Molecular Microbiology

1	Supplementary material including legends of supplementary figures
2	and movies, and plasmid and strain constructions
3	
4	Legends of supplementary figures
5	Fig. S1: Time-lapse microscopy sequence of FtsZ-YFP localization in the $\Delta dipM$
6	mutant. Cells of strain CJW3430 were grown in the presence of 250 μM of vanillic acid
7	for 3 h to induce the expression of <i>ftsZ-yfp</i> prior to imaging. The arrows and white lines
8	indicate the stalled FtsZ rings and unstable accumulation of FtsZ, respectively. The
9	arrowhead shows a condensed FtsZ ring following unstable FtsZ accumulation.
10	
11	Fig S2: Western blot analysis of various mCherry fusions using anti-RFP antibody.
12	Protein extracts were generated from cultures grown under the conditions described in
13	the main text. (A) Lane 1, CJW3116 carrying mCherry-dip $M_{\Delta 1-30}$; lane 2, CJW3117
14	carrying mCherry-Dip $M_{\Delta 1-236;}$ lane 3, CJW3121 carrying Dip $M_{\Delta 297-609}$ -mCherry; lane 4,
15	CJW3124 carrying DipM-mCherry; lane 5, CJW3439 carrying DipM $_{\Delta 501-609}$ -mCherry;
16	lane 6, CJW3526 carrying $DipM_{1-296\Delta 121-167}$ -mCherry; lane 7, CJW3528 carrying
17	$DipM_{1-296\Delta 175-223}$ -mCherry. Cultures were grown in the presence of 250 μ M of vanillic
18	acid. Samples were taken when the cultures reached an $OD_{660} \approx 0.3$. (B) Lanes 1-3,
19	CJW3446 carrying $DipM_{\Delta 501-609}$ -mCherry grown in the presence of 0.3% xylose and
20	$250~\mu M$ vanillic acid (lane 1), only 250 μM vanillic acid (lane 2), or only 0.3 % xylose
21	(lane 3); lane 4, CJW3121 carrying $DipM_{\Delta 297-609}$ -mCherry; lane 5, CJW3530 carrying
22	$DipM_{\Delta 297-609}$ -mCherry; lane 6, CJW3117 carrying $DipM_{\Delta 297-609}$ -mCherry; lane 7,
23	CJW2959 carrying periplasmic mCherry. Induction conditions were the same as in (A).

24	(C) Lane 1, CJW3440 carrying DipM-mCherry; lane 2, CJW3444 carrying Dip $M_{\Delta 54-419}$ -
25	mCherry. (D) Schematics of the different mCherry fusions examined.
26	
27	Fig. S3. Localization of periplasmic mCherry and $DipM_{\Delta 501-609}$ -mCherry in different
28	genetic backgrounds. <i>Top left panel</i> , fluorescent micrographs of $DipM_{\Delta 501-609}$ -mCherry
29	(left) in DipM-depleted cells (CJW3446); depletion of DipM was achieved by
30	subculturing CJW3446 without vanillic acid and with 0.3% xylose for 24 h. The culture
31	was at an OD ₆₆₀ of 0.2 prior to imaging. <i>Top right panel</i> , fluorescent micrograh of
32	periplasmic mCherry in $\Delta dipM$ mutant cells (strain CJW3551). Cells were grown in the
33	presence of 250 μ M vanillic acid until the culture reached an OD ₆₆₀ of ~ 0.2. Arrows
34	show shed vesicles containing mCherry signal. Bottom left panel, fluorescent
35	micrograph of $DipM_{\Delta 501-609}$ -mCherry in FtsZ-depleted cells (CJW3446) grown without
36	xylose and with 250 mM vanillic acid for 5 h. Bottom right panel, fluorescent
37	micrograph of periplasmic mCherry in FtsZ-depleted cells (CJW3550) grown without
38	xylose and with 250 mM vanillic acid.for 5 h. The bars represent 1 μ m.
39	Movie legends
40	Movie legends

41 Movie S1. A $\Delta dipM$ mutation is associated with vesicle shedding. $\Delta dipM$ cells (strain 42 CJW3137) growing in M2G liquid medium were spotted on an agarose-padded

43 microscope slide containing M2G medium and were imaged at room temperature by

time-lapse DIC microscopy. The arrow indicates a division site that recedes. Time is inh:min.

46

47 Movie S2. A $\Delta dipM$ mutation is associated with cell pole enlargement over time. $\Delta dipM$ 48 cells (strain CJW3137) growing in M2G liquid medium were spotted on an agarose-

Molecular Microbiology

49	padded microscope slide containing M2G medium and were imaged at room
50	temperature by time-lapse DIC microscopy. The arrowhead shows an example of a cell
51	pole enlarging as it ages. Time is in h:min.
52	
53	Movie S3. A $\Delta dipM$ mutation is occasionally associated with cell branching from the
54	poles. $\Delta dipM$ cells (strain CJW3137) growing in M2G liquid medium were spotted on
55	an agarose-padded microscope slide containing M2G medium and were imaged at room
56	temperature by time-lapse phase-contrast microscopy. Time is in min.
57	
58	Movie S4. A $\Delta dipM$ mutation affects FtsZ dynamics. $\Delta dipM$ cells (strain CJW3430)
59	were grown in the presence of $250\mu M$ vanillic acid for 3 h to induce the synthesis of
60	FtsZ-YFP (in red) prior to time-lapse microscopy at room temperature on agarose-
61	padded slides containing M2G medium (but no vanillic acid). Arrows follow the
62	position of an unstable FtsZ ring shown here as an example. Time is in h:min:sec.
63	
64	Movie S5. Division can occur a relatively long time after the FtsZ ring has disappeared
65	in $\Delta dipM$ cells. $\Delta dipM$ cells (strain CJW3430) were grown in the presence of 250µM
66	vanillic acid for 3 h to induce the synthesis of FtsZ-YFP (in red) prior to time-lapse
67	microscopy at room temperature on agarose-padded slides containing M2G medium
68	(but no vanillic acid). The arrowheads show sites where cell division occurs well after
69	the FtsZ ring has finished constricting and has disassembled. Time is in h:min:sec.
70	
71	Movie S6. DipM-mCherry changes its localization during the cell cycle. A
72	synchronized population of cells producing DipM-mCherry (in red) from the native
73	chromosomal <i>dipM</i> locus (strain CJW3124) were spotted on an agarose-padded slide

- containing M2G medium where they resumed growth at room temperature. The time-
- ⁷⁵ lapse microscopy sequence of phase contrast and fluorescent images is shown as an
- overlay. The arrowhead in the first time point indicates the old pole where a stalk forms
- at later time points. Time is in min.
- 78

79 Plasmid construction

- 80 **pNPTS** Δ **dip***M***::** Ω : The flanking regions of *dipM* were amplified using CB15N
- 81 chromosomal DNA as template and the primer pairs
- 82 CAACTAGTCCATGCCCAAGCCGCAGCTTC with
- 83 CAAAGCTTTGGTGCTGCCGCGCTGATCAG and
- 84 CAGAATTCATGAGCGGAGGGACGACGAAG with
- 85 CAAAGCTTGCGTCCACAACTGCCTCATAG. The PCR fragments were digested
- 86 with HindIII and SpeI and with EcoRI and HindIII, respectively. The two PCRs were
- triple ligated into pNPTS134 digested with EcoRI and SpeI. The resulting plasmid was
- purified, digested with HindIII and used as recipient of the Ω -Spc (Alexeyev *et al.*,
- 89 1995).
- 90
- 91 **pXMCS2ftsA:** A PCR fragment of the 3'-end of the *ftsA* gene was obtained with
- 92 primers CACATATGTCGCGAATGGAGGATCGGAAACAG and
- 93 CAGCTAGCCGAACATGGCGCGGGGGATCAC and using CB15N chromosomal
- 94 DNA as template. The PCR product was digested with NheI and NdeI and cloned into
- 95 pXMCS2 digested with the same restriction enzymes.
- 96
- 97 **pdipMCHY:** A PCR of the 5'-end of *dipM* was obtained with primers
- 98 CAGAATTCAGCGCCGCCGCAGCGTCGACG and

- 99 CAACCGGTGGCGGGGGCAGCACCAGCGCCGGATC, digested with EcoRI and
- 100 AgeI, and cloned into pCHYC-4.
- 101
- 102 $pVdipM_{\Delta 501-609}CHY$: The PCR product obtained with primers
- 103 CACATATGATGAGGCAGTTGTGGACGCAAG and
- 104 CAGAATTCTCGCCCGTGCCCTTCACGCCAAAG was digested with EcoRI and
- 105 NdeI, and cloned into pVCHYC-4.
- 106
- 107 **pVdipM** $_{\Delta 297-609}$ **CHY:** The PCR product obtained with primers
- 108 CACATATGATGAGGCAGTTGTGGACGCAAG and
- 109 CAGAATTCTCGACCTGACGCGGCCCCGCCAC was digested with EcoRI and
- 110 NdeI, and cloned into pVCHYC-4.
- 111
- 112 **pVspCHYdipM** $_{\Delta 1-30}$: The PCR product obtained with primers
- 113 CAGAATTCCATCCTGATCAGCGCGGCAGC and
- 114 CAGGTACCCGCTTCACGCCGAACTTCCCG was digested with EcoRI and KpnI,
- and cloned into plasmid pVsigpepCHYNMCS-4.
- 116
- 117 **pVspCHYdipM** $_{\Delta 1-236}$: The PCR product obtained with primers
- 118 CAGAATTCCATCCTGATCAGCGCGGCAGC and
- 119 CAGGTACCACGATGGTCGCCGAGGCCGAG was digested with EcoRI and KpnI,
- 120 and cloned into plasmid pVsigpepCHYNMCS-4.
- 121 **pTOPOdipM:** The PCR product obtained with primers
- 122 GCGGATCCAGGAGGAATTAACCATGGGGCAGTTGTGGACGCAAGCGGCGGT

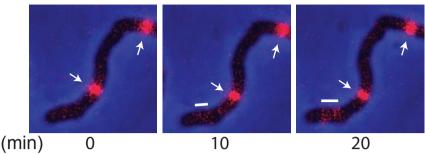
- 123 G and GGAGCGGGGCAGCACCAGCGCCGGATC was cloned in plasmid pCR2.1-
- 124 TOPO following the manufacturer instructions.
- 125
- 126 **pRVdipMCHY**: Plasmid pTOPO*dipM* was used as a template to obtain a PCR with
- 127 primers CAGAATTCTCGCGGGGGCAGCACCAGCGCCGGATC and
- 128 CACATATGATGAGGCAGTTGTGGACGCAAG that was digested with NdeI and
- 129 EcoRI, and then was cloned into pRVCHYCMCS-5.
- 130
- 131 **pRVdipM**_{**\Delta 54-419**}**CHY:** Plasmid pTOPOdipM was used as template for an inverse PCR
- 132 reaction (Ochman *et al.*, 1988) with primers
- 133 AGGTACCCTGGGCCTGGATCGTCTCACC and
- 134 CAGGTACCGCCAACACCTATGCCCGCGTG. The PCR product was digested with
- 135 KpnI and re-ligated. The resulting plasmid was used as a template in a PCR reaction
- 136 with primers CAGAATTCTCGCGGGGGCAGCACCAGCGCCGGATC and
- 137 CACATATGATGAGGCAGTTGTGGACGCAAG. The PCR product was digested
- 138 with NdeI and EcoRI and cloned into pRVCHYCMCS-5.
- 139
- 140 **pVLysM1ACHY:** Plasmid pVdip $M_{\Delta 296-609}$ CHY was used as template in an inverse
- 141 PCR reaction with primers CAGGTACCACGACCGCCAAGGCCTATGTC and
- 142 CAGGTACCGGGCTTGCCCGCGACTTCGAC. The product was digested with KpnI,
- 143 ligated and electroporated. The sequence of the resultant plasmid was verified.

- 145 **pVLysM1BCHY:** Plasmid pVdip $M_{\Delta 296-609}$ CHY was used as template in an inverse
- 146 PCR reaction with primers CAGGTACCGACATAGGCCTTGGCGGTCGTC and

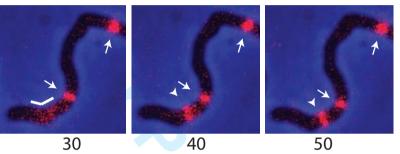
147	CAGGTACCCCGATCAAGACCACCCAGGTG. The product was digested with KpnI,
148	ligated and electroporated. The sequence of the resultant plasmid was verified.
149	
150	Strain construction
151	CJW2959: Plasmid pVspCHYNMCS-4 was electroporated into CB15N and insertion
152	into the chromosome was selected by plating cells on PYE plates containing gentamycin
153	(Gm).
154	
155	CJW3116: Plasmid pVspCHYdipM was electroporated into CB15N and insertion into
156	the chromosome was selected by plating cells on PYE plates containing Gm.
157	
158	CJW3117: Plasmid pVspCHYdip $M\Delta_{1-236}$ was electroporated into CB15N and insertion
159	into the chromosome was selected by plating cells on PYE plates containing Gm.
160	
161	CJW3118: Plasmid pVspCHYdipM Δ_{1-412} was electroporated into CB15N.
162	
163	CJW3121: Plasmid pVdip $M_{\Delta 297-609}$ CHY was electroporated into CB15N and insertion
164	into the chromosome was selected by plating cells in PYE plates containing Gm.
165	Insertion at the vanA locus was identified by a wild type phenotype of the colonies
166	when grown in M2G liquid medium in the absence of 250mM vanillic acid. The site of
167	insertion was verified by PCR.
168	
169	CJW3122: Plasmid pVdip $M_{\Delta 501-609}$ CHY was electroporated into CB15N and insertion
170	into the chromosome was selected by plating cells on PYE plates containing Gm.
171	Insertion at the <i>dipM</i> locus was identified through by a $\Delta dipM$ phenotype of the colonies

172	when grown in M2G liquid medium in the absence of 250mM vanillic acid. The site of
173	insertion was verified by PCR.
174	
175	CJW3124: Plasmid pdipMCHY was electroporated into CB15N.
176	
177	CJW3137: Plasmid pNPTS Δ dipM:: Ω was electroporated into CB15N. Colonies in
178	which the plasmid integrated into the chromosome were selected by plating cells on
179	PYE plates containing spectomycin (Spc) and kanamycin (Kan). Second crossover
180	events were selected through negative selection of the <i>sacB</i> gene (RiedandCollmer,
181	1987) by plating cells on PYE plates containing 3% sucrose and Spc. Deletion of <i>dipM</i>
182	was verified by PCR.
183	
184	CJW3187: Plasmid pXMCS2ftsA was electroporated into CB15N cells and the
185	transformants were grown in PYE plates containing 0.3% xylose and kanamycin.
186	
187	CJW3430: Plasmid pNPTS Δ dipM:: Ω was electroporated into MT196. Colonies in
188	which the plasmid integrated into the chromosome were selected by plating cells on
189	PYE plates containing spectomycin (Spc) and kanamycin (Kan). Second crossover
190	events were selected through negative selection of the sacB gene (RiedandCollmer,
191	1987) by plating cells on PYE plates containing 3% sucrose and Spc. Deletion of <i>dipM</i>
192	was verified by PCR.
193	
194	CJW3436: Plasmid pdipMCHY was electroporated into MT196.

Molecular Microbiology

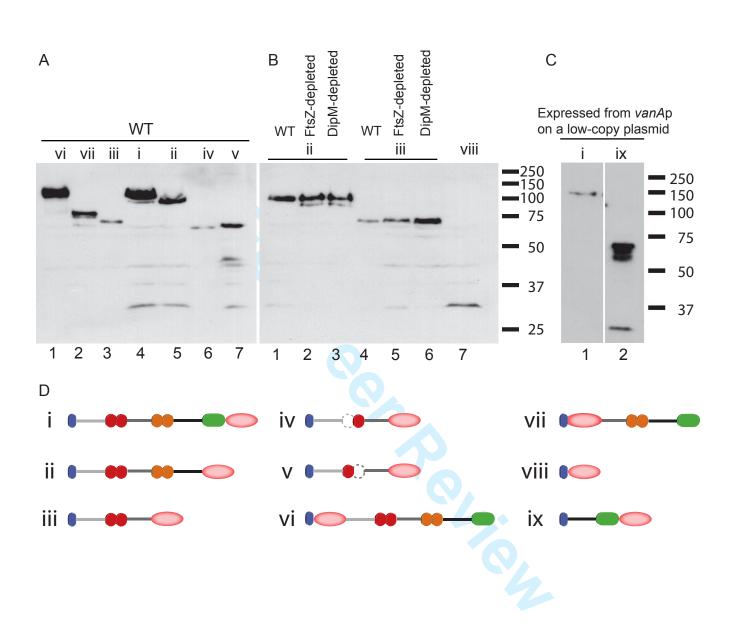

196	CJW3437: The <i>dipM</i> ::pdipMCHY allele was transduced into strain CJW1715 with a
197	Φ CR30 phage lysate obtained from strain CJW3124. Transductants were on PYE plates
198	containing Gm.
199	
200	CJW3438: The <i>dipM</i> ::pdipMCHY allele was transduced into strain YB1585 with a
201	Φ CR30 phage lysate obtained from strain CJW3124. Transductants were selected on
202	PYE plates containing Gm.
203	
204	CJW3439: Plasmid pVdipM $\Delta_{501-609}$ CHY was electroporated into CB15N, insertion into
205	the chromosme was selected by plating cells on PYE plates containing Gm. Insertion at
206	the vanA locus was identified by a wild type phenotype of the colonies when grown in
207	M2G liquid medium in the absence of 250mM vanillic acid. The site of insertion was
208	verified by PCR.
209	
210	CJW3440: Plasmid pRVdipMCHY was electroporated into CJW3137 and
211	transformants were selected by repetitive subculture in liquid M2G media containing
212	oxytetracyclin (OTc).
213	
214	CJW3444: Plasmid pRVdip $M_{\Delta 50-412}$ CHY was electroporated into CJW3137 and
215	transformants were selected by repetitive subculture in liquid M2G media containing
216	OTc.
217	
218	CJW3445: Plasmid pVdip $M_{\Delta 296-609}$ CHY was electroporated into CB15N. Integrants
219	were selected on PYE plates containing Gm. Insertion at the <i>dipM</i> locus was identified

220	by a $\Delta dipM$ phenotype of the colonies when grown in M2G liquid medium in the
221	absence of 250mM vanillic acid. The site of insertion was verified by PCR.
222	
223	CJW3446: The <i>ftsZ</i> :pBJM allele was transduced into strain CJW3122 with a Φ CR30
224	phage lysate obtained from strain YB1585. Transductants were selected on PYE plates
225	containing Kan and 0.3% xylose.
226	
227	CJW3447: The <i>ftsA</i> ::pXMCS2ftsA allele was transduced into strain MT196 with a
228	Φ CR30 phage lysate obtained from strain CJW3187. Transductants were selected on
229	PYE plates containing Kan and 0.3% xylose. The resultant strain was transformed with
230	plasmid pCHYCdipM and integrants were selected by on PYE plates containing Gm.
231	
232	CJW3448: Strain CJW3455 was transformed with plasmid pNPTS Δ dipM:: Ω .
233	Integrants were selected on PYE plates containing Spc and Kan. Second crossover
234	events were selected on PYE plates containing 3% sucrose and Spc. Deletion of <i>dipM</i>
235	was verified by PCR.
236	
237	CJW3449: Plasmid pXGFPMCS2 (Thanbichler et al., 2007) was electroporated into
238	CJW3137.
239	
240	CJW3526: Plasmid pVLysM1ACHY was electroporated into CB15N. Integration of
241	the plasmid was selected by plating in Gm-containing PYE plates. The site of insertion
242	was verified by PCR.


243	CJW3528: Plasmid pVLysM1BCHY was electroporated into CB15N. Integration of
244	the plasmid was selected by plating in Gm containing PYE plates. The site of insertion
245	was verified by PCR.
246	
247	CJW3530: The <i>ftsZ</i> :pBJM allele was transduced into strain CJW3121 with a Φ CR30
248	phage lysate obtained from strain YB1585. Transductants were selected on PYE plates
249	containing Kan and 0.3% xylose.
250	
251	CJW3550: Single vanA::pVsigpepCHYN-4 allele from strain CJW2959 was transduced
252	into YB1585.
253	
254	CJW3551: The vanA::pVsigpepCHYN-4 allele from strain CJW2959 was transduced
255	into CB15N/pNPTS Δ dipM:: Ω using a Φ CR30 phage lysate obtained from strain
256	CJW2959. Transductants were selected on PYE plates containing Gm. Second
257	crossover events were selected through negative selection of the sacB gene by plating
258	cells on PYE plates containing 3% sucrose and Spc. Deletion of <i>dipM</i> was verified by
259	PCR.
260	
261	CJW3591: Plasmid pdipMCHY was electroporated into PC8848 and insertion into the
262	chromosome was selected on PYE plate containing Gm.
263	
264	References
265	Alexeyev, M.F., Shokolenko, I.N.and Croughan, T.P., (1995) Improved antibiotic-
266	resistance gene cassettes and omega elements for Escherichia coli vector
267	construction and in vitro deletion/insertion mutagenesis. Gene 160: 63-67.

- 268 Ochman, H., Gerber, A.S.and Hartl, D.L., (1988) Genetic applications of an inverse
- 269 polymerase chain reaction. Genetics 120: 621-623.
- 270 Ried, J.L.and Collmer, A., (1987) An nptI-sacB-sacR cartridge for constructing
- 271 directed, unmarked mutations in gram-negative bacteria by marker exchange-
- 272 eviction mutagenesis. Gene 57: 239-246.
- 273 Thanbichler, M., Iniesta, A.A.and Shapiro, L., (2007) A comprehensive set of plasmids
- se-in. 35: e137. 274 for vanillate- and xylose-inducible gene expression in Caulobacter crescentus.
- 275 Nucleic Acids Res 35: e137.
- 276
- 277

FtsZ-YFP/Phase Overlay



Time (min)

50

Fig. S1

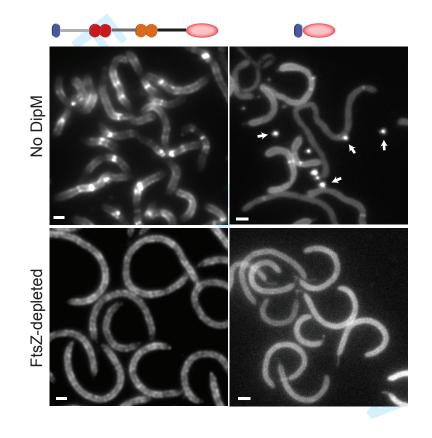


Fig. S3