
Supplementary Information to accompany
Reverse Engineering Dynamic Temporal Models
of Biological Processes and their Relationships

N. Ramakrishnan et al.

This document provides supplementary details to accompany the manuscript, in particular it presents a
complete description of the algorithm and an outline of our experimental methodology. Complete Gantt
charts for each of the stresses analyzed is also presented here.

1 Algorithm Description

As discussed in the main text, the ‘unit’ of our analysis is to simultaneously cluster two neighboring windows
such that the clusters are maximally dissimilar in terms of the related samples assigned to them. This unit is
then composed to yield a tiling of the entire time series, or a segmentation.

1.1 Formulation

Given a gene vector gk, let its projection onto the ‘left’ window wtbta be referred to as xk, and its projection
onto the ‘right’ window wtctb+1

be referred to as yk. Recall that sets of such projections are clustered sep-
arately such that the clusters are maximally dissimilar. Let r and c be the number of clusters for x and y
vectors, which results in an r × c contingency table. Let m(x)

i be the prototype vector for the ith cluster of
the x vectors. The random variable V (xk) denotes the assignment of the data vector xk to the clusters: the
probability of xk being assigned to cluster i is given by P (V (xk) = i) = v

(xk)
i , where

∑r
i=1 v

(xk)
i = 1. We

refer to the probabilities v(xk)
i as cluster membership indicator variables. Similar cluster prototypes m(y)

j ,

random variables V (yk), and cluster indicator variables v(yk)
j are defined for y vectors as well. We denote

the probability mass function associated with each V (xk) as pV (xk) , and with each V (yk) as pV (yk) . Then the
contingency table counts can be calculated as nij =

∑N
k=1 v

(xk)
i v

(yk)
j . In hard clustering algorithms, like

the traditional k-means, each data sample is assigned to the nearest cluster with a probability of 1. However,
calculating nij using hard memberships renders the function F (see main text) nondifferentiable at certain
points, as a result of which, we cannot leverage classical numerical optimization algorithms to minimize
F . To avoid this problem, cluster indicator variables are typically treated as continuous real variables mak-
ing F a smooth function that is continuously differentiable and assigning a nonzero cluster membership
probability for each data sample, i.e, v(xk)

i , v
(yk)
j ∈ (0, 1).

1.2 Smoothing Cluster Probabilities

There are many ways of smoothing, one approach being the use of a Gaussian kernel between the vector
and the cluster prototype. We present a novel derivation of this kernel that explains how the error in the

1

smoothing can be explicitly controlled and also suggests other formulations for smoothing. First, we define

γ(i,i′)(xk) =
||xk −m(x)

i′ ||
2 − ||xk −m(x)

i ||2

D
, 1 ≤ i, i′ ≤ r,

where D = max
k,k′
||xk − xk′ ||2, 1 ≤ k, k′ ≤ N is the pointset diameter.

The non-normalized cluster assignment probabilities are given by

v̂xk
i = exp(ρ(min

i′
γ(i,i′)(xk)))

and the normalized probabilities are then given by

v
(xk)
i =

v̂xk
i∑
i′ v̂

xk
i′

(1)

A well known approximation to min
i′
γ(i,i′)(xk) is the Kreisselmeier-Steinhauser (KS) envelope func-

tion [1, 4, 11] given by

KSi(xk) =
−1
ρ

ln
[r∑
i′=1

exp(−ργ(i,i′)(xk))
]
,

where ρ � 0. The KS function is a smooth function that is infinitely differentiable. Using this the cluster
membership indicators are redefined as:

v
(xk)
i =

exp
[
ρKSi(xk)

]
∑r

i′=1 exp
[
ρKSi′(xk)

] =
exp(− ρ

D ||xk −mi||2)∑r
i′=1 exp(− ρ

D ||xk −m
′
i||2)

(2)

The cluster memberships for the “right” window, v(yk)
j , are also smoothed similarly.

Note that ρ/D is the width of the Gaussian kernel used for approximation, however the KS-function
helps tease out how the width must be set in order to achieve a certain quality of approximation. Furthermore,
D is completely determined by the data but ρ is a user-settable parameter, and precisely what we can tune.
The KS-function provides bounds on the error with which it approximates min

i′
γ(i,i′)(xk), given as follows

min
i′
γ(i,i′)(xk)−

ln(N)
ρ
≤ KSi(xk) ≤ min

i′
γ(i,i′)(xk)

The above inequality shows that the value of ρ can be determined for a given error precision. Furthermore,
we can use any other rapidly decaying function to assign the probabilities (i.e. in place of the exponential)
and the KS-function would again help us smooth the resulting assignments, but will yield assignment prob-
abilities that are quite different from the traditional Gaussian kernel. In this sense, the KS-approximation is
a versatile approach to smooth a variety of functions.

1.3 Objective Function and Regularization

As discussed in the main text, the objective function can be written as:

F = −1
r

r∑
i=1

H(Ri)−
1
c

c∑
j=1

H(Cj),

= −1
r

r∑
i=1

H(β|α = i)− 1
c

c∑
j=1

H(α|β = j)

2

where the entropy terms derive from KL-divergences w.r.t. the uniform distribution. Minimizing the func-
tion F should ideally yield clusters that are independent across windows and local within each window.
However, using smooth cluster prototypes gives rise to an alternative minimum solution where each data
sample is assigned with uniform probability to each cluster. For example, recall the 3 × 3 uniform contin-
gency table example, where each of 18 samples can be assigned to 3 row clusters and 3 column clusters
with probability [1/3, 1/3, 1/3] and the estimate of the count matrix from these soft counts would still be
uniform in each cell (

∑
k v

(xk)
i v

(yk)
j = 2). To avoid degenerate solutions such as these, we require maxi-

mum deviation of individual data vector probabilities (v(xk)
i and v(yk)

j) from the uniform distribution over
the number of clusters. This leads to the regularized objective function:

F =
λ

r

r∑
i=1

DKL

(
pRi ||U(1

c)
)

+
λ

c

c∑
j=1

DKL

(
pCj ||U(1

r)
)

− 1
N

N∑
k=1

DKL

(
pV (xk) ||U(1

r)
)
− 1
N

N∑
k=1

DKL

(
pV (yk) ||U(1

c)
)
, (3)

where λ is the weight, set to a value greater than 1, to give more emphasis to minimizing the row and column
distributions. This also enforces equal cluster sizes.

The role of λ is to enforce a ‘balancing constraint’ on the clusters (i.e., approximately equal cluster
sizes) and to prevent samples from being assigned to multiple clusters. Other approaches have focused
on explicitly capturing these aspects by an objective function but here we intend λ to be a regularization
parameter, intended to avoid degenerate solutions. Hence the exact value of λ is not as crucial as the regime
in which we conduct the optimization. In order to adjust λ, we vary its value over a range (typically [1,2] in
small step sizes). Based on experimentation, the cluster assignments of most gene vectors (more than 90%)
do not change after a particular value of λ and we use this criterion to set λ. All the terms in the definition of
F above can be calculated in terms of the smoothed cluster membership probabilities v(xk)

i and v(yk)
j , which

are in turn calculated in terms of the cluster prototypes m(x)
i and m(y)

j . Thus the objective function F is
effectively parametrized in terms of the cluster prototypes, and the problem of finding independent clusters
now reduces to finding the cluster prototypes that optimize the objective function.

1.4 Optimization

The gradient of F with respect to the prototypes m(x)
i is given by

∇
m

(x)
i

F =
1

ln(2)

r∑
i′=1

N∑
k=1

(
λ

r

{
c∑
j=1

[
1 + ln

(∑N
k′=1 v

(xk′)
i′ v

(yk′)
j∑N

k′=1 v
(xk′)
i′

/1
c

)]
·

[v
(yk)
j∑N

k′=1 v
(xk′)
i′

−
∑N

k′=1 v
(xk′)
i′ v

(yk′)
j∑N

k′=1(v
(xk′)
i′)2

]}

−λ
c

{
c∑
j=1

[
1 + ln

(∑N
k′=1 v

(xk′)
i′ v

(yk′)
j∑N

k′=1 v
(yk′)
j

/1
r

)][v
(yk)
j∑N

k′=1 v
(yk′)
j

]}

− 1
N

[
1 + ln

(
v

(xk)
i′

/1
r

)])
∇

m
(x)
i

v
(xk)
i′ , (4)

3

input T = (t1, t2, . . . , tl): Given time series data sequence.
input lmin: Minimum window length.
input lmax: Maximum window length.

Step 1: Define the set of windows starting from time point ta, Sta = {wtbta |lmin ≤ tb − ta + 1 ≤
lmax}.
Step 2: Construct a directed acyclic graph where each wtbta is a node and a directed edge exists from
wtbta to the windows wtctb+1

∈ Stb+1
.

Step 3: Cluster the adjacent windowswtbta andwtctb+1
by minimizing the objective function in Eq.(3).

Let F
w

tb
ta
,wtc

tb+1

be the final value of the objective function. Assign F
w

tb
ta
,wtc

tb+1

as the edge weight

between the nodes represented by wtbta and wtctb+1
.

Step 4: Let Etl = {wtltk |lmin ≤ tl − tk + 1 ≤ lmax} be the set of windows ending in the last time
point tl. For each window starting at the first time point, wtbt1 ∈ St1 , calculate the minimum cost
path to all wtltk ∈ Etl .
Step 5: Calculate DSeg = F{wta

t1
,w

tb
ta+1

} + F{wtc
tb+1

,w
td
tc+1

} + . . . + F{wtk
tj
,w

tl
tk+1

} for each shortest

path in step 4.
Step 6: Return the path with minimum DSeg .

Figure 1: Algorithm for segmenting a time series

where

∇
m

(x)
i

v
(xk)
i =

2ρ(xk −m(x)
i)

D
v

(xk)
i (δi′,i + v

(xk)
i) (5)

Here δi′,i is the Kronecker delta. The index variables i, i′, and i′′ are over the clusters in the x vectors, j over
the clusters in the y vectors, and k and k′ over the data vectors. The gradients with respect to the prototypes
m(y)
j are calculated analogously.

Optimization of F is performed using the augmented Lagrangian algorithm with simple bound con-
straints on the cluster prototypes using the FORTRAN package LANCELOT [2]. The initial cluster pro-
totypes are set using individual k-means clusters in each window. The augmented Lagrangian algorithm
iteratively improves these initial prototypes till a local minimum of the objective function is attained.

1.5 Dynamic programming

We can now present the algorithm for tiling a given time course into a series of windows such that neigh-
boring windows capture breakpoints of significant re-organization (see Fig. 1). Here, lmin and lmax are the
minimum and maximum window lengths. We create all possible ‘tiles’ of the entire time course that sat-
isfy these constraints and then evaluate every consecutive pair of them. The evaluation consists of applying
our clustering framework and determining the minimized value of F . These objective functions are then
summed over an entire segmentation and used to evaluate one segmentation over another. Computationally,
this reduces to a shortest path algorithm where each edge length is given by the minimized value of F .
Each optimization can be performed in a matter of a few seconds on a desktop computer so that the entire
segmentation is computable in a few minutes.

4

2 Evaluation and Assessment

We evaluate our clusterings and segmentations in five ways: cluster stability, cluster reproducibility, func-
tional enrichment, segmentation quality, and segmentation sensitivity. Cluster stability and cluster repro-
ducibility are used to filter the patterns obtained by the segmentation algorithm whereas the other three
criteria are used to evaluate the quality of segmentation.

We assess cluster stability using a bootstrap procedure to determine significance of genes brought to-
gether. Recall that each window except the first and last windows has two sets of clusters, one set indepen-
dent with respect to the previous window and the other independent with respect to the next window. We are
interested in the genes that are significantly clustered together in these two sets of clusters, as they represent
the genes that are specific to the window under consideration. We calculate a contingency table between
these two clusterings for each window (excluding the first and the last window) in which each cell repre-
sents the number of genes that are together across the two independent sets of clusters. We randomly sample
1000 pairs of clusterings within each window (with cluster sizes same as the two independent clusterings)
and compute their contingency tables. By the central limit theorem, the distribution of counts in each cell
of the table is approximately normal (also verified using a Shapiro-Wilk normality test with p = 0.05). We
now evaluate each cell of the actual contingency table with respect to the corresponding random distribution
and retain only those cells that have more genes than that observed at random with p < 0.05 (Bonferroni
corrected with the number of cross clusters to account for multiple hypothesis testing). To ensure repro-
ducibility of clusters, we retain only those genes in each significant cell of the contingency table that are
together in more than 150 of the 200 clusterings (conducted with different initializations). For the first and
last windows, which have only 100 randomly initialized clusterings, we retain those genes that are clustered
together in more than 75 of the 100 clusterings. At this stage, for each segment we obtain a contingency
table with significant cells representing the group of genes specific to the particular segment, which we can
refer to as cross-cluster. We perform functional enrichment using the GO biological process ontology
(since we are tracking biological processes) over each of these cross clusters. A hypergeometric p-value is
calculated for each GO biological process term, and an appropriate cutoff is chosen using a false discovery
rate (FDR) q-level of 0.01.

The segmentation quality is calculated as a partition distance [6] between the “true” segmentation
(from the literature of the YMC and YCC) to the segmentations computed by our algorithm. We view each
window as a set of time points so that a segmentation is a partition of time points. Given two segmentations
S1 and S2, whose windows are indexed by the variables wtbta and ztdtc respectively, the partition distance is
given by:

PD = −
∑

w
tb
ta
∈S1

∑
z

td
tc
∈S2

|wtbta ∩ z
td
tc | log2

|wtbta ∩ z
td
tc |

|wtbta |

−
∑

z
td
tc
∈S2

∑
w

tb
ta
∈S1

|wtbta ∩ z
td
tc | log2

|wtbta ∩ z
td
tc |

|ztdtc |
. (6)

The segmentation sensitivity to variations in the number of clusters is calculated as the average of the
ratios of KL-divergences between the segments to the maximum possible KL divergence between those
segments. This latter figure is easy to compute as a function of the number of clusters, which is con-
sidered uniform throughout the segmentation. Suppose we have |S| windows in a given segmentation
S = {wtat1 , w

tb
ta+1

, . . . , wtktj+1
, wtltk+1

} with c clusters in each window. Let Fmax be the objective function

5

value for the maximally similar clustering (the c × c diagonal contingency table). Then the measure we
compute is

Davg =
1

|S| − 1

F{wta
t1
,w

tb
ta+1

}

Fmax
+
F{wtc

tb+1
,w

td
tc+1

}

Fmax
+ . . .+

F{wtk
tj
,w

tl
tk+1

}

Fmax

 , (7)

where F{wtb
ta
,wtc

tb+1
} is the optimal objective function value obtained by clustering the pair of adjacent win-

dows wtbta , w
tc
tb+1

. Observe that this criterion is different from the actual criterion optimized during the
segmentation. Davg compares our segmentation (which identifies dissimilar sets of clusters) to the case
when there are exactly similar clusters. Lower values of this ratio indicate that the segmentation captures
maximal independence between adjacent segments while higher values indicate the clusters obtained are
more similar in adjacent segments.

3 Datasets and pre-processing

Our datasets came from a variety of sources. For each dataset described below, we retained only genes
that have an annotation in the GO (Gene Ontology) biological process taxonomy (revision 4.205 of GO
released on 14 March 2007), log transformed (base 10) their expression values and normalized them such
that the mean expression of each gene across all time points is zero. The YMC1 dataset [10] consists
of 36 time points collected over 3 continuous cycles. The original dataset consists of 6555 unique genes
from the S. cerevisiae genome from which after preprocessing as described above we retained 3602 genes.
We also analyzed another yeast metabolic cycle (YMC2) dataset [3] with 32 time points collected over 3
continuous cycles. (While in YMC1 [10] the authors claim that the cycle length is approximately 5 hours,
in YMC2 [3], the authors claim that this cycle length is approximately 40 minutes.) Here we again retained
3602 genes. As our third dataset, we analyzed the well known yeast cell cycle dataset from experiments
performed bySpellman et al. [8]. There are three components to the Spellman yeast cell cycle (YCC) data,
following three different cell synchronization treatments with α-factor, cdc 15 and elutriation. We describe
our analysis of the α-factor dataset that has 6076 genes with 18 time points over approximately 2 cycles. Our
preprocessing results in a universal set of 2196 genes. Finally, we analyzed datasets from the experiments
conducted by Shapira et al. [7], who studied the effects of oxidative stress induced by hydrogen peroxide
(HP) and Menadione (MD) on the yeast cell cycle. We analyzed the datasets where HP and MD were
added to the cells at 25 minutes after release from G1 arrest. The cells treated with HP were arrested in
the subsequent G2/M phase while those treated with MD go through one cell cycle and were arrested in the
G1 phase of next cycle. The HP dataset has 20 time points while the MD dataset has 14 time points. After
preprocessing, we obtained a final set of 2471 genes in HP, and 2247 genes in MD datasets.

The above datasets are segmented using our dynamic programming algorithm. We used different settings
for the numbers of clusters and different thresholds for minimum and maximum possible window lengths
to search in the space of possible segmentations. Besides the number of clusters in each segment, and
minimum/maximum constraints on window lengths, weparameterized the segmentation algorithm with a
parameter λ that controls the sizes of the clusters in the resulting segmentations and can be adjusted to yield
approximately equal cluster sizes. For YMC1, we experimented with the number of clusters in each segment
ranging from 3 to 15, a minimum window length of 4 and max imum window length of 7, and λ = 1.4. For
YMC2, the number of clusters is varied between 3 and 15, minimum and maximum window lengths used
are 3 and 6 respectively, a nd λ = 1.35. For the YCC, we ranged from 3 to 15 clusters in each window

6

with a minimum window length of 3 and maximum window length of 5, and λ = 1.25. For segmenting the
HP and MD datasets, the number of clusters is varied between 3 and 15, minimum and maximum window
lengths used are 3 and 7 respectively, and λ = 1.55. After the segmentation reveals windows and clusters of
genes in each window, we perform functional enrichment over the selected sets of genes. A hypergeometric
p-value is calculated for each GO biological process term, and an appropriate cutoff is chosen using false
discovery rate (FDR) q-level of 0.01 [9].

4 Comparisons with Biclustering

It is instructive to compare our segmentation and temporal process building approach with classical biclus-
tering algorithms. Biclustering algorithms, even those that obey the temporal order of time points, will find
groups of genes and groups of time points but will not yield a representation of the entire time course. A
segmentation, on the other hand, is a partition of the entire time course. Consider for instance applying a
biclustering algorithm such as e-CCC [5] and our segmentation algorithm to the yeast cell cycle data (see
Figure 3 of our paper: time points 1–9). The classical metaphor for biologists to comprehend cell cycle
data is to view it in terms of phases – something our algorithm naturally reveals. e-CCC, on the other hand,
merely brings out a laundry list of biclusters which have to be processed to understand phases and transi-
tions. But this is not possible and there are serious shortcomings:

Lack of a complete partition of the time course: e-CCC when run on the yeast cell cycle data would
return results such as:

DNA replication initiation genes 3–5
strand elongation genes 3–7
metaphase activated genes 6–8

Note that because such an algorithm only looks for biclusters, the time points can overlap. Furthermore,
the genes corresponding to these biclusters could overlap as well. Finally, and more importantly, some time
points might not be represented in the answer (such as time points 1, 2, and 9, in the above case). These
algorithms hence make no attempt to present an integrated picture of the temporal patterns manifest in the
data, such as to find transition points in a global interval. Our segmentation algorithm goes considerably
further. It posits that there are key time point boundaries around which genes re-group and re-organize. In
addition, within a segment, we do not assume that there is a single process/function that is manifest but
rather a group (set) of processes. It is these groups that get re-defined around the time point boundaries. For
the above data, we get our result as:

cytokinesis 1–3
DNA replication 1–3
strand elongation 4–6
G1/S-specific transcription 4–6
mitotic spindle elongation 7–9
metaphase/anaphase transition 7–9

Note that all time points are represented in the answer but each time point participates in only one segment.
Within each segment is enriched a set of processes. Using an entire segmentation such as this, we obtain an
integrated view of the key phases underlying the dataset.

7

Inability to support temporal model building and inference: A more serious concern is that biclusters
from algorithms such as e-CCC cannot be further processed into a complete temporal model, such as a
finite state machine, Kripke structure, or other automata. This is a key contribution of our paper. Our
segmentation and enrichment of each phase of the discovered segments immediately results in a Kripke
structure (see Figure 1 of our paper). More importantly, we are able to combine such temporal models
across experiments into an integrated process model (see Figure 2 of our paper). In summary, to use an
oft-quoted metaphor, the biclustering algorithm gives us pieces of the puzzle which might not fit together
and where some pieces are missing. The segmentation algorithm gives us pieces that fit together and which
when composed yield the entire picture.

8

5 Gantt charts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

iron−sulfur cluster assembly
mitotic spindle elongation

mitotic metaphase/anaphase transition
mitotic sister chromatid cohesion

mitotic spindle organization and biogenesis in nucleus
establishment of mitotic spindle orientation

G2/M transition of mitotic cell cycle
histone acetylation

DNA strand elongation during DNA replication
spindle pole body duplication in nuclear envelope

microtubule nucleation
telomere maintenance via telomerase

inner mitochondrial membrane organization and biogenesis
regulation of progression through mitotic cell cycle

mitochondrial genome maintenance
nucleosome assembly

ribosome export from nucleus
DNA replication initiation
RNA export from nucleus

rRNA processing
amino acid biosynthetic process

cell wall chitin biosynthetic process
spliceosome assembly

nuclear pore organization and biogenesis
ribosomal subunit assembly and mainteneance

sulfate assimilation
polyamine transport

hexose transport
phosphate transport

aldehyde metabolic process
fatty acid oxidation

vesicle organization and biogenesis
cellular polysaccharide catabolic process

Golgi to vacuole transport
protein targeting to vacuole

retrograde transport, endosome to Golgi
Golgi to plasma membrane transport

ergosterol biosynthetic process
regulation of exit from mitosis

response to heat
protein ubiquitination

protein targeting to peroxisome
glycolysis

timepoints

Figure 2: Gantt chart resulting from segmentation of the YMC1 dataset.

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

regulation of exit from mitosis
mitotic metaphase/anaphase transition

mitotic spindle elongation
mitotic sister chromatid cohesion

mitotic spindle organization and biogenesis in nucleus
establishment of mitotic spindle orientation

G2/M transition of mitotic cell cycle
histone acetylation

spindle pole body duplication in nuclear envelope
microtubule nucleation

telomere maintenance via telomerase
inner mitochondrial membrane organization and biogenesis

mitochondrial genome maintenance
RNA export from nucleus

spliceosome assembly
nuclear pore organization and biogenesis

aldehyde metabolic process
fatty acid oxidation

vesicle organization and biogenesis
Golgi to vacuole transport

protein targeting to vacuole
retrograde transport, endosome to Golgi

Golgi to plasma membrane transport
response to heat

protein ubiquitination
protein targeting to peroxisome

DNA strand elongation during DNA replication
DNA replication initiation

ribosome export from nucleus
rRNA processing

amino acid biosynthetic process
ribosomal subunit assembly

sulfate assimilation
polyamine transport

hexose transport
phosphate transport

ergosterol biosynthetic process
glycolysis

timepoints

Figure 3: Gantt chart resulting from segmentation of the YMC2 dataset. Compare with Fig. 2.

References

[1] J. F. M. Barthelemy and M. F. Riley. Improved multi-level optimization approach for the design of
complex engineering systems. AIAA J., 26:353–360, 1988.

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

iron−sulfur cluster assembly
mitotic spindle elongation

mitotic metaphase/anaphase transition
mitotic sister chromatid cohesion

mitotic spindle organization and biogenesis in nucleus
establishment of mitotic spindle orientation

G2/M transition of mitotic cell cycle
protein targeting to peroxisome

regulation of progression through mitotic cell cycle
mitochondrial genome maintenance

histone acetylation
DNA strand elongation during DNA replication

NA unwinding during replication
nucleosome assembly

ribosome export from nucleus
DNA replication initiation
RNA export from nucleus

rRNA processing
amino acid biosynthetic process

telomere maintenance via telomerase
nuclear pore organization and biogenesis

regulation of cyclin−dependent protein kinase activity
microtubule nucleation

spindle pole body duplication in nuclear envelope
axial bud site selection

chromosome condensation
nuclear migration, microtubule−mediated

cell wall chitin biosynthetic process
vesicle organization and biogenesis

polyamine transport
hexose transport

phosphate transport
aldehyde metabolic process

Golgi to vacuole transport
protein targeting to vacuole

retrograde transport, endosome to Golgi
Golgi to plasma membrane transport

ergosterol biosynthetic process
regulation of exit from mitosis

timepoints

Figure 4: Gantt chart resulting from segmentation of the YCC dataset.

[2] A.R. Conn, N.I.M. Gould, and P.L. Toint. LANCELOT: A Fortran Package for Large-scale Nonlinear
Optimization (Release A), volume 17. Springer Verlag, 1992.

[3] R.R. Klevecz, J. Bolen, G. Forrest, and D. B. Murray. A genomewide oscillation in transcription gates
dna replication and cell cycle. PNAS, 101(5):1200–1205, 2004.

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

mitochondrial genome maintenance
iron−sulfur cluster assembly

telomere maintenance via telomerase
glycolysis

endocytosis
cellular polysaccharide catabolic process

vacuolar protein catabolic process
cell cycle arrest

ergosterol biosynthetic process
pentose metabolic process

nuclear pore organization and biogenesis
chromatin silencing at rDNA
glycogen metabolic process

inositol lipid−mediated signaling
methionine metabolic process

cysteine metabolic process
glutathione metabolic process

tricarboxylic acid cycle intermediate metabolic process
ethanol metabolic process

histone acetylation
DNA strand elongation during DNA replication

DNA unwinding during replication
regulation of DNA replication

ATP biosynthetic process
NADH oxidation

Rho protein signal transduction
MAPKKK cascade
fatty acid oxidation

regulation of cell redox homeostasis
response to reactive oxygen species

response to heat
regulation of transcription in response to stress

autophagy
nucleosome assembly

ribosome export from nucleus
DNA replication initiation

rRNA processing
amino acid biosynthetic process

polyamine transport
hexose transport

phosphate transport
sulfate assimilation

ribosomal subunit assembly
amino acid metabolic process

iron ion transport
copper ion transport

timepoints

Figure 5: Gantt chart resulting from segmentation of the HP dataset.

[4] G. Kreisselmeier and R. Steinhauser. Systematic control design by optimizing a vector performance
index. In IFAC Symp. on computer aided design of control systems, pages 113–117, 1979.

[5] S.C. Madeira and A.L. Oliveira. A Polynomial Time Biclustering Algorithm for Finding Approximate
Expression Patterns in Gene Expression Time Series. Algorithms for Molecular Biology, Vol. 4, 2009.

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

iron−sulfur cluster assembly
mitotic spindle elongation

mitotic metaphase/anaphase transition
mitotic sister chromatid cohesion

mitotic spindle organization and biogenesis in nucleus
establishment of mitotic spindle orientation

protein targeting to peroxisome
regulation of exit from mitosis

inositol lipid−mediated signaling
G2/M transition of mitotic cell cycle

inner mitochondrial membrane organization and biogenesis
histone acetylation

DNA strand elongation during DNA replication
DNA unwinding during replication

vesicle organization and biogenesis
cell wall chitin biosynthetic process

DNA damage checkpoint
regulation of DNA replication

ATP biosynthetic process
NADH oxidation

Rho protein signal transduction
MAPKKK cascade
fatty acid oxidation

regulation of cell redox homeostasis
response to reactive oxygen species

autophagy
nucleosome assembly

ribosome export from nucleus
DNA replication initiation
RNA export from nucleus

rRNA processing
amino acid biosynthetic process

polyamine transport
hexose transport

phosphate transport
sulfate assimilation

ribosomal subunit assembly
amino acid metabolic process

iron ion transport
copper ion transport

timepoints

Figure 6: Gantt chart resulting from segmentation of the MD dataset.

[6] R.L. De Mántaras. A Distance-Based Attribute Selection Measure for Decision Tree Induction. Ma-
chine Learning, 6(1):81–92, 1991.

[7] M. Shapira, E. Segal, and D. Botstein. Disruption of Yeast Forkhead-associated Cell Cycle Transcrip-
tion by Oxidative Stress. Molecular Biology of the Cell, 15(12):5659–5669, 2004.

13

[8] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein,
and B. Futcher. Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccha-
romyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell, 9(12):3273–3297,
1998.

[9] J.D. Storey and R. Tibshirani. Statistical significance for genomewide studies. PNAS, 100(16):9440–
9445, 2003.

[10] B.P. Tu, A. Kudlicki, M. Rowicka, and S.L. McKnight. Logic of the Yeast Metabolic Cycle: Temporal
Compartmentalization of Cellular Processes. Science, 310(5751):1152–1158, 2005.

[11] L. T. Watson and R. T. Haftka. Modern homotopy methods in optimization. Computer methods in
appl. mechanics and engg., 74:289–305, 1989.

14

