores on the low end
were made noisier than the scores on the high end, in order to simulate the noise distribution in
real PBM data. This procedure outputted a set of scores representing the binding probabilities of
a TF to each of the array probes as specified by its simulated motif. These outputted scores
correspond to the simulated PBM data. This resulted in a ranking of the probes according to
GOMER scores (probabilities), which we then analyzed for motif content. Since our
identification of “secondary” motifs was based upon analysis with Seed-and-Wobble and not by
analysis with RankMotif++, we performed all subsequent analysis of these simulated motif data

using just Seed-and-Wobble.

Seed-and-Wobble was highly successful in identifying the long, 14-bp simulated motifs. Indeed,
the motif was successfully recovered as the primary motif with a top seed 8-mer E-score > 0.45
for 97 out of the 100 14-bp simulated motifs. Approximately 41% of the primary motifs
technically had a ‘secondary motif” that could be identified by Seed-and-Wobble with a top seed
8-mer E-score > 0.45. However, for the vast majority of those cases, given their low quality (low
information content and/or similarity to the primary motif), we likely would not have reported
those motifs as significant secondary motifs; we note that in analyzing the real data for the 104

nonredundant mouse TFs, the primary and secondary motifs had important differences between
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them. For 10 cases, the secondary motif could be misinterpreted as suggesting position
interdependence, if they were to be considered as significant secondary motifs; however, given
the lengths of these motifs and our knowing that we are underpowered to fully determine the
DNA binding preferences of motifs >10 bp, for at least 8 of these cases we would not have had
confidence in stating that they were indicative of position interdependence. In only 1 case might
the secondary motif suggest ‘variable spacer length’; however, in that particular case both the
primary and secondary Seed-and-Wobble motifs were of low information content motif (in both
motifs all positions had IC < 1), and they likely would not have passed our quality control
criteria for considering them as significant motifs. None of the secondary motifs were indicative
of ‘alternate recognition interfaces’. Importantly, in 10 cases the primary motif and the
secondary motif could be assembled to accurately re-create the full, 14-bp simulated motif, and
in another 3 cases assembly of the primary and secondary motifs would re-create the full-length
motif plus inaccurate extraneous flanking sequence. In only 1 case might the secondary motif
suggest ‘multiple effects’; in that case, the primary and secondary motifs are capturing half-sites
(one of which is somewhat lengthy), and sufficient information is not captured to instead argue

for assembling the full-motif from the primary and secondary motifs.

The results of this motif analysis of the 100 simulated motifs support our conclusion that
essentially all (if not all) of the secondary motifs we found in analyzing the real PBM data for
104 nonredundant mouse TFs are indeed real and are highly unlikely to be attributable to a motif
finding artefact due to long motifs. Moreover, nearly all of the 104 TFs we analyzed in this paper
belong to TF structural classes known to bind relatively compact motifs (in general 10 bp or
shorter) based upon prior experimental studies, including traditional protein-DNA biochemical

analyses, in vitro selections (‘SELEX’), TF-DNA co-crystal structures, and ChIP-chip.
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H. Analysis of ChIP-chip data

Relative enrichment of k-mers corresponding to the primary versus secondary Seed-and-Wobble
motifs within bound genomic regions in ChIP-chip data as compared to randomly selected
sequences was calculated for Bcl6 (28) (GEO accession #GSE7673) and for Hnf4a (Neilsen et
al., submitted; GEO accession #GSE7745). ChIP-chip ‘bound’ peaks were identified according
to the criteria of the respective studies (28)(Neilsen et al., submitted). Briefly, the sequences of
the peaks were extracted such that if the peak location was not specified, then flanking sequence
from the midpoints of positive probes (usually defined as the middle probe of a string of five
consecutive positive probes) was extracted. A window size of 500 bp with a step size of 100 bp
was used. Regions ‘bound’ in vivo by ChIP-chip were split according to whether or not they had
a primary or secondary 8-mer above the score threshold within the -250 to +250 windows
considered in our analysis. This was done essentially as in a prior study (29), except that here we
employed thresholds for 8-mers based on GOMER scores rather than on E-scores. This resulted
in 4 types of regions: 1) those with only a primary motif 8-mer; 2) those with only a secondary
motif 8-mer only; 3) those with both primary and secondary motif 8-mers; and 4) those with
neither primary nor secondary motif 8-mers. 8-mer enrichment was calculated relative to a
background sequence set containing ten times the number of randomly selected genomic regions.
P-values were calculated for the interval (—250 to +250) by the Wilcoxon-Mann-Whitney rank
sum test, comparing the number of occurrences per sequence in the bound set versus the

background set.

31



Supporting Text

Categories of secondary binding preferences. We observed clear secondary DNA binding
preferences for nearly half of our 104 mouse TFs. Their secondary motifs fell into four different
categories (Fig. 2B), which we annotated manually and describe below. We confirmed binding
to the secondary motifs by 6 TFs — Hnf4a, Nkx3.1, Myb, Mybll1, Fox;j3, and Rfxdc2 — by

EMSAs (Fig. S10).

We found 15 clear cases of “position interdependence’ TFs, which exhibited strong
interdependence (30) among the nucleotide positions of their binding sites. For example, Eomes,
a member of the T-box structural class, binds most preferentially to AGGTGTGA and also binds
AGGTGTCA or AGGTGTCG quite well, but relatively disfavors AGGTGTGG. Position
interdependencies frequently span more than just dinucleotides; for example, estrogen related
receptor alpha (ESRRa) has a strong preference for binding either CAAGGTCA or
AGGGGTCA, but not CAGGGTCA or CGGGGTCA. Moreover, interdependent nucleotide
positions are not always adjacent to each other; for example, Myb (Fig. S10) exhibited strong
interdependence at positions separated by 1 nt, with preference for binding either AACCGTCA
or AACTGCCA. While the existence of significant position interdependence within TF binding
sites has been observed in prior studies of smaller in vitro binding data sets (31-34) and available
co-crystal structural data (35), that this phenomenon occurs on such a broad scale was not known
previously and is important because most models of TF binding sites commonly used in genome

scanning and various other bioinformatic purposes are based on the assumption that the bases
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contribute independently to TF binding. Our results suggest that the use of motif models that
consider correlated positions (36) may be important for more accurate statistical analysis of TF

binding sites.

‘Multiple effects’ motifs appeared to display a combination of position interdependence and
variable distances separating different parts of their motifs; at least 12 TFs in our dataset fell into
this category. For example, the forkhead TF Foxl1 has a strong preference for binding a primary
motif with the top 8-mer GTAAACAA but also binds with lower affinity to a secondary motif
with the top 8-mer TCATAACA. Certain members of the AP-2, MADS, C4 hormone nuclear
receptor (Fig. S10), homeodomain, C2H2 zinc finger classes, and most other forkhead factors,

also fell into this category.

One protein in our dataset, the mouse transcriptional regulator Jundm2, a member of the basic
leucine zipper (bZIP) structural class, bound to a ‘variable spacer length’ motif. Jun, a well-
studied bZIP protein, has been co-crystallized before bound to either TGACGTCA (Kim and
Podust, PDB #1jnm) or TGAGTCA (AP-1 site) (Kim and Borovilos, PDB #2h7h). Whereas we
found Jundm?2 to have a preference for TGACGTCA over TGACTCA, in contrast we found that
the bZIP TF Atfl binds TGACGTCA essentially as well as does Jundm2, but that Atf1 does not
appear to bind TGACTCA (Fig. S10). The preferences of bZIP proteins for half-site spacing of
ATF/CREB versus AP-1 binding sites previously were found to be determined primarily by the

a-helical fork region that connects the leucine zipper with the DNA-binding basic region (37).
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Finally, approximately 15 secondary motifs in the ‘alternate recognition interfaces’ category
were not readily explainable by either the presence of a variable spacer length or nucleotide
position interdependence. All three members of the RFX class that we examined (RFX3, RFX4,
RFXDC2 (Fig. S10)), as well as some members of the C2H2 ZnF, ETS, SOX, homeodomain,
SANT, IRF, GCM, HMG, and HLH classes, belong to this category. This category is perhaps the
most intriguing, in that it suggests that some TFs recognize their DNA binding sites through
multiple completely different interaction modes, either through alternate structural features or by
switching between alternate conformations. Support for this hypothesis comes from the co-
crystal structure of human RFX1 bound to DNA, which indicated that RFX1 uses 3-strands and a
connecting loop to interact with the major groove of one half-site, and an alpha-helix to interact
with the minor groove of the other half-site (38). It is likely that RFX3, RFX4, and RFXDC2 use

this same mechanism of alternative DNA recognition modes (Fig. S13).

Another example of a protein in the ‘alternate recognition interfaces’ category is ZFP187, which
has eight zinc fingers, and whose PBM-derived primary and secondary motifs are vastly different
from each other. In one model, all the fingers might be involved in binding to a single long motif
that is not captured well on our present array designs; however, in examining the PBM data for
ZFP187, we found no high-scoring k-mers, gapped or ungapped, that spanned the two motifs.
We propose an alternative model that different subsets of zinc fingers within a single protein

might come together to bind different sequence motifs.
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Listing of which TFs’ secondary motifs belonged to each of the 4 categories:

‘Position interdependence’ category:

E2F2, E2F3, Eomes, Esrra, Geml, Hbpl, Irf5, Myb, Mybl1, Nr2f2, Rara, Rxra, Sox4, Sox7,

Sox8, Sox11, Spdef, Tcfe2a, Zfp281

‘Variable spacer length’ category:

Jundm?2

‘Multiple effects’ category:

Bhlhb2, Foxa2, Foxj1, Foxj3, Foxkl, Foxl1, Gm397, Hicl, Hnf4a, Nkx3-1, Six6, SRF, Tcfap2a,

Tctfap2c, Zp691, Zic3

‘Alternate recognition interfaces’ category:

Plagll, Rfx3, Rfx4, Rfxdc2, Z{p187
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Figure S1

"MAGIC" system to express GST fusion proteins.

DNA-binding domains (DBDs) were cloned into a pMAGIC Donor vector, enabling a bacterial

transfer of DBDs into pML280-T7GST , by "mating-assisted genetically integrated

cloning" (MAGIC, see Li et al. 2005), generating a recipient library expressing N-term GST fusion-DBD.
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Figure S2: Comparison of PBM data for DNA binding domain versus full-length protein.

We created two constructs for five transcription factors: one encompassing just the DNA binding

domain, and one spanning the entire protein. Each protein was applied to two PBMs of
independent sequence designs, and we compared the motifs and 8-mer scores after combining
the data from these arrays. (A) Primary and secondary motifs from Seed-and-Wobble, and
correlations of 8-mer enrichment scores (E-scores) for DNA binding domain and full-length
proteins. Both constructs produced essentially identical motifs by the Seed-and-Waobble
algorithm and highly correlated E-scores across all 8-mers. (B) (next page) Scatter plots of 8-
mer E-scores for the two constructs (DNA binding domain versus full-length) of these five

proteins.
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Figure S3: E. coli in vivo versus in vitro protein expression. We expressed six proteins both in
E. coli (in vivo) and in vitro (see Methods) and performed PBM experiments to determine the data
reproducibility for different methods of protein production. Proteins expressed in vivo were
purified by GST affinity chromatography (see Methods). Each individual protein sample was
applied to two PBMs of independent sequence designs, and we compared the motifs and 8-mer
scores after combining the data from both arrays. (A) Both methods of protein expression
produced essentially identical motifs by the Seed-and-Wobble algorithm and highly correlated
Enrichment scores (E-scores) across all 8-mers. (B) Correlation of 8-mer E-scores (left) and Z-
scores (right) for the C,H, zinc finger protein, Egrl.




Figure S4. PBM data reproducibility. Panels A-D show that replicate arrays cluster together.
We combined the 8-mer Z-scores from the two replicate arrays into a single file, with each
replicate retained as a separate column and each 8-mer in a separate row. To minimize the
impact of noise, we reduced this data structure to the 14,873 8-mers that have a Z-score of 6 or
greater in at least one experiment, and set entries less than zero to zero. We clustered these data
using Pearson correlations and hierarchical agglomerative linkage. Panel A shows the full
clustering analysis. Panels B, C, and D show zoom-ins of the left, middle, and right of Panel A.
Panel E shows the reproducibility of 8-mer E-scores (Pearson correlation coefficient r=0.65) and
Z-scores (Pearson correlation coefficient r=0.85) for replicate PBMs for a single transcription
factor (Esrra).
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Figure S5: Agreement of PBM k-mer data with prior motif data, in general.
Comparisons were performed as described in Materials and Methods. 44 of the 50
proteins (88%) in rings 1, 2, or 3 had their top AUC matches to members of their
structural families; 5 of these 44 proteins had their top AUC match to the expected
protein (the exact match, paralog, or ortholog referenced by the ring system). Full
comparison results (AUC > 0.8 and Q0 <0.01) are provided in Table S3.
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Figure S6. Comparison of PBM data versus K4 data. k-mers with higher median
signal intensity are of higher DNA binding affinity, as shown in PBM enrichment score
versus relative Kq plots for (A) yeast Cbfl(data shown for 8-mers analyzed by Maerkl
and Quake, Science (2007)) and (B) (next page) murine/human Max (data shown for
median of all 8-mers that contain each 7-mer analyzed by Maerkl and Quake, Science
(2007)). Yeast Cbfl PBM data are from Berger et al., Nature Biotechnology (2006). Max
PBM data are for murine Max from this paper. Ky data were calculated from ddG data
from Maerkl and Quake, Science (2007), and correspond to affinities for the highest
affinity sequences, of 16.6 nM for Cbfl and 67.0 nM for human MAX isoform A. The
lower limit of detection of the MITOMI assays was ~18 uM, as reported in that study.
Note: Maerkl and Quake, Science (2007) examined human Max protein. Additional
comparisons of PBM versus Ky data were shown previously in Berger et al., Nature

Biotechnology (2006) for Egrl (Zif268).
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Figure S7. Confirmation of PBM-derived motifs by EMSAs for three newly
characterized proteins (Zfp740, Osr2, Sp100) and one recently characterized protein
(Ztpl61, also known as ZF5 (Orlov et al., FEBS J, 2007)). Electrophoretic mobility shift
assays were performed to verify select motifs which were determined by PBM. Lane 1:
Zfp740 protein + Cg probe; lane 2: Zfp740 protein + (GC)s probe; lane 3: Zfp740 protein
+ (GGCC); probe; lane 4: Zfp161 protein + Cs probe; lane 5: Zfp161 protein + (GC)s
probe; lane 63: Zfp161 protein + (GGCC), probe; lane 7: Osr2 positive probe; lane 8:
Osr2 protein + Osr2 positive probe; lane 9: Osr2 protein + Sp100 positive probe; lane 10:
Sp100 positive probe; lane 11: Sp100 protein + Sp100 positive probe; lane 12: Sp100
protein + Osr2 positive probe. Lanes 1-6 were designed to examine the specificity of the
protein to its PBM-derived motif by testing each protein with two other probe sequences
of similar GC content (Zfp740 positive control probe containing Cs, Zfp161 positive
control probe containing (GC)s, or probe containing (GGCC),); see Materials and
Methods for the complete probe sequences. Lanes 7-12 validate binding by testing the
protein both to its PBM-derived motif and to a probe designed to test a different protein,
as a negative control.
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Figure S8. Detailed annotation of clustergram of k-mers for all PBM data after
combining data from both array designs. 2-D hierarchical agglomerative clustering
analysis of 4,740 ungapped 8-mers over 104 nonredundant TFs, with both 8-mers and
proteins clustered using averaged E-score from the two different array designs. The
4,740 8-mers were selected because they have an E-score of 0.45 or greater for at least
one of the proteins. A motif representative of the 8-mers contained in each of the
indicated clusters is shown, derived from running the 8-mers on ClustalW and entering
groups of related aligned sequences into WebLogo. A simplified version of this figure is
shown in the main body text as Figure 1A.
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Figure S9. (A) HMG/SOX DNA-binding domains. Top, 2-D Hierarchical agglomerative
clustering analysis of relative ranks for 310 8-mers x 21 HMG/SOX DNA-binding domains (with
Sox7 as both DBD and FL). The 310 8-mers were selected because they have an E-score of 0.45
or greater for at least one of the DBDs shown. Each of the 310 8-mers was then given a rank
score (between 1 and 310) within each column, and the ranks were analyzed here, in order to
compensate for any overall differences in magnitude of the E-scores. Bottom, 6-mer sequences
that are preferred within the 8-mers shown in the top panel. Next page, Seed-and-Wobble logos

are shown next to a ClustalW phylogram derived using the amino-acid sequences of the DNA-
binding domains.
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Figure S9. (B) AP-2 DNA-binding domains. 2-D Hierarchical agglomerative
clustering analysis of relative ranks for 71 8-mers x 4 AP-2 DNA-binding domains.
The 71 8-mers were selected because they have an E-score of 0.45 or greater for at
least one of the TFs shown. Each of the 71 8-mers was then given a rank score
(between 1 and 71) within each column and the ranks were analyzed, in order to
compensate for any overall differences in magnitude of the E-scores.
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Figure S9. (C) ARID/BRIGHT DNA-binding domains. Top, 2-D Hierarchical
agglomerative clustering analysis of relative ranks for 119 8-mers x 3 ARID/BRIGHT DNA-
binding domains. The 119 8-mers were selected because they have an E-score of 0.45 or
greater for at least one of the TFs shown. Each of the 119 8-mers was then given a rank score
(between 1 and 119) within each column and the ranks were analyzed, in order to compensate
for any overall differences in magnitude of the E-scores. Bottom, 6mer sequences that are
preferred within the 8-mers shown in the top panel.
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Figure S9. (D) BZIP DNA-binding domains. Top, 2-
D Hierarchical agglomerative clustering analysis of
relative ranks for 130 8-mers x 4 BZIP DNA-binding
domains. The 130 8-mers were selected because they
have an E-score of 0.45 or greater for at least one of the
TFs shown. Each of the 130 8-mers was then given a
rank score (between 1 and 130) within each column and
the ranks were analyzed, in order to compensate for any
overall differences in magnitude of the E-scores.
Middle, 6-mer sequences that are preferred within the 8-
mers shown in the top panel. Bottom, Seed-and-Wobble
logos are shown next to a ClustalW phylogram derived
using the amino-acid sequences of the DNA-binding
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Figure S9. (E) ZnF_C4 DNA-binding domains. Top, 2-
D Hierarchical agglomerative clustering analysis of
relative ranks for 318 8-mers x 5 ZnF_C4 DNA-binding
domains. The 318 8-mers were selected because they have
an E-score of 0.45 or greater for at least one of the TFs
shown. Each of the 318 8-mers was then given a rank
score (between 1 and 318) within each column and the
ranks were analyzed, in order to compensate for any
overall differences in magnitude of the E-scores. Middle,
6-mer sequences that are preferred within the 8-mers
shown in the top panel. Bottom, Seed-and-Wobble logos
are shown next to a ClustalW phylogram derived using the
amino-acid sequences of the DNA-binding domains.

=_= . GGGTCG Relative rank
- CGGTCA ::-
Lowest Highest
_ AGTTCA (best)
GGGGTC
._ AAGGAC
TGGACT
N N O
S8 & 3%
P W =
Rura __ aaA TTCAE

Rara _ 2aAGGTCA_
H— Bsma  __ _cAACCTCAL

Hufda _ _GalTeeA.

Nr2f2

_  aaAGGTCA_



Relative rank

.

Lowest Highest
(best)

‘!

|

| —
E=
| =—=
{
N ™M N M
L L Wb LW
N N N N
w w w w

Figure S9. (F) E2F DNA-binding domains. 2-D Hierarchical agglomerative clustering
analysis of relative ranks for 260 8-mers x 4 E2F DNA-binding domains. The 260 8-mers
were selected because they have an E-score of 0.45 or greater for at least one of the TFs
shown. Each of the 260 8-mers was then given a rank score (between 1 and 260) within
each column and the ranks were analyzed, in order to compensate for any overall
differences in magnitude of the E-scores.
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Figure S9. (G) ETS DNA-binding domains. Top, 2-D
Hierarchical agglomerative clustering analysis of relative
ranks for 343 8-mers x 6 ETS DNA-binding domains.
The 343 8-mers were selected because they have an E-
score of 0.45 or greater for at least one of the TFs shown.
Each of the 343 8-mers was then given a rank score
(between 1 and 343) within each column and the ranks
were analyzed, in order to compensate for any overall
differences in magnitude of the E-scores. Middle, 6-mer
sequences that are preferred within the 8-mers shown in
the top panel. Bottom, Seed-and-Wobble logos are shown
next to a ClustalW phylogram derived using the amino-
acid sequences of the DNA-binding domains.
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Figure S9. (H) Forkhead (FH) DNA-binding
domains. Top, 2-D Hierarchical agglomerative
clustering analysis of relative ranks for 176 8-mers x 5
FH DNA-binding domains. The 176 8-mers were
selected because they have an E-score of 0.45 or greater
for at least one of the TFs shown. Each of the 176 8-
mers was then given a rank score (between 1 and 176)
within each column and the ranks were analyzed, in
order to compensate for any overall differences in
magnitude of the E-scores. Middle, 6-mer sequences that
are preferred within the 8mers shown in the top panel.
Bottom, Seed-and-Waobble logos are shown next to a
ClustalW phylogram derived using the amino-acid
sequences of the DNA-binding domains.
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Figure S9. (I) GATA DNA-binding domains.
Top, 2-D Hierarchical agglomerative clustering
analysis of relative ranks for 186 8-mers x 3
GATA DNA-binding domains (with Gata3 as both
DBD and FL). The 186 8-mers were selected
because they have an E-score of 0.45 or greater
for at least one of the TFs shown. Each of the 186
8-mers was then given a rank score (between 1
and 186) within each column and the ranks were
analyzed, in order to compensate for any overall
differences in magnitude of the E-scores. Middle,
6-mer sequences that are preferred within the 8-
mers shown in the top panel. Bottom, Seed-and-
Wobble logos are shown next to a ClustalW
phylogram derived using the amino-acid
sequences of the DNA-binding domains.

T
|
-
i

Fhil

Relative rank

.

Lowest Highest

ATCTGATC

ATCTGATA (best)
AATCTGAT

TAATCTGA

TCAGATAA

ATCAGATC

ATCAGATA TCAGAT

AATCAGAT

AGATTAGC
AGATTAAG

AGATTAGA

AGATTATC

cacaTTaA  AGATTA
ATAGATTA ———
AGAGATTA

ur “MM |

Gata3

Gata3-FL
Gatab
Gatab

Gatad .. aCATAAcs
(atad _ oCATAAS- _

Gatab . -xCATAAc. -




Figure S9. (J) HLH DNA-binding domains. Top, 2-
D Hierarchical agglomerative clustering analysis of
relative ranks for 320 8-mers x 6 HLH DNA-binding
domains (with Max in duplicate and Bhlhb2 including
DBD and FL). The 320 8-mers were selected because
they have an E-score of 0.45 or greater for at least one
of the TFs shown. Each of the 320 8-mers was then
given a rank score (between 1 and 320) within each
column and the ranks were analyzed, in order to
compensate for any overall differences in magnitude of
the E-scores. Middle, 6-mer sequences that are
preferred within the 8-mers shown in the top panel.
Bottom, Seed-and-Waobble logos are shown next to a
ClustalW phylogram derived using the amino-acid
sequences of the DNA-binding domains.
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Figure S9. (K) Homeodomain (HOX) DNA-
binding domains. Top, 2-D Hierarchical
agglomerative clustering analysis of relative ranks
for 514 8-mers x 4 HOX DNA-binding domains
(with Tcfl in duplicate). The 514 8-mers were
selected because they have an E-score of 0.45 or
greater for at least one of the TFs shown. Each of
the 514 8-mers was then given a rank score
(between 1 and 514) within each column and the
ranks were analyzed, in order to compensate for
any overall differences in magnitude of the E-
scores. Middle, 6-mer sequences that are preferred
within the 8-mers shown in the top panel. Bottom,
Seed-and-Wobble logos are shown next to a
ClustalW phylogram derived using the amino-acid
sequences of the DNA-binding domains.

Relative rank

.
GTTAAC

Lowest Highest
(best)
CATTAG
GATATC
l AAGTGC
38 8 2
- F 3 0 g
T Z
Six - cGGTATCA_ .
Tefd _. =TTAACx..
hxa3 - TAATTA.

Nkx-1 _AAGTACTTo~



o T, e, 453 | e =, S

Figure S9. (L) IRF DNA-binding domains. Top, 2-
D Hierarchical agglomerative clustering analysis of
relative ranks for 157 8-mers x 5 IRF DNA-binding
domains. The 157 8-mers were selected because they
have an E-score of 0.45 or greater for at least one of
the TFs shown. Each of the 157 8-mers was then
given a rank score (between 1 and 157) within each
column and the ranks were analyzed, in order to
compensate for any overall differences in magnitude
of the E-scores. Middle, 6-mer sequences that are
preferred within the 8-mers shown in the top panel.
Bottom, Seed-and-Wobble logos are shown next to a
ClustalW phylogram derived using the amino-acid
sequences of the DNA-binding domains.
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Figure S9. (M) RFX DNA-binding domains. Top,
2-D Hierarchical agglomerative clustering analysis
of relative ranks for 94 8-mers x 3 IRF DNA-
binding domains (with Rfx3 as both DBD and FL).
The 94 8-mers were selected because they have an
E-score of 0.45 or greater for at least one of the TFs
shown. Each of the 94 8-mers was then given a rank
score (between 1 and 94) within each column and
the ranks were analyzed, in order to compensate for
any overall differences in magnitude of the E-scores.
Middle, 6-mer sequences that are preferred within
the 8-mers shown in the top panel. Bottom, Seed-
and-Wobble logos are shown next to a ClustalW
phylogram derived using the amino-acid sequences
of the DNA-binding domains.
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Figure S9. (N) SAND DNA-binding domains. Top, 2-D
Hierarchical agglomerative clustering analysis of relative
ranks for 178 8-mers x 3 SAND DNA-binding domains.
The 178 8-mers were selected because they have an E-score
of 0.45 or greater for at least one of the TFs shown. Each
of the 178 8-mers was then given a rank score (between 1
and 178) within each column and the ranks were analyzed,
in order to compensate for any overall differences in
magnitude of the E-scores. Middle, 6-mer sequences that
are preferred within the 8-mers shown in the top panel.
Bottom, Seed-and-Wobble logos are shown next to a
ClustalW phylogram derived using the amino-acid
sequences of the DNA-binding domains.
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Figure S10. EMSA confirmation of secondary motifs. EMSAs were performed to
validate binding to secondary motifs, as determined by the Seed-and-Wobble algorithm
(Berger et al., Nature Biotechnology, 2006) for Hnf4a. Lane 1. Hnf4a primary probe
alone; lane 2: Hnf4a secondary probe alone; lane 3: GGTCCCA probe; lane 4: Hnf4a
protein + Hnf4da primary probe; lane 5: Hnf4a protein + Hnf4a secondary probe; lane 6:
Hnf4a protein + GGTCCCA probe; lane 7: Rara protein + Hnf4a primary probe; lane 8:
Rara protein + Hnf4a secondary probe; lane 9: Rara protein + GGTCCCA probe. Lanes
1-6 show that Hnf4a binds to both the primary and secondary motifs derived by PBM,
and very weakly to a third probe containing the sequence GGTCCCA; see Materials and
Methods for the complete probe sequences. Hnf4a is the only C4 class of zinc finger
proteins assayed in this study which showed a preference for this secondary motif
(GGTCCA secondary, GGTCA primary). To validate that this secondary motif is
specific to Hnf4a, we ran the same probes against another C4 zinc finger protein, Rara
(lanes 7-9). Rara can bind to the Hnf4a primary motif sequence (GGTCA), but not the
secondary motif of Hnf4a (GGTCCA), or to a probe containing the sequence
(GGTCCCA); Rara did not yield a significant secondary Seed-and-Wobble PBM motif.
All probe sequences are provided in the Materials and Methods.
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Figure S10 (continued). EMSA confirmation of secondary motifs. EMSAS were
performed to validate binding to secondary motifs, as determined by the Seed-and-
Wobble algorithm (Berger et al., Nature Biotechnology, 2006) Lane 1: Nkx3.1 primary
probe alone; lane 2: Nkx3.1 secondary probe alone; lane 3: Foxj3 primary probe alone;
lane 4: Nkx3.1 protein + Nkx3.1 primary probe; lane 5: Nkx3.1 protein + Nkx3.1
secondary probe; lane 6: Nkx3.1 protein + Foxj3 primary probe; lane 7: Mybl1 primary
probe alone; lane 8: Mybl1 secondary probe alone; lane 9: Foxj3 primary probe alone;
lane 10: Mybl1 protein + Mybl1 primary probe; lane 11: Mybl1 protein + Mybl1
secondary probe; lane 12: Mybl1 protein + Foxj3 primary probe; lane 13: Foxj3 primary
probe alone; lane 14: Foxj3 secondary probe alone; lane 15: Nkx3.1 primary probe alone;
lane 16: Foxj3 protein + Foxj3 primary probe; lane 17: Foxj3 protein + Foxj3 secondary
probe; lane 18: Foxj3 protein + Nkx3.1 primary probe; lane 19: Rfxdc2 primary probe
alone; lane 20: Rfxdc2 secondary probe alone; lane 21: Mybl1 primary probe alone; lane
22: Rfxdc2 protein + Rfxdc2 primary probe; lane 23: Rfxdc2 protein + Rfxdc2 secondary
probe; lane 24: Rfxdc2 protein + Mybl1 primary probe; lane 25: Myb primary probe
alone; lane 26: Myb secondary probe alone; lane 27: Rfxdc2 secondary probe alone; lane
28: Myb protein + Myb primary probe; lane 29: Myb protein + Myb secondary probe;
lane 30: Myb protein + Rfxdc2 secondary probe. All probe sequences are provided in the
Materials and Methods.



Primary Motif

~TATGCAxA. .

Secondary Motif

&AETAATTAA_J

Tertiary Motif

__ eAATAxxc .
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Figure S11: Primary, secondary, and tertiary Seed-and-Wobble motifs for the human POU
homeodomain Oct-1. We searched for secondary and tertiary motifs in previously generated
universal PBM data [Berger, et al., Nature Biotechnology (2007), 24:1429-1435] using our
modified Seed-and-Wobble algorithm [Berger, et al., Nature Biotechnology (2007), 24:1429-
1435] described in Materials and Methods. For one protein, human Oct-1, which has a
bipartite POU DNA-binding domain, another group had already determined the consensus
binding sites by in vitro selection (SELEX) for three separate constructs: the entire POU domain,
the POU-specific subdomain (POUs), and the POU-type homeodomian (POUyp) [Verrijzer, et
al., EMBO Journal (1992), 11:4993-5003]. The three motifs we derived from our universal
PBM data correspond exactly to the previously-identified binding sites for these three constructs,
suggesting to us that we can capture multiple modes of DNA-protein interactions in vitro from a
single experiment.
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Figure S12. High-scoring k-mers belonging to the Jundm2 secondary motif are not
bound as well by the related bZIP protein Atfl. Scatter plot comparing 8-mer
enrichment scores for closely related TFs. Whereas we found Jundm2 to have a
preference for TGACGTCA over TGACTCA, in contrast we found that the bZIP TF Atfl
binds TGACGTCA essentially as well as does Jundm2, but that Atf1 does not appear to
bind TGACTCA.



CLUSTAL W (1-83) multiple sequence alignment

REX3-1VT TLQWLLDNYETAEGVSLPRSTLYNHYLRHCQEHKLDPVNAASFGEL I
RFX3-purified HLQWLLDNYETAEGVSLPRSTLYNHYLRHCQEHKLDPVNAASFGHLI

SIFMGLRTRRLG 60
SIFMGLRTRRLG 60

hRFX1 TVQWLLDNYETAEGVSLPRSTLYCHYLLHCQEQKLEPVNAASFGHL IRSVFMGLRTRRLG 60

REX4-1VT TLQWLEENYEITAEGVCIPRSALYMHYLDFCEKNDTQPVNAASFGH I 1RQQFPQLTTRRLG 60

RFXDC2-purified AFSWIRNTLEEHPETSLP QEVYDEYKSYCDNLGYHPLSAADFGKIM NVFPNMK LG 60
*- - -k - -* _* *-- *- ** ***:-- - :****

REX3-1VT TRCNSEMHNMYG IRVKPDSPLNR 82
RFX3-purified TRGNSEMHMYG IRVKPDSPLN- 81
hRFX1 TRGNSEMHMYGLR IKASSPLLR 82
RFEX4-1VT TRGQSKMHNMYGIAVKESSQYY- 81
RFXDC2-purified TIGKS.CISGLRKKAFVHMP— 81

*** **k* X *-

Figure S13. RFX family protein-DNA recognition positions. Itis likely that RFX3, RFX4, and RFXDC2 all use the same
mechanism of alternative modes of DNA recognition as RFX1 (Gajiwala et al., Nature, 2000), because seven out of nine residues

involved in direct or water-mediated DNA contacts (highlighted in red) are identical among these proteins, while the other two
residues have conservative substitutions.
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Figure S14: Graphs showing log,,(1-AUC) (area under ROC curve) (y-axis) versus
log,,(number of positives) (x-axis) for Hnf4a. Log,,(1-AUC) is shown to highlight
differences between the methods, all of which have an AUC near 1. Graphs were
generated using Array 1 as training and Array 2 as test data (panels A,C; this and next
page), and separately using Array 2 as training and Array 1 as test data (panels B,D; this
and next page). The solid black line (“Full Lasso model”) indicates performance of the
multiple motif model; all other lines indicate performance of various other individual
motifs identified by other motif finding algorithms (see Materials and Methods). For
clarity, only data for the Lasso-selected PWMs are shown in panels A,B; plots showing
data from all motifs considered are shown in panels C,D.
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Figure S15: Enrichment of primary versus secondary motif 8-mers bound in vitro within
genomic regions bound in vivo. Relative enrichment of k-mers corresponding to the primary
versus secondary Seed-and-Wobble motifs within bound genomic regions in ChIP-chip data as
compared to randomly selected sequences was calculated (see Materials and Methods) for (A,
C, D) Hnf4a (GEO accession #GSE7745) and (B, E, F) (next page) Bcl6b (34) (GEO accession
#GSE7673). ChIP-chip ‘bound’ regions were identified according to the criteria of the respective
studies (34)(Neilsen et al., submitted). A window size of 500 bp with a step size of 100 bp was
used. Either all ‘bound’ regions (far left, upper and lower rows), ‘bound’ regions lacking primary
motif k-mers (second from left, upper row; far right, lower row) or ‘bound’ regions lacking
secondary motif k-mers (far right, upper row; second from left, lower row) were considered for
matches to primary motif k-mers (far left, second from left, and far right in upper row),
secondary motif k-mers (far left, second from left, and far right in lower row), or either primary
or secondary motif k-mers (second from right, upper and lower rows). The coarseness of the
Bcl6 distributions is due to a smaller sample size of ChIP-chip ‘bound’ regions. The GOMER
thresholds used in (A) are 2.958 x 107 and 8.419 x 107, corresponding to 9 primary and 20
secondary 8-mers scanned, respectively for Hnf4a. The GOMER thresholds used for the data
shown in (B) correspond to 1.513 x 10 and 3.294 x 107 corresponding to 4 primary and 17
secondary 8-mers scanned, respectively, for Bcl6b. P-values for enrichment of 8-mers within the
bound genomic regions shown in each panel were calculated for the interval =250 to +250 by the
Wilcoxon-Mann-Whitney rank sum test, comparing the number of occurrences per sequence in
the bound set versus the background set. Enrichment plots at varying GOMER score thresholds
(indicated above each plot in panels C-F, next pages) are shown in (C, D) for Hnf4a and (E, F)
for Bcl6b for primary (C, E) versus secondary (D, F) motifs using a window size of 500 bp and a
step size of 50 bp. Enrichment is generally observed across varying GOMER thresholds, with the
exception that at permissive GOMER thresholds enrichment can be lost. Number of k-mers
included at each GOMER threshold is indicated in red on each plot in panels C-F.
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(C) Hnf4a primary motif enrichment within ‘bound’

] 000k ] oooi
0% 008
]
8
o 2 - u]
b
oos- @ o0ns-
oot 0ol
m wn o el — = m o —
o T (wepuespunog) ojfey
(wopueypunog) ogey
o] 000k S =] ooo
{
008 005
~
=
m
o3 i
=
v
00g- e
nogt 0oo
w o o - 4 M o - O
o - {wopueypunog) ojey
(uopueipUnog) oey
] 0004 ] 0004 ] oook
B
LLIN \N s 0os
o g
& &
[a] % i} = n]
: H
- / ooe- 0og-
\ Doo k- 000 D00k
o fur} w =T = wm 4] — 3 (v} o — (=]
AN (wopueypunod) oey (wepuenunon) oey
(wopuapUNog) oy
] 000k ] 0004 ﬂ ~] Dook
\ o w oe aoe
=]
. Q 8
£ -4 k=
o] Q 1] _@ u]
E g
L1y e © oog-
nook 00Ok 000k
6 @ o s ®m - R
- T - (wopuaypunog) ojey o - o
(wepueypunog) oy (wopueypunog) oey
=] 0004 =] 000} ~ 0004
e
0% 005 [ilas]
M 5 \\.
]
0o H o g 0
E g
o © oos oos
0004 h ook 0ook
e Ro e eogezw- gy
(WopuRpUNO) OeY (wopue=punog) ojey (wopueypuUnog) oy

genomic regions

(D) Hnf4a secondary motif enrichment within *bound’
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(F) Bcl6b secondary motif enrichment within *bound’
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