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SI Materials and Methods
Data Set Acquisition and Filtering. All data sets were downloaded
from the GEO database, and consisted of experiments run on
either mouse or human brain tissue (Fig. 1A). We filtered out all
but a core collection of data sets that were similar enough for
useful bioinformatic comparison. First, we removed all data sets
that were not run on an Affymetrix platform, leaving three
platforms in human (HG-U95A, HG-U133A, HG-U133 Plus 2)
and two in mouse (MG-U74A, MG-U430A). Second, we ex-
cluded all samples in each data set that were not taken from
brain tissue (for example, in one expression atlas study, more
than 80% of the samples were excluded). Third, to make the
correlations between genes more comparable across studies, we
omitted all data sets with fewer than 20 samples and split data
sets with more than 40 samples into subsets when a biologically
meaningful splitting parameter was available (i.e., brain region,
disease state, or mouse strain). Finally, data sets were pre-
processed identically (as detailed later) and all data sets with
average within-species expression correlation (correlation be-
tween expression ranks of genes in two studies) and connectivity
correlation (correlation between connectivity ranks of genes in
two studies) that were disproportionately low were excluded. For
the connectivity correlation assay, test networks were made for
each data set with a power of five using WGCNA (see refs. 1 and
2 for more details). After filtering, a total of 18 data sets in
human and 20 in mouse remained for our analysis (Table S1).

Preprocessing and Network Formation. An initial expression matrix
was either downloaded from GEO and scaled such that the av-
erage intensity was 200 (if no .cel files were available), or created
from Affymetrix .cel files. These .cel files were downloaded, read
into R, and preprocessed using the “expresso” function and the
MAS5 method of preprocessing. We chose MAS5 based on
a study by Lim et al. (3), which benchmarked four commonly
used normalization procedures (MAS5, RMA, GCRMA and Li-
Wong) in the context of established algorithms for the reverse
engineering of protein-DNA and protein-protein interactions
(PPIs). Using replicate sample, randomized, and human B-cell
data sets as input, their study suggests that MAS5 provides the
most faithful cellular network reconstruction. We then calcu-
lated the correlation of gene expression between samples, and
outliers with mean sample correlations more than two to three
SDs below average (exact value specific to each study) were
omitted until no outliers remained (as described in ref. 2). After
performing quantile normalization on the filtered data, probe
sets that were not present were excluded from the analysis either
by using the “pma” function in R and excluding probe sets that
were called “absent” in more than 90% of the samples (in the
data sets where .cel files were available), or by removing a com-
parable number of probe sets (approximately 40%) with the
lowest 90% quantile of expression. To allow comparison across
Affymetrix platforms, only a single probe set for each gene was
kept—for genes with two corresponding probe sets we chose for
each sample the probe set with highest expression, whereas for
genes with three or more probe sets we chose the probe set with
the highest connectivity across samples. To make the final ex-
pression file for each data set, all probe sets without associated
genes were omitted and all remaining probe sets were reassigned
the name of their corresponding gene symbol. In mouse network,
mouse gene symbols were converted to human orthologues using
data from Jackson Laboratory Mouse Genome Informatics
(August 2006). The result of this step was 18 human expression

files with 20 to 40 samples and 5,629 to 9,731 genes each and 20
mouse expression files with 18 and 44 samples and 5,176 to 6,157
genes each. All preprocessed data files (as well as the resulting
network data and some associated code and support files) are
available at the WGCNA group Web site (www.genetics.ucla.edu/
labs/horvath/CoexpressionNetwork/MouseHumanBrain).
From these preprocessed expression files we created a human

and a mouse consensus network (method modified from ref. 4).
For each consensus network we first created correlation matrices
from each data set (obtained by calculating the Pearson correla-
tions between all variable probe sets across all subjects in each
data set), and then weighted them based on the number of sam-
ples used in that data set. Each data set was weighted as follows:
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where Wk is the weight of the kth expression matrix, Nk is the
number of samples in the kth data set, and S is the number of
data sets. Expression matrices where a given gene was not con-
sidered present were omitted from this calculation and genes
that were present in fewer than 50% of data sets were excluded
from the consensus network, leaving a total of 9,778 genes in the
human network and 6,368 genes in the mouse network. Net-
works were formed from the weighted correlation matrices fol-
lowing the protocols of WGCNA, as previously described (1, 2).
In short, the adjacency matrices were calculated by raising the
absolute values of the weighted correlation matrices to a power
of five. Finally, topological overlap (TO), a measure of node
similarity (i.e., how close the neighbors of gene 1 are to the
neighbors of gene 2) that has proven biologically meaningful,
was then calculated as described previously (1, 5). We compared
TO with known PPIs for both human and mouse in two different
databases (6, 7) by placing all of the TO values into 100 bins
representing the percentile of ranked values from largest to
smallest, and determined what percentage of known PPIs were
present in each bin (Fig. S2).

Module Formation, Characterization, and Preservation.For the initial
module identification, all but 5,000 of the most connected genes
in the human network (3,000 inmouse) were excluded to decrease
noise. This filtering step left genes with high intramodular con-
nectivity in any module as part of the network while omitting
genes with weak membership in all modules. Omitted genes are
included in the gene by eigengene table, which is used for many of
the comparisons in this paper (as detailed later). Genes were
hierarchically clustered using 1 − TO as the distance measure
and modules were determined by using a dynamic tree-cutting
algorithm (8). Module identifiers in the mouse network were
then changed to match the modules in the human network with
the most significant gene overlap (Fig. 1 B and C) (3). Each
gene’s module membership (MM) for a given module was then
estimated as the average Pearson correlation between that gene
and the five genes in that module with the highest within-module
connectivity (kin), which has been shown to be a good approxi-
mation of the module eigengene (ME) (2, 9). P values were
obtained by (i) averaging the T-score from gene–eigengene
Pearson correlation across data sets, (ii) scaling to the square
root of the number of data sets per gene, and (iii) calculating a P
value from the T-distribution of the resulting scaled T-score. For
the final module characterizations, all genes with MM values of
R > 0.2 and with P < 10−13 were assigned to that module, leaving
an average of approximately 5% of all of the genes in each
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module, with some genes assigned to multiple modules. Al-
though these values represent one of many possible sets of
module-thresholding parameters, the results were relatively ro-
bust to changes in module size. We also used enrichment analysis
by way of Expression Analysis Systematic Explorer (10) and IPA
to characterize modules based on gene ontology (GO). Finally,
modules were graphically depicted using VisANT (11) as pre-
viously described (12, 13).
For unbiased disease gene (DG) characterization we used an

annotated list of approximately 5,000 orthologous mouse and
human genes, for which mutations in the gene were known to
produce disease phenotypes for any human or mouse disease
(Jackson Laboratory) (14). This list of “all DGs” was curated
from the literature in an unbiased manner and distinguishes
genes causing human-specific disease phenotypes from those
causing similar phenotypes in both mouse and human. We cre-
ated a list of “dementia DGs” by taking the subset of DGs that
was associated with dementia-related disorders. Dementia-re-
lated disorders were defined as the list of all disorders returned
in a search of Online Mendelian Inheritance in Man (ncbi.nlm.
nih.gov/omim) for the term “brain AND (“dementia” OR
“neurodegenerative” OR “neurodegeneration”)”. Overall, we
found that approximately 20% of all genes in our networks were
DGs and approximately 3% of the genes in our network were
dementia DGs.
Finally, we used a variety of strategies to measure module pre-

servation. First, we used a permutation test procedure imple-
mented in the WGCNA R package, which produces a summary
preservation Z-score (Table 1) (15). Second, we assessed the
significance of module overlap between genes in corresponding
mouse and human modules (Table 1). Third, we estimated the
similarity of module annotation both by showing that most
corresponding human and mouse modules show significant
overlap with the same module from ref. 2 (Table 1), as well as
by showing that these module pairs share similar annotations as
measured by GO and Ingenuity Pathway Analysis (IPA; www.
ingenuity.com) (Table S2).

SI Results and Discussion
This article provides a case study regarding metaanalysis on the
level of coexpression networks. Among other things, the article
shows (i) how to successfully reduce potential biases from in-
dividual studies, (ii) how to weigh the information from different
data sets, and (iii) how to compare the resulting networks be-
tween species. Our results illustrate that our method for com-
piling multiple data sets into a single correlation matrix allows
across-experiment and between-species comparisons.

Linear Relationship Between TO and PPIs in Both Mouse and Human.
We and others have previously shown that our measure of gene
coexpression, TO, predicts many biologically meaningful rela-
tionships. For example, across multiple species such as yeast (16)
and human (2, 17), highly coexpressed genes are more likely to
interact on the protein level than genes with low coexpression.
Therefore, to provide another level of systematic network vali-
dation, we determined the relative likelihood that gene pairs of
specific TO would also have PPIs (Fig. S2) (6, 7). For positively
correlated genes, there was a strong, positive linear relationship
between TO and PPIs in both networks. In contrast, we observed
a similar negative linear relationship between negatively corre-
lated gene pairs, which fits expectations (18). We also find strong
relationships in the mouse network, despite the fact that these
genes are actually mouse homologues of the genes in both PPI
databases.

Networks Are Robust to Choice of Data Sets. We next determined
the robustness of our networks to choice of data set. To do this, we
randomly split the mouse and human data into two groups of nine

data sets (approximately 250 arrays), creating new networks for
each of these grouping as described earlier in the SI Text. For
each network we then calculated both the average expression
rank across data sets, as well as the connectivity rank for each
gene in the network, and correlated these two measures within
species (Fig. S1). There was nearly perfect expression correlation
between both the human (R = 0.94; P < 10−1,900) and the mouse
(R= 0.98; P < 10−2700) group pairs, suggesting that our choice of
data sets has minimal impact on gene expression ranking or
levels. There was lower, but still highly significant, connectivity
correlation between the human (R = 0.76; P < 10−700) and the
mouse (R = 0.62; P < 10−400) group pairs, suggesting a high
preservation of the gene coexpression relationships in networks
made from different data sets, consistent with previous studies
(2, 18, 19). Finally, to ensure that module selection is robust to
our choice of data set, we performed WGCNA following the
procedure outlines in Fig. 1A on each of these human and mouse
subnetworks, defining modules by using the same characteriza-
tion as in Fig. 1 B and C. This network formation schema re-
sulted in networks highly overlapping with those created using all
data sets. Taken together, these results show that there is no
significant within-species bias in the data and suggest that the
composition of brain-specific data sets used in this analysis does
not significantly impact the results.

Cortex/Control Networks and Overall Brain Networks Are Equally
Comparable. One key idea in our analysis is that we include
only arrays from brain, to reduce noise generated from samples in
which we are not interested. One possible problem with this
approach is that there are relatively few data sets in mouse and
human brain that both have data publicly available and also in-
clude enough samples to perform viable coexpression analyses. As
such, our mouse and human data sets might not be completely
matched; for example, most human samples are quite region-
specific, with several data sets acquired via laser capture mi-
crodissection, whereas many mouse data sets are from larger
regions or even whole brain. It is therefore possible that resulting
network differences could be a result of differences in data set
selection rather than differences between species. To address this
issue, we created separate “C/C” networks in mouse and human
that included only cortex samples from control subjects, re-
moving bias caused by brain area, disease, or treatment state,
thus making our networks more directly comparable. We in-
cluded whole brain samples along with cortex samples in mouse
because (i) the mouse brain largely consists of cortex and (ii) we
would not have had enough samples to perform such a compar-
ison using only mouse control samples from cortex. This filtering
step left three mouse data sets (57 arrays) and five human data
sets (137 arrays) in our analysis (Table S1), which we compared
following the same procedures outlined in the text for the orig-
inal networks (e.g., Table 1 and Fig. S1).
We find that the two analyses (C/C and all brain) produce

highly similar networks, suggesting that our between-species
analysis using all available brain tissue is not biased by networks
specific to brain region, disease states, or to medications that may
be taken by human subjects. At the global level, we find similar
preservation between mouse and human expression in the all-
brain analysis compared with the C/C analysis (R = 0.60 vs. R =
0.64), whereas node connectivity preservation is actually better
in the all-brain analysis (R = 0.27 vs. R = 0.15), consistent with
the notion that connectivity measures are more sensitive to the
amount of data than to the precise matching of data sets. In the
case of module comparison, although we find highly similar re-
sults at the level of module overlap (nearly all modules in both
networks show gene overlap between analyses with significance
levels of P < 10−40), in the case of module preservation, most
modules show lower preservation Z-scores in the C/C networks
compared with the overall networks. In fact, modules for oligo-

Miller et al. www.pnas.org/cgi/content/short/0914257107 2 of 22

www.ingenuity.com
www.ingenuity.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.SI200914257SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.SI200914257SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.SI200914257SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.SI200914257SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.SI200914257SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914257107/-/DCSupplemental/pnas.SI200914257SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/content/short/0914257107


dendrocytes (M2h) and multiple cellular components (M5h,
M8h, M14h) that were significantly preserved in the overall
network no longer show significant preservation between the C/C
networks. In short, we find that networks made using data sets
from all reliable brain samples are more comparable than net-
works made using fewer, but better-matched data sets.
These C/C networks can also be used to further address the

issue of how sensitive networks are to data set selection. To do so,
we measured within-species module preservation in our original
networks compared with the C/C networks. For all modules, we
found similar average preservation Z-scores (as a typical example,
module M1h in the original and C/C analyses have Z = 6.08 and
Z = 5.77, respectively), suggesting that both networks are robust
to removal of a large percentage of the data.

Minimal Effects of Agonal State on Between-Species Transcriptional
Changes. Many genes are known to change expression levels with
death. It is therefore important to rule out agonal state as
a prominent cause of between-species coexpression differences.
First, gene expression levels show high preservation between
human and mouse, which points to minimal effects of agonal state
in general between species. Furthermore, others have shown that,
despite the relatively large number of affected genes, agonal state
has a minimal (if any) effect on differential expression analyses
(20)—in other words, changes in expression with death are dis-
ease and region blind. Finally, we used the hypergeometric dis-
tribution to measure overlap between each module in both
networks and a core set of human genes previously shown to be
related to agonal state (either showing increased or decreased
expression in autopsy vs. biopsy tissue) (20). Consistent with
results from this group, we found that modules associated with
mitochondria and ribosome were enriched with genes showing
decreased expression after death (for M4h, P < 10−43; for M5h,
P < 10−9; for M8h, P < 10−20), whereras M14h (nucleus) con-
tained excess genes showing increased expression with death
(P < 10−9). As these are among the most preserved modules
between the species, and the corresponding mouse modules
showed comparable enrichments (for M4m, P < 10−48; for M5m,
P < 10−38; for M8m, P < 10−16; for M14m, P < 10−12), agonal
state does not appear to play different roles between mouse and
human. Although there is weak enrichment for genes increasing
with agonal state in M9h (P < 10−3), this enrichment is much less
significant than in the highly preserved cellular component
modules and is almost entirely caused by genes not present in the
mouse network. Thus, although we cannot rule out the fact that
agonal state may partially underlie some species differences in
this poorly preserved module, it is highly unlikely that this effect
is substantial.

Preservation of Modules Associated with General Cellular Compo-
nents. Although the thrust of our research is brain-specific,
confirmation of basic cellular biology is a key validation of our
method. Orthologous ribosomal, mitochondrial, and other
ubiquitous cellular components are found in nearly all known
species, with high conservation between species as distant as
yeast, fly, and human (19, 21). Furthermore, previous studies of
general transcriptional similarities between mouse and human
have found multiple common modules of coexpressed genes—
including the ribosomal subunits (22, 23). Our metaanalyses
uncovered similarities between many global network properties,
including general measures of gene expression, connectivity, and
module preservation, with genes involved in basic cellular com-
ponents showing the highest level of preservation. In our human
network, within-species preservation can be most clearly seen in
module M12h, which contains 64 of the 71 ribosomal subunits
present in the human network (Table S2), whereas between-
species preservation is most obvious in M4h, which shows the
most highly significant module preservation Z-score (Z = 17.21).

Replication of these relatively well established coexpression
links is an important step toward confirming the validity of our
methods, and demonstrating the reliability of our results.
To further flesh out the mitochondrial result, we compared M4

and M5 with validated lists of genes transcribed in somatic versus
synaptic mitochondria (24). M4 showed enrichment over M5 for
somatic mitochondria in both mouse (P < 10−6 vs. P < 10−3) and
human (P < 10−12 vs. P < 10−7). Conversely, although there was
equal enrichment for synaptic mitochondria in both modules, we
found higher significance for glutamatergic synapse genes (M10
from the CTX network in ref. 2) in M5 relative to M4 for both
species (P < 10−26 vs. P= 10−3 in mouse; P < 10−240 vs. P < 10−83

in human). As a specific example, we find that cyclin-dependent
kinase 5 (CDK5) is the top interspecies marker for M5 (Table S4).
Although cytoplasmic, CDK5 inhibition has been shown to rescue
mitochondrial damage occurring from neurotoxic insults (25);
therefore, the role of CDK5 as a mitochondrial hub, particularly
one also highly coexpressed with glutamatergic synapse genes, is
not unreasonable. Furthermore, unlike most other AD-related
genes, CDK5 overexpression can result in similar disease pheno-
types in mouse and human, causing neurodegeneration in mice
(26) and playing a role in a number of neurodegenerative human
diseases. These results suggest that, although the two mitochon-
drial modules are highly overlapping in both species, they repre-
sent separate, evolutionarily conserved biological components.

Networks Correctly Sort Known Marker Genes by Cell Type. In ad-
dition to being a useful resource, our list of interspecies marker
genes (Table S3) provides an important validation for our
methods. For example, although there may be some biological
differences between cell types in mouse and human, we should
find that a majority of known highly specific marker genes for cell
type show strong coexpression with modules corresponding to
relevant cell types. To address this issue, we measured the cor-
relation of 40 highly cell type–specific markers for neurons, as-
trocytes, and oligodendrocytes in mouse (figure 3 in ref. 27) and
10 in human (figure 4 in ref. 2) against each ME in both network.
We then calculated for which module each marker gene showed
the highest correlation and where each gene ranked in that
module by significance of MM (Table S5). In the case of oligo-
dendrocytes, our network precisely matched expectations: nearly
all known oligodendrocyte markers were reproduced in both our
mouse and human networks, with known mouse markers tending
to be hubs in our mouse network and known human markers
tending to be hubs in our human network. Similarly, we found
that the majority of known neuronal markers showed the highest
correlation with neuron-associated modules, although not nec-
essarily the module chosen for Table S3 (M13), consistent with
the diverse neuronal populations throughout the brain. Although
the results for astrocyte markers were less clear, the hubs be-
tween the network of Oldham et al. (2) and our human network
were highly reproducible. Overall, these results suggest that our
method can sort genes by cell type in both species to a relatively
high degree of accuracy, and that lists of marker genes from our
networks may provide valuable biological insight.

Mouse Models in the Study of Human Disease. Animal models are
essential tools in the study of human disease, and have led to
breakthroughs in nearly every area of medical science. As a result
of their relative ease of genetic manipulation and short life spans,
mice present especially useful animal models (28–30). Given the
widely varying success of mouse models at mimicking human
disease phenotypes, having a method to more accurately predict
the effectiveness of model systems would be extremely useful.
One possible strategy for predicting the effectiveness of specific
mouse models in disease is to compare and contrast the human
and mouse transcriptome. For example, coexpression preserva-
tion has been successfully used as a restrictive filter for predicting
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which are the relevant human genes in disease loci (31). Fur-
thermore, transcriptional analyses in human have found that
genes causing the same disease tend to have shared expression
patterns, a finding that is enhanced when data from other species
are also included (32). Finally, phenotypic information from
mouse homologues has been shown to improve DG prioritiza-
tion beyond that which can be obtained using human expression
data and associated categorization databases (e.g., GO and
Kyoto Encyclopedia of Genes and Genomes) (33). By restricting
our analysis to brain data and including the aforementioned
modifications to standard transcriptional analysis, we believe
that our results will be particularly useful in DG prioritization for
neurological and neurodegenerative disorders, such as AD.

DGs Show Differential Expression and Connectivity Patterns in Mouse
and Human Brain. Comparison of transcriptional programs across
species has previously demonstrated that core metabolic func-
tions and cellular structures are highly conserved between human
and species as distant as Escherichia coli (19, 21). Similar gene
expression preservation studies have been used to gain signifi-
cant insight into disease in myriad cases, including in sleep and
circadian rhythm biology (34, 35), in neurodegenerative disease
(36), and as a filter for predicting DGs under a linkage peak (31),
and is often a basic assumption of such work. We hypothesize
that the opposite is also true. That is, we expect genes showing
poor expression and connectivity preservation between species to
be enriched for DGs associated with human-specific disease
phenotypes. To assess the viability of this hypothesis, we first
identified the sets of genes showing significantly high expression
or node connectivity in mouse or human, but not both (genes in
the upper left and lower right of Fig. S1 A and B). Unbiased GO
annotation found enrichment for such disease-related genes: the
top GO hit for genes with high connectivity in mouse, but not
human was “disease mutation” (uncorrected P < 0.005) (10),
whereas three of the main players in AD—apolipoprotein E,
mitochondrial associated protein tau (MAPT), and PSEN1—
have high connectivity in human, but not mouse.
Similarbetween-speciesdifferences ingeneexpressionpatterns

can be seen at the level of modules. Apolipoprotein E shows
high expression correlation with the astrocyte module (M3h)
in the human network (R = 0.43), but not the mouse network
(R = −0.01). As mentioned in the main text, glycogen synthase
kinase-3β (GSK3B), a key protein involved in abnormal tau
phosphorylation (37), is a hub gene for the poorly characterized,
yet highly human-specific module M7h, which also contains
MAPT (Fig. 3E). In contrast, CDK5—anotherAD-related kinase—
shows different expression patterns (as described earlier). This is
especially interesting given the recent evidence that GSK3B plays
a dominant role in overall tau phosphorylation, whereas the main
effects of CDK5 in AD progression are in the regulation of amy-
loidogenic APP processing (38) in addition to tau phosphoryla-
tion. Finally, there several other modules that are human specific,
including one related to AD progression in humans (M9h; as de-
tailed later). Given the human predilection for this disease, such
genes and modules with divergent expression patterns become
important candidates for studying the pathophysiology of AD in
humans, and suggest that there may be a lot of information in
control transcriptional networks regarding AD—as well as other
neurodegenerative disorders—that has yet to be uncovered.

Module M9h Is of Particular Interest in AD and Aging. Interestingly,
we found replication of the red module (12) in the human net-
work in our current analysis. Not only does module M9h show
very high within-species module preservation in human, in the
sense that four of the hubs are replicated in both modules and
further confirmed in the Celsius database (Fig. 3 A and B), but
M9h also shows low between-species module preservation (Ta-
ble 1), increasing the plausibility of its role in human-specific

brain disease. To follow up on this finding, we performed
WGCNA (Materials and Methods) on two additional large data
sets in human, which were recently deposited in GEO (39, 40).
The first study compared the relationship between gene ex-
pression and genomics in AD, finding that relative transcript
levels are a good endophenotype for disease (40). From these
data, which were run on the Illumina Human Refseq-8 micro-
array platform, we used 118 control and 95 AD samples from
temporal cortex in our analysis. The second study compared
gene expression changes between male and female across a wide
range of ages in four different brain regions (hippocampus, en-
torhinal cortex, superior frontal gyrus, and postcentral gyrus)
(39). This study on aging was run using the Affymetrix HG-U133
Plus 2.0 array and had 32 to 43 control samples for each brain
region, all of which we used in our analysis.
In the AD study (40), we performed WGCNA using only the

118 control samples, and found a total of 24 modules, most of
which showed either a significant increase or decrease in ex-
pression between control and AD. The black module showed
significant overlap with M9h (P < 10−4), including the common
hub gene CXXC1 (Fig. S3A). Furthermore, when we compared
the ME values between control and AD, we find that this module
showed a significant increase in expression with AD progression
(P < 10−11; Fig. 3C). Thus we find modules from two separate
data sets (40, 41) that both show increased expression in AD as
well as significant overlap with M9h. Also, taking into consid-
eration the fact that these studies were run in different labora-
tories, on different microarray platforms, and using tissue from
different areas of the brain, we are confident that our result is
biologically meaningful. To assess whether this module is unique
to AD or whether it may also play a role in normal aging, we
performed a second WGCNA analysis using aging data (39). In
this analysis, one of the 10 modules we found (the yellow mod-
ule) showed significant overlap with M9h (P < 10−14; Fig. S3B) as
well as positive correlation with age across all four brain regions
(P < 10−5; Fig. 3D). Therefore, in addition to the role of M9h in
AD progression, M9h may also be involved in normal aging and
possibly other neurodegenerative disorders. Finally, to assist
other groups who may wish to follow up the results from this
analysis, we have complied a ranked list of 50 genes that show
high MM in M9h and all comparative modules (Table S7).

Glossary of WGCNA and Comparative Network Terms. Between-
species preservation is any measure of preservation comparing
data from human to data from mouse (e.g., Fig. S1 A and B)
A (coexpression) network is an undirected, weighted network

with nodes corresponding to genes and edges based upon gene–
gene coexpression levels. To evaluate coexpression levels be-
tween genes, Pearson correlations are taken and then weighted
by raising their absolute value to a power. This weighting em-
phasizes strong correlations at the expense of weak ones.
A consensus network is a single network defined from multiple

sources of data (in this case created from the weighted average of
the correlation matrices from each human or mouse data set).
Expression preservation is the Pearson correlation between the

ranked average expression value of genes across two sets of
studies. Although this type of preservation is independent of
network formation, it is useful in assessing the comparability of
data sets across species (e.g., between the 18 human and 20mouse
data sets used in this analysis).
A hub is any highly connected gene. A hub can be characterized

by high MM, high intramodular connectivity, or a strong presence
in network depictions (e.g., circled genes in Fig. 3A).
Intramodular connectivity (kin) is a measurement of network

position that reflects how connected a given gene is with respect
to the genes of a particular module. The higher the kin, the more
central a gene is to the network.
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A module is a group of genes with strong sharing of coex-
pression relationships as measured by high TO. Modules are
identified via hierarchical clustering (Fig. 1 B and C) using
a measure of dissimilarity (i.e., 1 − TO). Genes in a module show
much higher coexpression with each other (either positive or
negative) than with genes outside the module.
Module characterization is a short descriptive term character-

izing genes in a module based on GO or IPA annotation, module
overlap with experimentally derived gene lists, and module over-
lap with modules previously characterized and published.
The ME is the first principal component of a module. The ME

summarizes the characteristic expression pattern of a module.
MM is the Pearson correlation between the expression level of

a given gene and a givenME. This quantity describes the extent to
which a gene “belongs” to a module, and is used in the final
module definitions.
Module (or list) overlap is the number of common genes be-

tween one module (or list) and a different module (or list). The
significance of module overlap can be measured using the
hypergeometric test.
Module preservation is any of a number of tests that mea-

sure how well characteristics of a module in one network are

reproduced in another network. As the particulars of module
preservation are beyond the scope of this article, we present
a single Z-score that summarizes a variety of preservation mea-
sures (15).
(Node) connectivity preservation is the Pearson correlation

between the ranked connectivities of genes common to two
networks (e.g., the mouse and human networks).
(Overall) connectivity is the sum of connection strengths

(adjacency matrix values) with all other network genes. The
connectivity measures how correlated a gene is with all other
genes in a network.
TO is a quantity describing gene pair similarity by comparing

the weighted correlation of these genes with all other genes in
the network.
(Weighted) adjacency matrix is a symmetric matrix whose off-

diagonal elements lie between 0 and 1. The adjacencies measure
the connection strength between pairs of nodes. In correlation
networks, the adjacency between two genes is a power of the
Pearson correlation between their expression profiles.
Within-species preservation is any measure of preservation

comparing two sets of data in the same species (e.g., Fig. S1 C–F).
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Fig. S1. Networks show significant between- and within-species expression and connectivity preservation. Gene expression (A) and connectivity (B) show
significant preservation between mouse and human. The x and y axes represent the average expression rank (A) and rank of overall connectivity (B) across
studies in the mouse and human data sets, respectively. Genes with high expression/connectivity in both mouse and human are in the upper right of each plot.
Gene expression is preserved within-species both for human (C) and mouse (D). The x and y axes both represent the average expression rank across a subset of
nine random mouse/human studies. Gene connectivity is preserved within-species both for human (E) and mouse (F). The x and y axes both represent the rank
of overall connectivity for each gene in a network built using the same subset of nine random mouse/human studies. The randomization of studies was
performed twice with comparable results. Dot plots (Left) and density plots (Right) present the same information in different ways.
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Fig. S2. TO reflects PPIs in both the human (A) and mouse (B) networks, with positively correlated (green) and negatively correlated (red) genes showing
opposite effects. This result was replicated in both the HPRD (solid points and lines) (1) as well as the IntAct (hollow points and dashed lines) databases (2). The
y axis represents the percent of all interactions from a given comparison contained in each of 100 bins of gene pairs sorted based on TO, whereas the x axis
represents the average TO of each bin.

Fig. S3. M9h is preserved across studies. (A) Network depiction of a subset of the black module from ref. 1 shows that this module shares a common hub
(CXXC1) with M9h. Labels as in Fig. 3A, except only approximately 100 connections are shown. (B) Network depiction of a subset of the yellow module from ref.
2 shows that this module contains multiple hub genes of M9h (i.e., ZNF160). Labels as in Fig. 3A, except only approximately 60 connections are shown.
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Table S2. Selected GO and IPA annotations for each module

Module Network Gene category
List
hits

List
total

Population
hits

Population
total

EASE
score

Bonferroni
correction

M1h Human Mitochondrion 60 363 445 5,952 4.12E-09 1.14E-05
M1h Human NADH dehydrogenase (ubiquinone)

activity
12 363 29 6,071 3.81E-07 1.05E-03

M1h Human CNS-specific functions 24 90 168 1,671 8.81E-06 2.44E-02
M1h Human Hs_glycolysis and gluconeogenesis 11 79 27 849 5.66E-05 1.57E-01

M2h Human Short-chain dehydrogenases/
reductases

family signature

6 93 12 1818 1.78E-04 5.13E-01

M2h Human Myelin 5 112 7 1987 2.84E-04 8.17E-01
M2h Human Cytoskeleton organization and

biogenesis
23 360 166 6,014 3.15E-04 9.07E-01

M3h Human Homeostasis 17 422 55 6,014 5.87E-07 2.05E-03
M3h Human Amino acid metabolism - Homo

sapiens
29 82 170 1,168 2.13E-06 7.42E-03

M3h Human Copper ion homeostasis 7 422 9 6,014 7.96E-06 2.78E-02

M4h Human Mitochondrion 125 474 445 5,952 4.70E-40 1.53E-36
M4h Human NADH dehydrogenase (ubiquinone)

activity
27 482 29 6,071 3.63E-26 1.18E-22

M4h Human Proteasome 16 397 34 4,833 1.69E-08 5.52E-05
M4h Human Homo sapiens 19 65 507 408 6,518 2.12E-08 6.91E-05
M4h Human Acetylation 28 397 120 4,833 8.10E-07 2.64E-03
M4h Human Mitochondrial ribosome 8 474 20 5,952 5.95E-04 1.00E+00
M4m Mouse Mitochondrion 77 259 334 3,963 6.71E-25 1.29E-21
M4m Mouse NADH dehydrogenase (ubiquinone)

activity
18 261 28 4,043 3.75E-14 7.20E-11

M4m Mouse Mitochondrial ribosome 14 259 23 3,963 1.79E-10 3.43E-07
M4m Mouse Ribosome - Homo sapiens 17 95 26 862 2.54E-10 4.87E-07
M4m Mouse Acetylation 23 200 96 3,350 1.85E-08 3.55E-05
M4m Mouse RNA binding 34 261 219 4,043 2.28E-06 4.38E-03
M4m Mouse Proteasome 11 200 32 3,350 8.92E-06 1.71E-02

M5h Human Mitochondrion 109 670 445 5,952 4.26E-16 1.70E-12
M5h Human Coated vesicle 30 670 57 5,952 1.17E-13 4.67E-10
M5h Human NADH dehydrogenase (ubiquinone)

activity
19 686 29 6,071 7.41E-11 2.95E-07

M5h Human ATP synthesis 16 557 21 4,833 1.93E-10 7.66E-07
M5h Human Clathrin coat 12 670 17 5,952 2.19E-07 8.72E-04
M5h Human Synapse 14 670 24 5,952 3.13E-07 1.25E-03
M5h Human Homo sapiens 19 78 723 408 6,518 1.05E-06 4.18E-03
M5h Human Proteasome subunit 15 334 35 2,897 1.30E-05 5.17E-02
M5m Mouse Homo sapiens 19 47 265 280 4,290 2.25E-10 5.00E-07
M5m Mouse Mitochondrion 51 238 334 3,963 2.86E-10 6.35E-07
M5m Mouse Primary active transporter activity 22 251 112 4,043 3.17E-06 7.04E-03
M5m Mouse Proteasome 11 199 32 3,350 8.52E-06 1.89E-02

M6h Human Coated vesicle 19 349 57 5,952 1.57E-09 4.36E-06
M6h Human Neuronal transmission 27 107 144 1,671 2.66E-07 7.38E-04
M6h Human Neurogenesis 39 360 275 6,014 7.15E-07 1.98E-03
M6m Mouse Homo sapiens 19 49 241 280 4,290 4.39E-13 8.78E-10
M6m Mouse Synapse 8 221 17 3,963 1.78E-05 3.57E-02
M6m Mouse Coated vesicle 12 221 47 3,963 3.55E-05 7.10E-02
M6m Mouse neurogenesis 26 221 199 4,002 6.62E-05 1.32E-01

M7h Human mRNA binding 7 77 73 6,071 2.76E-04 2.79E-01
M7h Human Nucleus 36 78 1,622 5,952 4.34E-04 4.38E-01
M7h Human Neuronal cell recognition 3 79 4 6,014 9.80E-04 9.91E-01

M8h Human Defense response 67 299 373 6,014 4.26E-21 1.13E-17
M8h Human Glycoprotein 100 278 1,045 4,833 1.98E-08 5.27E-05
M8h Human Regulation of cell proliferation 22 299 150 6,014 1.30E-05 3.46E-02
M8m Mouse Heat shock protein activity 8 107 20 4,043 4.09E-07 5.45E-04
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Table S2. Cont.

Module Network Gene category
List
hits

List
total

Population
hits

Population
total

EASE
score

Bonferroni
correction

M8m Mouse Regulation of transcription 37 107 624 4,002 1.68E-06 2.24E-03

M9h Human Homo sapiens 19 20 134 408 6,518 5.65E-04 7.93E-01
M9h Human Nuclear division 8 120 93 6,014 2.31E-03 1.00E+00
M9h Human Alternative splicing 35 88 1,214 4,833 2.62E-03 1.00E+00
M9h Human M phase 8 120 99 6,014 3.30E-03 1.00E+00
M9h Human Regulation of cell cycle 14 120 283 6,014 3.71E-03 1.00E+00

M10h Human Defense response 80 244 373 6,014 4.34E-38 9.96E-35
M10h Human Antigen presentation 14 244 21 6,014 8.52E-14 1.96E-10
M10h Human Glycoprotein 96 222 1,045 4,833 2.33E-13 5.35E-10
M10h Human Polymorphism 79 222 894 4,833 9.74E-10 2.24E-06
M10h Human Ribosome - Homo sapiens 17 52 71 1,168 8.72E-09 2.00E-05
M10m Mouse Molecular function unknown 4 17 176 4,043 2.99E-02 1.00E+00
M10m Mouse Development 6 17 706 4,002 1.36E-01 1.00E+00
M10m Mouse Polymorphism 5 13 642 3,350 1.83E-01 1.00E+00

M11h Human Mitochondrion 115 682 445 5,952 2.63E-18 1.08E-14
M11h Human Proteasome subunit 21 357 35 2,897 2.12E-10 8.67E-07
M11h Human Main pathways of carbohydrate

metabolism
27 685 61 6,014 4.51E-10 1.84E-06

M11h Human ATP synthesis - Homo sapiens 19 214 29 1,168 1.36E-07 5.58E-04

M12h Human Ribosome - Homo sapiens 64 83 71 1,168 1.12E-77 1.51E-74
M12h Human Antigen presentation 10 148 21 6,014 5.58E-10 7.51E-07
M12m Mouse Mitochondrion 74 298 334 3,963 9.58E-19 2.09E-15
M12m Mouse RNA binding 46 300 219 4,043 7.68E-11 1.68E-07
M12m Mouse Ribosome - Homo sapiens 18 105 26 862 8.87E-11 1.94E-07
M12m Mouse Mitochondrial ribosome 14 298 23 3,963 1.05E-09 2.30E-06
M12m Mouse NADH dehydrogenase (ubiquinone)

activity
14 300 28 4,043 2.09E-08 4.56E-05

M12m Mouse Acetylation 22 237 96 3,350 1.76E-06 3.84E-03
M12m Mouse Proteasome 12 237 32 3,350 5.77E-06 1.26E-02

M13h Human Transport 142 561 1,026 6,014 1.99E-07 7.55E-04
M13h Human Secretory pathway 23 561 86 6,014 7.80E-06 2.96E-02
M13h Human Homo sapiens Xq 30 611 146 6,518 6.62E-05 2.51E-01
M13h Human Mitochondrion 67 557 445 5,952 6.90E-05 2.61E-01
M13m Mouse Neuronal transmission 22 71 96 1,175 2.56E-08 6.03E-05
M13m Mouse Signal transduction 86 226 924 4,002 2.37E-07 5.58E-04
M13m Mouse Acetylcholine receptor 7 95 9 1,660 2.06E-06 4.85E-03
M13m Mouse GTPase activity 17 227 97 4,043 7.29E-05 1.71E-01

M14h Human Intracellular 346 458 3,968 5,952 1.29E-05 4.08E-02
M14h Human Homo sapiens 4q 29 501 165 6,518 4.74E-05 1.50E-01
M14h Human Heterogeneous nuclear

ribonucleoprotein complex
5 458 7 5,952 9.96E-04 1.00E+00

M14h Human RNA-binding 22 347 151 4,833 2.27E-03 1.00E+00
M14h Human Nucleus 148 458 1,622 5,952 8.87E-03 1.00E+00
M14m Mouse 6.3.2.19 [ubiquitin] 8 68 12 807 1.14E-05 3.45E-02
M14m Mouse Protein transport 42 437 196 4,002 1.94E-05 5.87E-02
M14m Mouse RNA-binding 45 450 219 4,043 4.49E-05 1.36E-01
M14m Mouse Nucleus 156 427 1,131 3,963 1.22E-04 3.70E-01

M15h Human Glycoprotein 83 188 1,045 4,833 3.19E-12 6.93E-09
M15h Human Signal transducer activity 71 241 1,117 6,071 2.25E-05 4.90E-02
M15h Human G protein coupled receptor 17 188 128 4,833 2.74E-05 5.96E-02
M15h Human Carcinoembryonic antigen 6 99 10 2,228 3.15E-05 6.85E-02
M15h Human Homo sapiens 19 33 252 408 6,518 8.02E-05 1.74E-01
M15m Mouse G protein coupled receptor 21 242 84 3,350 1.05E-06 2.69E-03
M15m Mouse Glycoprotein 72 242 729 3,350 2.24E-03 1.00E+00

Selected GO categorizations for eachmodule in themouse and human networks. At least one GO category corresponding to each significant cellular process or
component is included for each relevant module. Categories with significant overlap between matched modules in the mouse and human modules are high-
lighted in bold (corrected P < 0.05) or italics (uncorrected P < 0.01). GO categories were found using EASE (ref. 10), with the EASE score used as an
approximation for P value. Categories confirmed using Ingenuity pathways analysis are underlined. EASE, Expression Analysis Systematic Explorer.
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Table S3. Interspecies marker genes for brain cell types

Marker References

Oligodendrocyte (M2h)
MOG 2, 27, 64
EVI2A 2, 27
MAG 2, 27, 64
GPR37 2, 27, 64
MBP 2, 27, 64
RNF20 2, 27, 64
SCD 2
PLP1 2, 27
CLDN11 27
CSRP1 64
FNBP1 2
TMEM 39 2

Neuron (M13h)
SNX10 2, 27
HMP20 27, 64
PGRMC1 2, 27
GUCY1B3 2, 27
MAPK1 2, 27
PPP3CB 27
ACTR3 27
DLD –

ARMCX2 27
SEH1L 27
SUMO3 2
MAP2K1 2, 64

Astrocyte (M3h)
ZFP36L1 2, 27
SOX2 27
F3 2, 27
TOB1 2
HIF1A 2
TSPAN6 2
GJA1 2, 27, 64
ITGA6 2, 27
HRSP 3 2, 27
TJP1 27
MCL1 –

ZFP36L2 2, 27

Microglia (M10h)
TYROBP 2, 65
ARHGDIB 2
LY86 2
S100A11 –

CD21 2, 66
FCGR1A 2, 66
CYBA 2
CSF1R 2, 66
TSPO –

LAPTM3 2
HMOX1 66
GPX1 65

Genes were ranked based on interspecies hub status for the indicated cell-type related
modules, omitting genes that showed high coexpression withmultiple suchmodules. The
“References” column indicates which studies have previously found these genes to be
markers for their respective cell types, demonstrating that thesegenes showahighoverlap
with known markers (P < 10−10 for all cell types). In ref. 2, genes in modules M9A, M15A,
M16A, and M4A with R > 0.5 were considered markers of oligodendrocytes, astrocytes,
neurons, and microglia, respectively. Neither refs. 27 nor 64 had microglia as a cell type,
whereas refs. 65 and 66 only tested microglia in mouse and human, respectively.
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Table S4. Top 20 interspecies marker genes for each module

Module Gene

P value rank

Mouse Human

M1 SNAP91 11 5
M1 GUCY1B3 10 15
M1 TRIM37 15 2
M1 SCN1A 18 4
M1 NPTN 29 10
M1 ITPR1 35 23
M1 GABRG2 41 17
M1 SNAP25 5 44
M1 SERPINI1 20 72
M1 SH3GL2 74 35
M1 GABRA1 6 76
M1 PLCB1 37 89
M1 FBXW7 58 90
M1 MAT2B 1 92
M1 RNF11 28 93
M1 CCNI 22 94
M1 NARS 99 22
M1 USP33 8 115
M1 OLFM1 116 48
M1 CAB39 25 144

M2 MOG 6 18
M2 EVI2A 5 25
M2 MAG 13 34
M2 GPR37 35 5
M2 RDX 41 40
M2 SYPL1 4 44
M2 MBP 25 49
M2 RNF13 19 50
M2 SCD 30 51
M2 PLP1 57 11
M2 SEPT4 21 58
M2 STXBP3 17 61
M2 CLDN11 28 62
M2 CSRP1 11 89
M2 S100B 66 93
M2 LITAF 108 38
M2 GSN 111 48
M2 FNBP1 116 31
M2 LAMP2 123 7
M2 SPG20 92 129

M3 ZFP36L1 10 26
M3 TMEM123 28 35
M3 SOX2 9 36
M3 PCAF 67 42
M3 F3 75 57
M3 TOB1 13 78
M3 HIF1A 51 92
M3 TSPAN6 109 99
M3 SEPT2 110 61
M3 GJA1 142 1
M3 ITGA6 146 82
M3 HRSP12 147 60
M3 MAPRE1 156 76
M3 TJP1 160 126
M3 ZFP36L2 171 113
M3 PTTG1IP 177 24
M3 SERP1 151 188
M3 TRAM1 143 195
M3 TMED10 55 208
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Table S4. Cont.

Module Gene

P value rank

Mouse Human

M3 ABCA1 27 219

M4 TCEB2 3 13
M4 SNRPD2 2 20
M4 UQCRQ 27 12
M4 NDUFA7 33 10
M4 CCDC56 5 37
M4 NDUFA8 15 39
M4 DDT 6 40
M4 NDUFB2 42 17
M4 C14orf156 45 29
M4 NDUFV2 47 27
M4 VPS28 22 49
M4 NEDD8 34 51
M4 NDUFB7 49 53
M4 PSMD4 55 7
M4 PSMB3 16 57
M4 NDUFC1 4 62
M4 EIF3K 70 4
M4 HSPC171 56 70
M4 MGST3 12 71
M4 NDUFB11 51 75

M5 CDK5 1 3
M5 GNG3 12 5
M5 UCHL1 6 19
M5 ACOT7 20 1
M5 SULT4A1 21 16
M5 EEF1A2 22 9
M5 ACTL6B 18 24
M5 PKM2 35 23
M5 SLC4A3 43 20
M5 PLD3 47 6
M5 ATP6V0A1 42 51
M5 RABAC1 53 33
M5 ATP6V0B 39 55
M5 SNCB 55 4
M5 ARHGDIG 61 28
M5 TAGLN3 73 39
M5 ASNA1 27 77
M5 UQCRC1 78 7
M5 PFKM 24 79
M5 PCSK1N 56 80

M6 CPNE6 7 5
M6 ICAM5 1 11
M6 HPCA 12 7
M6 PRKCG 3 12
M6 GRIA1 13 2
M6 EFNB3 9 18
M6 NELL2 6 22
M6 CAMK2B 23 25
M6 ARF3 21 27
M6 ST6GALNAC5 26 28
M6 SPTBN2 18 31
M6 RGS14 4 34
M6 SYN2 5 39
M6 NCDN 31 49
M6 CRMP1 52 13
M6 PTPRN 56 16
M6 SLC22A17 62 62
M6 CACNB3 15 69
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Table S4. Cont.

Module Gene

P value rank

Mouse Human

M6 DLG3 10 70
M6 MAST3 11 83

M7 ZNF148 1 1
M7 UGCG 36 47
M7 TCF4 53 14
M7 NUCKS1 57 19
M7 GRIA3 58 66
M7 GRIA2 17 82
M7 NARG1 83 49
M7 RBBP6 100 8
M7 TNPO2 112 45
M7 PIK3R1 133 6
M7 PLEKHA5 144 63
M7 SFRS7 92 164
M7 KCNMA1 46 171
M7 ODZ3 175 70
M7 MEF2C 187 153
M7 SLC4A7 73 190
M7 PAPSS2 160 202
M7 KPNB1 206 44
M7 ZNF638 212 189
M7 PCYOX1 30 217

M8 CSDA 1 1
M8 SRGN 20 4
M8 CEBPD 21 2
M8 CDKN1A 27 6
M8 CEBPB 32 10
M8 MCL1 7 36
M8 FOS 18 37
M8 BCL6 43 28
M8 TGM2 45 47
M8 TIPARP 47 35
M8 CLDN5 5 59
M8 ANXA1 9 62
M8 ANXA2 65 26
M8 GADD45A 69 20
M8 MGP 53 70
M8 CDH5 42 86
M8 JUNB 48 87
M8 DUSP1 11 95
M8 S100A10 95 83
M8 ACTA2 82 97

M9 CXXC1 1 2
M9 PHF1 6 11
M9 CTTN 41 45
M9 ZNF444 57 26
M9 PCBP4 132 89
M9 AATK 97 137
M9 SIDT2 165 76
M9 SF3A2 152 166
M9 SFRS14 167 101
M9 NAGA 34 170
M9 RALGDS 179 39
M9 PIGT 192 138
M9 GGA1 198 12
M9 PGF 199 1
M9 ARHGEF1 207 7
M9 CSK 208 189
M9 NAP1L4 33 223
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Table S4. Cont.

Module Gene

P value rank

Mouse Human

M9 RXRA 151 227
M9 EMID1 201 232
M9 METTL7A 250 86

M10 TYROBP 1 4
M10 ARHGDIB 4 8
M10 LY86 2 9
M10 S100A11 9 7
M10 CD14 5 10
M10 FCGR1A 21 16
M10 CYBA 18 22
M10 CSF1R 36 18
M10 TSPO 3 37
M10 LAPTM5 40 1
M10 HMOX1 19 45
M10 GPX1 50 39
M10 IFITM3 20 50
M10 IRF8 53 26
M10 ITGB2 56 5
M10 RAC2 60 46
M10 GFAP 16 61
M10 C1QB 66 3
M10 CTSS 8 66
M10 VAMP8 68 27

M11 HPRT1 1 5
M11 DLD 4 26
M11 ATP6AP2 10 31
M11 PCMT1 33 8
M11 ATP5C1 45 22
M11 G3BP2 7 47
M11 ATP6V1C1 30 50
M11 PREPL 51 32
M11 SERINC1 52 34
M11 PPP2CA 59 57
M11 SUCLA2 60 3
M11 GLRB 69 15
M11 TIMM17A 72 38
M11 PSMC6 80 69
M11 ITFG1 81 63
M11 UBE2V2 3 82
M11 TMEM30A 29 89
M11 SLC30A9 95 37
M11 ATP6V1D 92 101
M11 UBE2N 91 105

M12 RPS19 1 1
M12 RPS11 2 7
M12 RPS15A 5 10
M12 RPL7 11 14
M12 RPL7A 7 15
M12 RPL8 17 5
M12 BTF3 3 21
M12 SNRPG 21 19
M12 RPL13A 25 4
M12 RPL37 10 26
M12 RPL6 26 24
M12 RPS3 29 2
M12 RPL41 34 13
M12 RPLP1 42 3
M12 CHMP2A 43 33
M12 CNBP 52 45
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Table S4. Cont.

Module Gene

P value rank

Mouse Human

M12 UBL5 28 57
M12 NACA 66 11
M12 SSR2 72 64
M12 C2orf28 68 73

M13 SNX10 15 21
M13 HMP19 24 2
M13 PGRMC1 5 25
M13 MAPK1 4 37
M13 PPP3CB 54 38
M13 ACTR3 58 45
M13 ARMCX2 52 76
M13 SEH1L 21 77
M13 SUMO3 81 84
M13 MAP2K1 44 85
M13 SLC1A1 86 60
M13 HTR2C 90 22
M13 KRAS 78 90
M13 GAP43 97 95
M13 RCN2 80 98
M13 TOMM70A 101 73
M13 GABRB3 117 71
M13 PTPRO 131 33
M13 GLOD4 95 132
M13 RTN1 141 118

M14 SH3BGRL 7 17
M14 USP1 1 23
M14 HNRPH2 18 27
M14 RAD21 41 12
M14 EIF1AX 46 33
M14 SMARCA5 50 13
M14 DDX5 56 35
M14 UBE2E1 60 10
M14 DEK 67 73
M14 FMR1 10 79
M14 PLS3 80 21
M14 SFRS11 83 85
M14 VBP1 87 99
M14 TCF12 68 101
M14 MGEA5 96 108
M14 OGT 110 105
M14 TTRAP 111 29
M14 TOP2B 113 26
M14 YTHDC1 16 113
M14 VPS4B 33 121

M15 GPR12 2 15
M15 DOLPP1 10 53
M15 DNPEP 57 11
M15 ZC3H3 71 62
M15 MVK 79 4
M15 FGF4 56 101
M15 KRT2 121 21
M15 BCAN 74 122
M15 HGS 16 137
M15 XPO6 138 17
M15 SPRR1B 37 152
M15 MYH14 159 164
M15 PRKACA 170 72
M15 PML 173 87
M15 G6PC3 143 180
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Table S4. Cont.

Module Gene

P value rank

Mouse Human

M15 NUDCD3 8 181
M15 KLC2 189 147
M15 IMPDH1 195 142
M15 HTR4 200 166
M15 CCKBR 154 204

Top 20 interspecies marker genes for each module. For each module, genes were scored based on maximum
significance of MM between species (ranks close to 1 represent higher MM). Note that we expect some genes to
show between-species preservation for all modules, both due to chance and because of the way mouse MEs were
defined. Human-specific modules (i.e., M7 and M9) have the least significant preservation, as measured by the
larger minimum ranks of the marker genes for these modules.

Table S5. Known highly specific marker genes confirmed in our network

Gene List Cell type

Top module Top rank

Human Mouse Human Mouse

ALDOC Cahoy (M) Astrocyte M3 M9 544 648
AQP4 Cahoy (M) Astrocyte M3 M12 21 344
ATP1A2 Cahoy (M) Astrocyte M3 M6 4 264
DIO2 Cahoy (M) Astrocyte M3 M8 736 23
F3 Cahoy (M) Astrocyte M8 M3 45 75
GFAP Cahoy (M) Astrocyte M3 M10 43 16
HAPLN1 Cahoy (M) Astrocyte M1 M8 664 412
MERTK Cahoy (M) Astrocyte M3 M6 85 480
PAPSS2 Cahoy (M) Astrocyte M7 M7 202 160
PLA2G7 Cahoy (M) Astrocyte M7 M2 504 137
PPP1R3C Cahoy (M) Astrocyte M3 M8 62 145
SLC15A2 Cahoy (M) Astrocyte M3 M5 314 1005
SLC1A2 Cahoy (M) Astrocyte M7 M6 46 619
SLC4A4 Cahoy (M) Astrocyte M3 M7 133 726
AHCYL1 Oldham (H) Astrocyte M3 M1 8 172
EDG1 Oldham (H) Astrocyte M3 M15 9 1048
NTRK2 Oldham (H) Astrocyte M3 M15 11 212
PON2 Oldham (H) Astrocyte M3 M2 2 345
PPAP2B Oldham (H) Astrocyte M3 M6 17 245
SDC4 Oldham (H) Astrocyte M3 M4 39 504

EPHA7 Cahoy (M) Neuron M13 M13 344 28
GABRA1 Cahoy (M) Neuron M1 M1 76 6
GABRG2 Cahoy (M) Neuron M1 M13 17 30
HTR2C Cahoy (M) Neuron M13 M13 22 90
MEF2C Cahoy (M) Neuron M7 M7 153 187
MYT1L Cahoy (M) Neuron M1 M6 16 168
NEUROD6 Cahoy (M) Neuron M6 M1 116 13
NOV Cahoy (M) Neuron M13 M6 330 101
PCSK2 Cahoy (M) Neuron M1 M5 110 54
SCG2 Cahoy (M) Neuron M13 M3 20 144
SLA Cahoy (M) Neuron M10 M15 17 389
SLC12A5 Cahoy (M) Neuron M1 M6 6 1244
SNAP25 Cahoy (M) Neuron M11 M1 17 5
SSTR2 Cahoy (M) Neuron M6 M8 314 175
STMN2 Cahoy (M) Neuron M11 M5 24 218
SYT1 Cahoy (M) Neuron M11 M1 51 63
VIP Cahoy (M) Neuron M13 M1 505 421
DNM1L Oldham (H) Neuron M11 M13 117 8
FGF12 Oldham (H) Neuron M11 M11 126 361
GABRG2 Oldham (H) Neuron M1 M13 17 30
MAPK1 Oldham (H) Neuron M13 M13 37 4
NUDT21 Oldham (H) Neuron M11 M4 121 391
PITPNA Oldham (H) Neuron M5 M15 56 608
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Table S5. Cont.

Gene List Cell type

Top module Top rank

Human Mouse Human Mouse

RAB5A Oldham (H) Neuron M14 M11 509 26
SYN2 Oldham (H) Neuron M6 M6 39 5
YWHAZ Oldham (H) Neuron M13 M7 7 280

CLDN11 Cahoy (M) Oligoden. M2 M2 62 28
ERBB3 Cahoy (M) Oligoden. M2 M2 9 212
EVI2A Cahoy (M) Oligoden. M2 M2 25 5
GSN Cahoy (M) Oligoden. M2 M2 48 111
MAG Cahoy (M) Oligoden. M2 M2 34 13
MAL Cahoy (M) Oligoden. M2 M2 4 153
MBP Cahoy (M) Oligoden. M2 M2 49 25
MOBP Cahoy (M) Oligoden. M2 M2 71 162
MOG Cahoy (M) Oligoden. M2 M2 18 6
PLA2G4A Cahoy (M) Oligoden. M8 M3 307 768
PLP1 Cahoy (M) Oligoden. M2 M2 11 57
PRKCQ Cahoy (M) Oligoden. M2 M6 263 934
SRPK3 Cahoy (M) Oligoden. M15 M9 328 759
UGT8 Cahoy (M) Oligoden. M2 M2 17 335
CRYAB Oldham (H) Oligoden. M2 M10 15 153
ENPP2 Oldham (H) Oligoden. M2 M2 1.5 302
HSPA2 Oldham (H) Oligoden. M2 M13 1.5 227
MAL Oldham (H) Oligoden. M2 M2 4 153
NPC1 Oldham (H) Oligoden. M2 M2 8 200
PMP22 Oldham (H) Oligoden. M2 M2 3 272

Known highly specific marker genes confirmed in our network. The top marker genes for astrocytes, neurons,
and oligodendrocytes in mouse (figure 3 from ref. 27) and human (figure 4 from ref. 2), which are also present in
our networks, are listed in the “Gene” column. The “top module” column represents the module to which this
gene has the most significant MM in each network. Genes in modules consistent with expectations are labeled
in bold. The “Top Rank” columns list the ranked MM for each gene in its listed module, with lower ranks
representing more significant MM values.
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Table S6. Human specific markers for major cell types

Gene
Correlation in

human
P-value in
human

Correlation in
mouse

P-value in
mouse

Oligodendrocytes
ALCAM 0.51 6.5E-85 −0.17 2.5E-01
AMPD3 0.38 3.0E-34 −0.06 1.5E-03
ANGPTL2 0.41 1.3E-25 −0.12 7.5E-05
CBFB 0.37 2.2E-38 −0.12 8.5E-09
CDKN1B 0.30 2.9E-59 −0.05 7.5E-02
CHD1L 0.32 1.8E-26 0.01 1.3E-00
CLK1 0.33 9.9E-54 −0.07 4.6E-03
COL4A5 0.65 2.7E-182 0.00 6.7E-01
CSTF2T 0.21 1.5E-22 −0.05 6.6E-09
DYNC1I2 0.48 6.0E-76 −0.10 6.4E-17
ELOVL5 0.30 4.8E-44 0.04 1.6E-01
HSPA2 0.80 0.0E+00 −0.07 2.6E-02
INPP1 0.44 5.4E-53 −0.05 1.5E-06
IQGAP1 0.31 9.4E-27 −0.08 5.7E-01
IVNS1ABP 0.31 2.7E-40 −0.07 2.8E-22
LRP2 0.44 5.9E-47 −0.03 2.4E-01
MAN2A1 0.58 6.4E-151 −0.06 7.0E-02
MYLK 0.45 1.9E-50 −0.02 1.0E-02
NCAM1 0.38 1.8E-33 −0.13 2.7E-06
P2RX7 0.41 9.7E-26 −0.09 6.9E-10
PSEN1 0.62 6.8E-177 0.03 6.8E-01
PTP4A2 0.45 1.9E-61 0.00 2.7E-10
RNF103 0.25 3.9E-19 −0.04 1.8E-12
STAG2 0.20 3.9E-23 −0.07 4.5E-02
THBS2 0.44 4.9E-50 −0.04 1.3E-01
TXNIP 0.25 1.9E-17 −0.06 1.0E-03
ZFYVE16 0.32 2.2E-37 0.00 8.7E-01
HBEGF 0.22 8.0E-14 −0.12 9.2E-05
KIAA0174 0.35 6.3E-27 −0.05 2.4E-08

Microglia
CD53 0.49 2.1E-94 −0.05 1.4E-04
CYFIP1 0.41 3.1E-49 −0.12 3.4E-01
ITGAM 0.28 2.3E-26 0.00 1.7E-01
KCTD12 0.43 4.5E-53 −0.15 2.8E-04
SLA 0.50 6.2E-78 0.01 1.7E-01
SLC2A5 0.48 3.3E-86 0.03 8.6E-02
STAB1 0.43 7.2E-46 0.01 9.2E-01

Astrocytes
ABLIM1 0.34 1.1E-35 −0.03 1.0E+00
AQP1 0.27 1.6E-38 0.00 3.1E-01
CD99 0.36 3.1E-70 −0.09 4.2E-01
CRYL1 0.29 2.5E-30 −0.05 8.1E-02
FTH1 0.21 9.8E-17 −0.05 2.1E-03
FYN 0.39 1.1E-44 0.04 6.1E-02
GRAMD3 0.63 1.2E-185 0.04 8.7E-01
IGFBP7 0.35 1.1E-42 −0.06 1.4E+00
LEPROT 0.31 1.1E-19 0.04 1.3E+00
PIK3C2A 0.53 2.5E-64 −0.02 7.7E-02
PRKCA 0.34 3.0E-54 −0.04 5.0E-02
RAB31 0.55 1.2E-107 −0.04 1.0E+00
RYR3 0.45 4.5E-73 −0.01 1.3E+00
SRI 0.42 7.0E-59 −0.08 9.0E-01
TCF7L2 0.45 2.1E-43 −0.01 1.9E-05
TGFBR3 0.41 1.1E-51 −0.01 3.2E-02
UNG 0.38 4.4E-47 −0.02 1.6E-12

Neurons
ACLY 0.24 2.0E-20 0.02 1.3E+00
ACP1 0.29 5.0E-34 −0.03 2.8E-01
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Table S6. Cont.

Gene
Correlation in

human
P-value in
human

Correlation in
mouse

P-value in
mouse

ADK 0.22 1.5E-15 0.04 4.6E-01
CCDC6 0.32 8.8E-36 −0.01 7.3E-01
COPS8 0.30 3.5E-34 −0.08 5.2E-01
GHITM 0.37 7.2E-66 −0.07 5.9E-04
HSPA4L 0.28 1.4E-24 −0.02 9.0E-03
HSPA8 0.25 1.1E-20 0.02 8.0E-01
MCFD2 0.39 2.1E-46 0.05 2.0E-01
P15RS 0.28 1.3E-22 −0.03 2.4E-03
PEG10 0.38 3.6E-84 0.01 3.4E-01
PGK1 0.24 3.5E-24 −0.04 1.0E+00
PRKCI 0.31 3.5E-22 −0.07 4.0E-02
UQCRC2 0.30 5.9E-37 0.01 1.2E+00

Human specificmarker genes for fourmajor cell types: oligodendrocytes, microglia, astrocytes, and neurons. All
genes in these lists pass four criteria: (i) Member of the human module for the cell type, (ii) not significantly
correlated (R < 0.05, P > 0.05) with the corresponding mouse module, (iii) validated in a human cortex network
(2), and (iv) not validated in corresponding mouse comparison studies (27, 64, 65). SLA and STAB1 were further
confirmed as markers for human microglia in ref. 66.

Table S7. Top confirmed M9h genes

Gene Rank Gene Rank

ZNF160 1 USP4 26
DCLRE1C 2 PRR14 27
SRRM2 3 SCAMP2 28
POGZ 4 ELAVL3 29
CLCN7 5 C21orf2 30
TAZ 6 TRIOBP 31
CXXC1 7 PIAS4 32
PRR11 8 ZNF688 33
WDR6 9 GAK 34
ZNF444 10 SORBS3 35
BRD3 11 PLCG1 36
CTDSP2 12 LMBR1L 37
CEP164 13 ZNF692 38
SAPS2 14 LAS1L 39
MAP3K11 15 RING1 40
FBXW4 16 PHF1 41
ZNF148 17 CELSR3 42
C9orf7 18 FLJ21865 43
ZBTB20 19 ECHDC2 44
MAP3K3 20 EFEMP2 45
DBT 21 GOSR1 46
TNS1 22 APBA3 47
EXOC7 23 MAML1 48
WHSC2 24 GLT25D1 49
AKAP8L 25 BCAT2 50

Top confirmed M9h genes. Genes in this list are ranked based on high correlation with the ME of M9h and its
corresponding confirmation modules (the red module from ref. 12, the black module from ref. 40, and the
yellow module from ref. 39), and high correlation with M9h hubs in the Celsius database (ref. 67)
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