Title: A novel profluorescent probe for detecting oxidative stress induced by metal and H_2O_2 in living cells

Authors: Yibin Wei, Yi Zhang, Zhiwei Liu and Maolin Guo

Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747 (USA)

Supporting information

- 1. Materials and instruments
- 2. Synthesis and characterization
- 3. Cell culture
- 4. Figs. S1-S11.

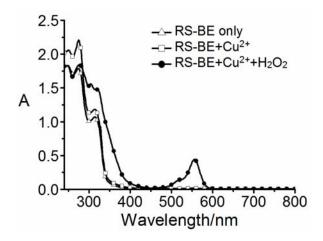
1. Materials and instruments

2-formylphenylboronic acid, pinacol ester was purchased from Combi-Blocks, Inc. Rhodamine B and salicylaldehyde were purchased from Sigma-Aldrich. Other chemicals and solvents are of analytical pure grade. Solutions of Fe²⁺ and Fe³⁺ were prepared freshly by dissolving their chloride salts into 0.01 M HCl, while ferrous ammonium sulfate, CuCl₂ and solutions of other metal ions were prepared freshly in double-distilled water.

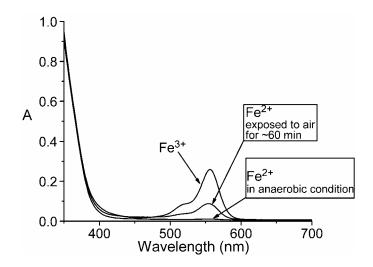
¹H and ¹³C NMR spectra were recorded on a Bruker DRX-300 spectrometer. ESI-MS analyses were performed using a Perkin-Elmer API 150EX mass spectrometer. UV/Vis spectra were recorded on a Perkin-Elmer Lambda 25 spectrometer at 298 K. Fluorescence spectra were recorded on a Perkin-Elmer LS55 luminescence spectrometer at 293 K. The excitation wavelengths and filters used were indicated in the figures. The pH measurements were carried out on a Corning pH meter equipped with a Sigma-Adrich micro combination electrode calibrated with standard buffer solution. The fluorescence responses of the probe in living cells were investigated under a Zeiss LSM 710 laser scanning confocal microscope. Excitation wavelength of laser was 510 nm and emission spectra were integrated over the range 520-580 nm. The REUSE function controlled by Zeiss software was applied to guarantee that all spectra were recorded under the same instrumental conditions.

2. Synthesis and characterization

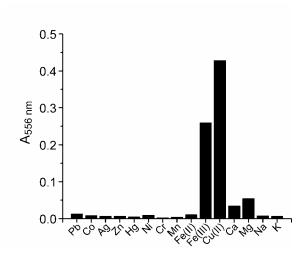
Rhodamine B hydrozide and the active chelator **Rh-SBH** were synthesized according to the reported procedure and characterized by NMR and Mass spectra. ⁴


Synthesis of **RS-BE**. 2-formylphenylboronic acid pinacol ester (1 mmol, 0.150 g) was added into 15 mL ethanolic solution of Rhodamine B hydrozide (1 mmol, 0.46 g), and then the solution was heated to flux under a nitrogen atmosphere for 3 h. The solution was concentrated through removing solvent by rotorevaporation, and then cooled down to room temperature. The obtained precipitate was further washed with ice-cold ethanol three times to afford the pure product (**RS-BE**) as pink solid (0.20 g, 30%). ¹H NMR spectrum is shown in Fig. S5. $\delta_{\rm H}$ (300 MHz; (CD₃)₂SO; Me₄Si, $\delta_{\rm t}$, ppm) 9.4(1 H, s), 7.89(1 H, d, *J* 6.9), 7.81(1 H, d, *J* 7.8), 7.51-7.63(3 H, m), 7.45(1 H, t, *J* 6.5, 6.6), 7.32(1 H, m), 7.09(1 H, d, *J* 7.2), 6.39-6.46(4 H, m), 6.30-6.36(2 H, m), 3.31(8 H, q, *J* 7.8, 7.3), 1.23(12 H, s), 1.06(12 H, t, *J* 6.9); $\delta_{\rm C}$ (CDCl3, Me₄Si) 165, 153, 148, 141, 135, 133, 130, 128, 127, 125.3, 123.4, 107.7, 107.1, 98.4, 83.7, 66.2, 44.3, 24.6, 12.6. ESI-MS: m/z, 671.3 [M+H]⁺, 693.7 [M+Na]⁺, $C_{41}H_{47}BN_4O_4$ requires 670.37. The purity of the compound was also confirmed by HPLC.

3. Cell culture


Human SH-SY5Y neuroblastoma cells were obtained from ATCC (American Type Culture Collection). Cells were maintained in 1:1 mixture of Eagles Minimal Essential medium (ATCC) and Ham's F12 medium (ATCC) supplemented with 10% fetal bovine serum (ATCC) without any antibiotics and incubated at 37°C in a humidified atmosphere with 5% CO₂. The cells were routinely subcultured using 0.05% trypsin-EDTA solution (ATCC). The cells were seeded on 2-chamber slides for 48 hours at 5×10⁴ cells/chamber and grown until each chamber was 20-30% confluent.

The sensor **RS-BE** was dissolved in acetonitrile at a concentration of 1 mM, and then was pre-diluted to a concentration of 10 μ M in culture medium without fetal bovine serum. Cell culture medium was removed from the cells in the chamber and replaced with the fresh medium containing the sensor (10 μ M).


Figures S1-S11

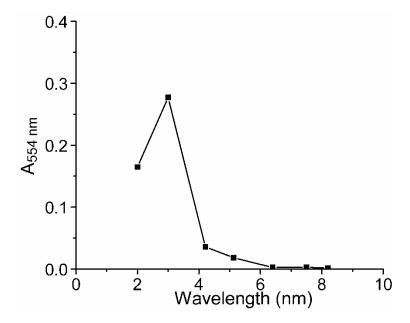

Fig S1. Absorption spectra of 50 μ M **RS-BE**, with 50 μ M Cu²⁺ before and after addition of 500 μ M H₂O₂ (60 min) in acetonitrile/KPB buffer (10 mM, pH 7.5, v/v 1:1).

Fig. S2 Absorption spectra of 50 μ M **Rh-SBH** incubated with 50 μ M Fe³⁺ (top line) or Fe²⁺ (bottom line) under anaerobic conditions in acetonitrile/KPB buffer (10 mM, pH 7.5, v/v 1:1). The middle line is the spectrum of that with Fe²⁺ after exposed to air for \sim 60 min. As shown in this figure, Rh-SBH displayed full response to Fe³⁺ but little response to Fe²⁺ under anaerobic conditions in ACN/KPB buffer. However, after the solution with Fe²⁺ was exposed to air for \sim 60 min, the absorption peak at 554 nm appeared but with lower intensity compared to that with Fe³⁺. This can be ascribed to the slow air-oxidation of Fe²⁺ to Fe³⁺, that subsequently triggered the absorption response of Rh-SBH. These data suggest that Rh-SBH response to Fe³⁺, not Fe²⁺.

Fig. S3. Absorption responses (556 nm) of 50 μM of Rh-SBH to various metal ions including 50 μM of Pb²⁺, Co²⁺, Ag⁺, Zn²⁺, Hg²⁺, Ni²⁺, Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Cu²⁺, as well as 1 mM of Ca²⁺, Mg²⁺, Na⁺ and K⁺ in ACN/KPB buffer (10 mM, pH 7.5, v/v 1:1).

Fig. S4. Absorption profile of 50 μM of Rh-SBH under varied pH values of 2, 3, 4.21, 5.13, 6.4, 7.50 and 8.20. Little characteristic color of rhodamine could be observed for Rh-SBH between pH 5.0 and 8.2, suggesting that the spirolactam form is stable in physiological relevant pH range.

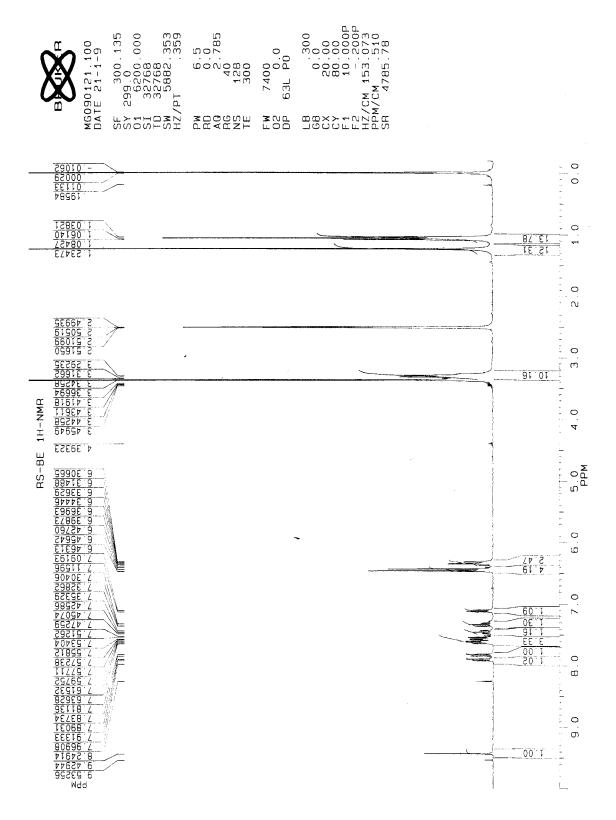
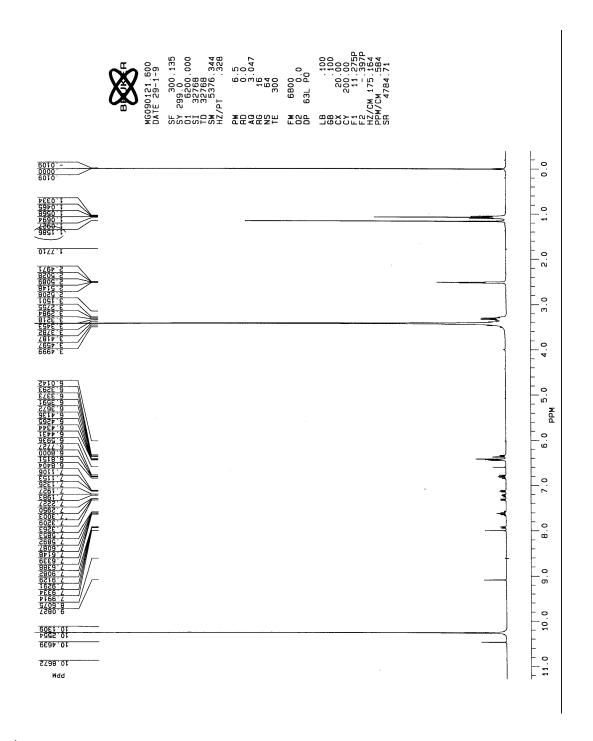
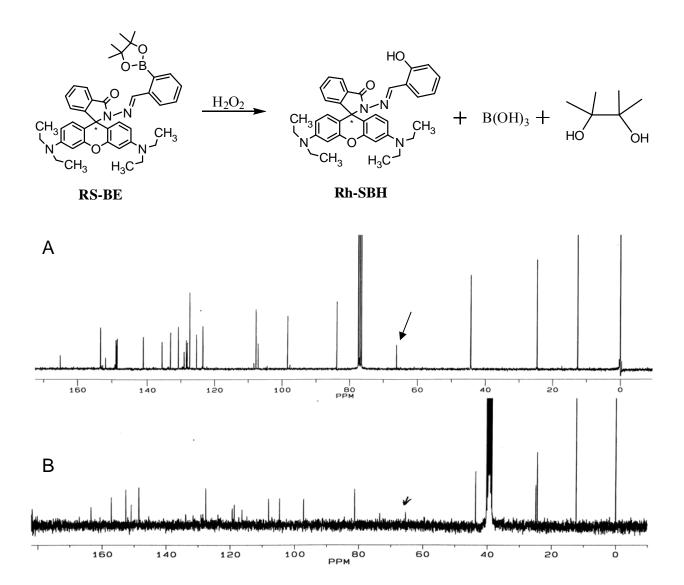
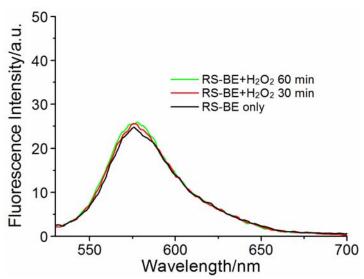
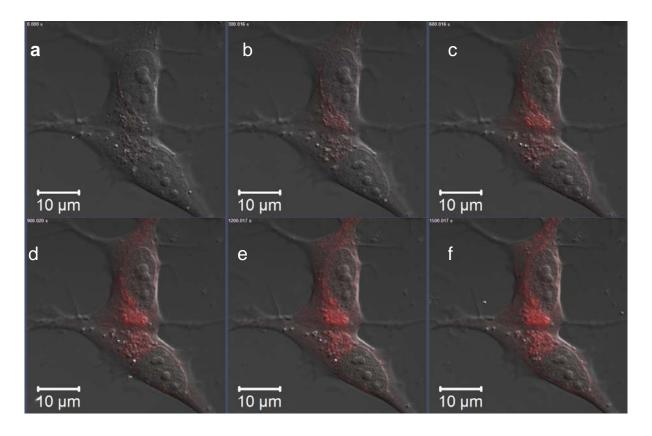
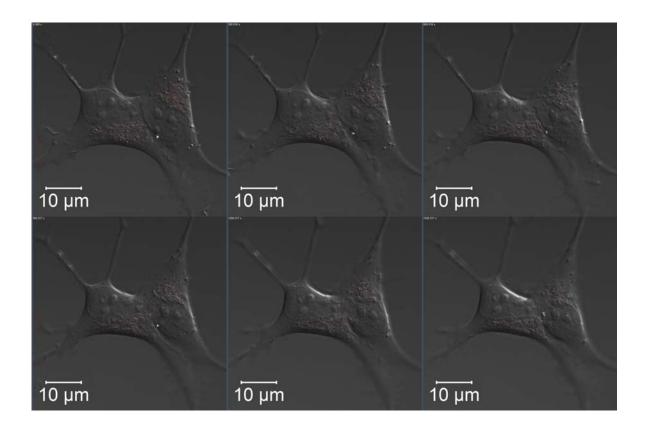


Fig. S5 ¹H NMR spectrum of 5 mM RS-BE in (CD₃)₂SO.


Fig. S6 1 H NMR spectrum of reaction 5 mM RS-BE with 500 mM H_2O_2 in $(CD_3)_2SO$ after 2 h.


Fig. S7 ¹³C NMR spectra of (A) 5 mM **RS-BE** only in CDCl₃ and (B) 5 mM **RS-BE** with 50 mM H_2O_2 incubated in (CD₃)₂SO for 24 h. The characteristic peak of the 9-carbon (marked with *) at ~ δ 66.2 ppm was still discernible after the reaction with H_2O_2 , suggesting that H_2O_2 did not induce the conversion of RS-BE/Rh-SBH from the spirolactam (ring-closed) form to the ring-opened amide form.

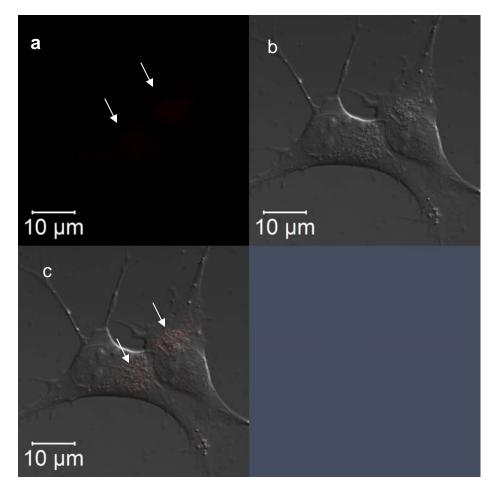

Fig. S8 Fluorescent spectra (E_x , 510 nm; E_m , 580 nm) of 50 μ M RS-BE (black line) and after the addition of 500 μ M H₂O₂ for 30 min (red line) and 60 min (green line) in acetonitrile/KPB buffer (10 mM, pH 7.5, v/v 1:1).

Fig. S9 Time course of the confocal fluorescence images of live human SH-SY5Y neuroblastoma cells pretreated with RS-BE and Fe(8-HQ) (10 μ M each) after the addition of 100 μ M H₂O₂ for 0, 5, 10, 15, 20, 25 min (a-f).

Fig. S10 Time course of the confocal fluorescence images of live human SH-SY5Y neuroblastoma cells pretreated with RS-BE and CuCl₂ (10 μ M each) after the addition of 100 μ M H₂O₂ for 0, 5, 10, 15, 20, 25 min (a-f). Little intracellular fluorescence enhancement was observed after the addition of H₂O₂ to the cells.

Fig. S11 Confocal fluorescence images of live human SH-SY5Y neuroblastoma cells pretreated with RS-BE (10 μ M) and CuCl₂ (50 μ M) after the addition of 500 μ M H₂O₂ for 30 min. (a) confocal image, (b) DIC, (c) overlay of (a) and (b). Weak intracellular fluorescence enhancement (indicated by arrows) was observed after the addition of H₂O₂ to the cells.