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Appendix A - Generalized Linear Mixed Models

A linear model relates an outcome random variable Y to a set of predictor random variables
X = (X1, . . . , XJ) via a linear map: Y =

∑J
j=1 βjXj . A Generalized Linear Mixed Model

(GLMM) is a generalization of linear (fixed effect) models in two ways (see [1] for a review):

• linearity is generalized by the introduction of a link function g:

E[Y ] = g−1(

J∑
j=1

βjXj)

• random effects allow to incorporate information on correlated observations, which arise
e.g. due to repeated measurements taken from the same individual in different conditions

Let ν :=
∑J

j=1 βjXj be the linear predictor. It is assumed that there is a functional relation-
ship, specified by the link function g, between this linear predictor and the expected observed
outcome, i.e. ν = g(E[Y ]). For random variables Y which have a distribution from the ex-
ponential family, g is mostly chosen such that ν = g(E[Y ]) = θ, where θ is the canonical (or
location) parameter of the distribution. In this case, the link-function is called the canonical
link-function [2]. Examples for canonical link-functions are the identity function, g(x) = x, for
normal distributions and the logit-function, g(x) := log( x

1−x), for Binomial distributions.
Usually, the link-function is fixed a priori and estimation of the model parameters is limited

to the coefficients βj and selection and/or transformations of the predictor variables Xj . Intro-
ducing a differentiation between fixed and random effects, the general form of a GLMM can be
written as follows

ν(X) := β0 +
J∑

j=1

βjXj +
K∑
k=1

γkZk, (1)

where β0 is the intercept, βj are the fixed effect coefficients for the observed Xj and γk are the
random effects for the observed Zk.

Nested Families of Generalized Linear Mixed Models

Model based comparisons can be used to study whether the influence of fixed effects on the
outcome differs between groups. First, construct a nested family of models. Starting from a
nullmodel

ν0 := β0 +

J∑
j=1

βjXj +

K∑
k=1

γkZk,

more complicated models are constructed by allowing for interaction effects between predictor
variables Xj and a grouping variable C. For example, a main-effect (or 0th-order) model can be
defined by adding group specific intercept terms βc for all groups c. Similarly, a 1st-order effect
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models can be defined by including interactions with all predictor variables Xj , i.e. by adding
terms βc,j Xi. More general, a kth-order model can be defined by including interactions with all
interaction terms of length k (βc,j1,...,jk).
To test whether the influence of predictor variables differs significantly between groups we used
likelihood-ratio tests. For two nested models, a null model M0 and an alternative model M1,
with respective log-likelihoods l0 < l1, 2(l1 − l0) was calculated as a test statistic.

In general, it is assumed that this test statistic follows χ2 distribution with degrees of freedom
equal to the difference in the number of parameters. However, in most cases, the assumption
of a χ2 distribution is only an approximation and tends to give to small p-values [2]. This
shortcoming can be addressed by applying resampling methods (e.g. parametric boostrap) to
estimate p-values or Bayesian statistics.

Appendix B - Model Based Normalization of Test Scores

Investigating whether an individual’s performance in behavioural tests deviates fundamentally
from that of a control population is one of the main aims of a quantitative diagnostic assessment.
To conduct a quantitative diagnosis one has to arrange for a matching control population, de-
rive a sufficient statistical description, and decide whether an individual’s performance deviates
significantly. A commonly used method is to select for each individual a control population
that is matched in terms of possible contributing factors (age, gender, education,... ), calculate
mean and standard deviation of the matched controls, and derive an abnormality score based
on an appropriate test statistic [3]. However, restricting the comparisons to matched controls
decreases the number of samples in the control group and often introduces a somewhat arbitrary
discretization of continuous variables (e.g. age) into intervals (e.g. age-bands). By applying re-
gression methods to model the influence of contributing factors on test performance one can
establish continuous norms [4].

We propose to use generalized linear mixed models to extend simple linear regression methods
in accounting for differences in possible contributing factors and deriving continuous norms.
The main extension is the possibility to transform outcome variables that don’t follow a normal
distribution, e.g. Bernoulli or exponential distributed random variables into residuals that are
approximately normal distributed. This transformation ensures applicability of standard test
statistics [5].

First, a nullmodel is fitted to the observed control data. This initial process of fitting or
constructing a nullmodel establishes which of the possible factors actually contributes to control
performance. Only those are included as predictor variables in the construction of a continuous
norm. Second, for each control individual i with observed outcome yi and predictors (contribut-
ing factors) xi residuals are calculated as the difference in actual performance yi and expected
performance under an individualized nullmodel ŷ−i(xi). The individualized nullmodel is ob-
tained by estimating the parameter values of the nullmodel based on all control observations
except those of individual i. Third, for each new individual j, residuals can be calculated simi-
larly, this time based on difference between observed performance yj and expected performance
under the nullmodel using all control observations ŷ(xj).

The additional step of calculating controls’ residuals based on individualized nullmodels
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reduces the risk of fitting model parameters too closely to the data, thereby modeling the
idiosyncrasies of each individuals’ performance and underestimating the variability in control
performance (cf. to a leave-one-out crossvalidation, see [6]).
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