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Web Appendix

Asymptotic Equivalence of Z,.(z1, x2|b) and Zzoc($1, T9|b), given the observed

data, for the Cumulative Weighted Geographic Residual

We will begin by first showing the asymptotic distribution of Zj,.(x1, z2|b) assuming the

model for the data is,
Y; = X;8+¢; where ¢ ind (0,02 /w;).

Consider the following one-term Taylor series expansion of Zj,.(z1, z2|b) at 3,
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where ¢; = Y, — X, 3.

First, we will prove Zj,.(x1, z2|b) is tight and then establish its asymptotic distribution.
Throughout this proof we assume that X;, r;, and s; are bounded. Start with the first part
of Zipe(1,x2|b), that is, let Py;(x1,22]b) = Wi(xq, za|ri, s;,b)e;. Note that Ppj(xq,x2|b) is

two monotone functions element-wise in (x1,z3), because Py;(x1, za|r;, si,0) = f(x1]s:,0) *



g(xa|r;,b) and f(xy]s;,b) = I(x1 < b < x1+b) and g(x2|r;,b) = (2 < b < x5 + b)é;w; are
monotone functions on z; and x, respectively. Therefore, the processes {Py;(x1, x2|b);i =
1,...,n} are "manageable” (Pollard, 1990 and Billias et al., 1997). It then follows from
the functional central limit theorem, that \/iﬁ @:2761 Py;(z1, x2]b) goes to a zero-mean Gaussian
distribution as n — oo, since E(e;) = 0, and is tight.

For the second part we start by defining the asymptotic distribution of \/ﬁ(B —-0). It

has been shown that, for the general exponential family, as long as the conditional mean of

Y:, E(Y;;X;), is correctly linked to X; through a link function g(-) with
HEY: X))} =XiB,

that,

A
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where

A@) = Jin | 1),
B(8) = plim,_o [+ 321 Uis(B)UL(B)] (Liang and Zeger, 1986) and plim denotes the limit
in probability (if it exists).
Since \/E(B — ) converges in distribution to a zero-mean Gaussian distribution and
1/n Y " Wiz, 22|ri, 84, b)X; is bounded, then the second term of (1) is also tight, proving
Zioc(1, 22|b) is tight.

Further, since \/n(3—0) is asymptotically equivalent to, A‘l(ﬁ)\/iﬁU/g (8), then Zjpe (1, 22|b)

is asymptotically equivalent to,
n
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For fixed (z1,x2), Zloc(xl, To|b) is a sum of n independent and identically distributed zero-

mean random vectors. By the multivariate central limit theorem, the finite-dimensional
distributions of Zloc(xl, x2|b) are asymptotically zero-mean gaussian, implying the same for

Zioc(1, x2|b). This fact, together with the tightness of Zj,.(x1, 22]b), implies that Zj,.(x1, 22|b)

converges weakly to a zero-mean Gaussian process with covariance function E(Vq (214, T24|0) V1 (215, T2p|b))
at ((14, T24|b), (T1p, T2p|b)) as n — oc.

Next we will establish the weak distribution of Zj,.(1, 22|b) which is defined as

ZAloc(lEl,ZE2|b) = % Z |:I/Vi(l’1, l'2|b)éz + l/(l’l, IL‘2|b)I_1(B)UZ (B)] Gi, (2)
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I(B) = —0Us/0B and G; (i = 1,...,n) are independent mean 0 and variance 1 random vari-
ables that are also independent of (Y;, X;, s;, ;). Conditional on the data {(Y;, X;, 7, 8;),1 =
1,...,n}, the only random components in Zloc(ail,x2|b) are (Gi,...,G,). Thus, it fol-
lows from the multivariate central limit theorem that, conditional on the data, the finite-
dimensional distributions of Zzoc($1, xo|b) are asymptotically zero-mean normal. Since Zloc($1, To|b)
consists of monotone functions, Py;(x1, z2|b) = [Wi(x1, 22|b)é; + v(x1, 22|0) I (8)Uss(B)], in
(21, &2), which are manageable, the functional central limit theorem implies that Ze (a1, 22|b)

is tight. Define
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The conditional covariance function of Zloc(xl, To|b) at (14, 24|0), (z1p, T25|D)) s,



1 = - .
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which converges to E (V1 (214, Toq|b)V1(x1p, Top|b)), the deterministic limiting covariance func-
tion of Zjpe(x1, x2|b), as n — oo by the law of large numbers, given \ifi(xla, Taq|b) are iid and

existence of [%I(B)] . Therefore, Zj,.(z1,x2|b) and Zloc(xl,xg\b) converge to the same

limiting zero-mean Gaussian process.
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Web Figure 2. Assessing spatial clustering of female BMI cluster in King County WA. Apply the
unweighted spatial scan assuming a normal model and no covariate adjustment using SaTScan”™
software (www.satscan.org)



Web Table 1
Type I error calculations of the Weighted Cumulative Geographic Residual Test for different
number of regions and weights.

v o Typel error
1 1 0.060
1 ) 0.052
1 10 0.043
1 20 0.052
1 30 0.060
10 1 0.049
10 5 0.049

10 10 0.050
10 20 0.048
10 30 0.052
20 1 0.069
20 5 0.054
20 10 0.044
20 20 0.051
20 30 0.046
30 1 0.052
30 5 0.041
30 10 0.063
30 20 0.053
30 30 0.065

Model Framework: Y; ~ N(0,1) with weight w; ~ v 4 o %« Uniform(0,1) and i =1,...,N
1000

Type I error=1555 >, I(P — val; < 0.05)
j=1




Web Table 2
Type I error calculations of the Weighted Cumulative Geographic Residual Test when
weights are variable.

N  weight Type I error N weight Type I error
25 1 0.029 100 1 0.040
25 20 0.016 100 20 0.055
25 40 0.034 100 40 0.042
25 60 0.020 100 60 0.029
25 80 0.037 100 80 0.042
36 1 0.035 121 1 0.040
36 20 0.038 121 20 0.050
36 40 0.033 121 40 0.049
36 60 0.032 121 60 0.044
36 80 0.034 121 80 0.050
49 1 0.043 144 1 0.045
49 20 0.041 144 20 0.059
49 40 0.043 144 40 0.047
49 60 0.049 144 60 0.045
49 80 0.033 144 80 0.043
64 1 0.039 169 1 0.041
64 20 0.042 169 20 0.048
64 40 0.051 169 40 0.050
64 60 0.034 169 60 0.046
64 80 0.054 169 80 0.049
81 1 0.052 225 1 0.046
81 20 0.042 225 20 0.040
81 40 0.046 225 40 0.039
81 60 0.061 225 60 0.040
81 80 0.049 225 80 0.058

Model Framework: Y; ~ N(0,1) with weight w; and i =1,..., N
1000

Type I error=1555 >, I(P — val; < 0.05)
j=1



Web Table 3

Power calculations of the Cumulative Geographic Residual Test for adjusted and unadjusted
area-level covariate analyses when spatial clustering does not exist independent of area-level
covariate and outcome relationship (c¢=0)

B Unadjusted Adjusted
Power Power
Moderate -2 0.047 0.052
Dependence -1 0.047 0.056
~v=0.5 0 0.039 0.045
1 0.066 0.060
2 0.104 0.048
3 0.126 0.035
4 0.146 0.060
Strong -2 0.058 0.052
Dependence -1 0.068 0.036
~v=1.0 0 0.053 0.049
1 0.214 0.055
2 0.330 0.043
3 0.364 0.049
4 0.373 0.037

Stage 1: Unadjusted Power is the proportion of statistically significant clusters when E(Y;|Z;) =

ByZ;

Stage 2: Adjusted Power is the proportion of statistically significant clusters when E(Y;|Z}, X;) =

BX;



