Supporting Information

A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole.

Gail G. Hardy, Rebecca C. Allen¹, Evelyn Toh, Maria Long², Pamela J. B. Brown, Jennifer L. Cole-Tobian³, and Yves V. Brun⁴

Department of Biology, Jordan Hall 142, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405

¹Present address: Biodesign Institute, Arizona State University, Tempe, AZ 85287 E-mail: rcallen1@asu.edu

²Present address: Baxter Pharmaceutical Solutions LLC, 927 S. Curry Pike, Building A,

Bloomington, IN 47403. E-mail: mariae.hernandez@gmail.com

³Present address: Center for Global Health and Disease, Case Western Reserve University,

Cleveland, OH 44106. E-mail: jtobian@gmail.com

⁴Corresponding author. Mailing address: Yves V. Brun, Indiana University, Dept. of Biology,

1001 E. 3rd Street, Bloomington, IN 47405. Phone: 812-855-8860. Fax: 812-855-6705. E-mail:

ybrun@indiana.edu.

Supporting Experimental Procedures

Generation of deletion, overexpression and Y2H constructs. For deletion of the *hfa hfs*, and *rsaA* genes, two ~500 bp fragments were cloned into pNPTS138. For the *hfa* genes, the upstream fragment was digested with HindIII and BamHI and the downstream fragment was digested with *Bam*HI and *Eco*RI. For the *rsaA* deletion, the upstream fragment was digested with HindIII and EcoRI and the downstream fragment was digested with EcoRI and SalI. For the *hfsDAB* deletion, the upstream fragment was digested with BamHI and the downstream fragment was digested with BamHI and the downstream fragment was digested with EcoRI and the downstream fragment was digested with BamHI and XhoI and the downstream fragment was digested with BamHI and XhoI and the downstream fragment was isolated from transconjugants that were screened for the correct gene deletion by PCR and sequenced to confirm the deletion.

The *hfaA* deletion (YB4250) was created using the hfaAupF and hfaAupR primers to generate the upstream fragment and the hfaAdwnF and hfaAdwnR primers to generate the downstream fragment (Table S3). The *hfaB* deletion (YB4251) was created using the hfaBupF, hfaBupR, hfaBdwnF2, and hfaBdwnR primers (Table S3). The *hfaD* deletion (YB4252) was created using the hfaDupF, hfaDupR, hfaDdwnF, and hfaDdwnR primers (Table S3). The *hfaA*, *hfaD* double deletion was created by conjugating the *hfaD* deletion plasmid into the *hfaA* (YB4250) deletion mutant and subsequent selection for sucrose resistance. The *hfsDAB* deletion (YB991) was created using primers HfsBBamup, HfsBXhoup, HfsBXhoe, HfsBHine2 (Table S3). The *rsaA* deletion was generated using primers FHindIIIrsaA, RecoRIrsaA, FmEcoRIrsaA, RsaIIrsaA (Table S3).

The *hfa* gene deletions were complemented with pMR20 plasmids containing the respective *hfa* gene cloned downstream of a 200 bp DNA fragment that contains the *hfa* promoter. The HfaPrf and HfaPrR primers (Table S3) were used to amplify the *hfa* promoter and

the following primer pairs were used to amplify the *hfaB* and *hfaD*: HfaBNde, HfaBendPst, HfaDNde, and HfaDendPst (Table S3). The *hfa* promoter was digested with BcII and NdeI, and *hfaB* and *hfaD* were digested with NdeI and *PstI*. The *hfa* promoter and either *hfaB* or *hfaD* DNA fragments were ligated into pMR20 digested with BgII and PstI. *hfaA* and the *hfa* promoter were amplified together using primers HfaPrf and HfaAendPst (Table S3) and digested with BcII and PstI and ligated into pMR20. The *hfa* promoter, *hfaA* and *hfaD* were amplified together using primers HfaPrF and HfaDendPst using chromosomal DNA from the *hfaB* deletion (YB4251) as a template. The *hfaA*, *hfaD* PCR product was digested with Bc/I and PstI and ligated into pMR20. The complementation constructs were then transformed into *E. coli* DH5α and S17-1 and subsequently conjugated into *C. crescentus*.

Overexpression constructs of HfaA, HfaB and HfaD were generated by isolating PCR fragments that contained each *hfa* gene, digesting with EcoRI and HindIII, cloning each *hfa* gene into pUJ142 (Meisenzahl *et al.*, 1997) to put control of gene expression under a xylose inducible promoter and add a C-terminal M2 epitope tag (DYKDDDK). The overexpression plasmids were cloned into *E. coli* DH5 α and S17-1 and subsequently mated into *C. crescentus* CB15, CB15 $\Delta hfaA$ (YB4250), CB15 $\Delta hfaB$ (YB4251) or CB15 $\Delta hfaD$ (YB4252). *hfaA* was isolated as an ~500bp PCR fragment from YB2578 DNA using hfaAEcoATG and pJMM2TagR primers (Table S3). A ~1200 bp DNA fragment containing *hfaB* was generated using primers hfaBEcoATG and pJMM2TagR (Table S3) from YB2580 DNA. A ~1300 bp DNA fragment containing *hfaD* was isolated using primers hfaDEcoATG and pJMM2TagR (Table S3) from YB2579 DNA.

hfaA fused to the M2 epitope tag (YB2578) was generated by cloning a PCR fragment using primers HfaA215PstI and HfaAend2 (Table S3) that encompassed the *hfaA* gene and the *hfa* promoter. The 698 bp fragment was digested with PstI and BamHI and cloned into pJM23, transformed into *E. coli* DH5 α and S17-1 containing the helper plasmid pLVC9 and then mated into *Caulobacter*. pJM23 does not replicate in *Caulobacter* resulting in the integration of any constructs into the chromosome by homologous recombination. *hfaA* is merodiploid in this strain.

The HfaBmcherry construct was generated by cloning a PCR fragment containing the *hfa* promoter, *hfaA* and *hfaB* using primer HfaPrNdeF and HfaBKpnend. The 2-kb PCR fragment was digested with NdeI and KpnI and cloned into pCHYC-1 (Thanbichler *et al.*, 2007). The HfaBmcherry construct in the *hfaA* mutant was generated by amplifying a PCR fragment from CB15 Δ *hfaA* containing the *hfa* promoter and *hfaB* using the primers HfaPrNdeF and HfaBKpnend. A 1.5-kb PCR product was digested with NdeI and KpnI and cloned into pCHYC-1. Both plasmids were transformed into *E. coli* Alpha-select (Bioline USA, Taunton, MA and then *E. coli* SM10. The plasmids were then conjugated into *C. crescentus*. pCHYC-1 is a non-replicating plasmid and integrates into the chromosome. *hfaB* is a merodiploid in these strains.

Yeast two-hybrid (Y2H) analysis was performed using the Matchmaker GAL4 Yeast Two-Hybrid System 3 (Clontech, protocol #PT3247-1). Clones of *hfaA*, *hfaB* and *hfaD* were constructed without signal sequences. Each of the *hfa* genes were amplified using primers hfaAEcoF6970, hfaABamR7358, HfaAendPst2, hfaBEcoF7385, hfaBBamR8372, hfaBPstR8372, hfaDEcoF8327, hfaDBamR9536, and hfaDPstR9536 (Table S3); digested, and ligated into the bait (pGBKT7) and prey (pGADT7) vectors, using EcoRI, PstI and BamHI restriction sites. Ligation reactions were transformed into *E. coli* DH5α and constructs were confirmed by sequencing. Plasmids were purified from six *hfa* transformants, along with the positive (pGBKT7-p53, pGADT7-T) and negative (pGBKT7-Lam) Y2H control plasmids. Bait-

4

and-prey plasmid pairs of the desired combinations were co-transformed into yeast reporter

strain AH109 using the PEG/LiAc method (Clontech protocol # 3204-1) (Gietz & Schiestl,

2007). Co-transformants were plated on -Leu/-Trp SD agar to select for the presence of the bait

and prey vectors. The presence of both bait and prey vectors in the co-transformants was

confirmed by yeast colony PCR (Walhout & Vidal, 2001) and sequencing.

Supporting Information References

- Alley, M. R. K., J. R. Maddock & L. Shapiro, (1993) Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis. *Science* **259**: 1754-1757.
- Bartel, P., C. T. Chien, R. Sternglanz & S. Fields, (1993) Elimination of false positives that arise in using the two-hybird system. *BioTechniques* 14: 920-924.
- Cole, J., G. G. Hardy, D. Bodenmiller, E. Toh, A. Hinz & Y. V. Brun, (2003) The HfaB and HfaD adhesion proteins of *Caulobacter crescentus* are localized in the stalk. *Mol Microbiol* 49: 1671-1683.
- Evinger, M. & N. Agabian, (1977) Envelope-associated nucleoid from *Caulobacter crescentus* stalked and swarmer cells. *J Bacteriol* **132**: 294-301.
- Gietz, R. D. & R. H. Schiestl, (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. *Nature Protocols* **2**: 35-37.
- Gober, J. W. & L. Shapiro, (1992) A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. *Mol Biol Cell* **3**: 913-926.
- Hinz, A. J., D. E. Larson, C. S. Smith & Y. V. Brun, (2003) The *Caulobacter crescentus* polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. *Mol Microbiol* 47: 929-941.
- Iwabuchi, K., B. Li, P. Bartel & S. Fields, (1993) Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. *Oncogene* **8**: 1693-1696.
- James, P., J. Halladay & E. A. Craig, (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. *Genetics* 144: 1425-1436.
- Li, B. & S. Fields, (1993) Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. *FASEB J* **7**: 957-963.
- Liss, L. R., (1987) New M13 host: DH5aF' competent cells. Focus 9: 3, 13.
- Meisenzahl, A. C., L. Shapiro & U. Jenal, (1997) Isolation and characterization of a xylosedependent promoter from *Caulobacter crescentus*. *J Bacteriol* **179**: 592-600.
- Poindexter, J. S., (1964) Biological properties and classification of the Caulobacter group. *Microbiol Mol Biol Revs* 28: 231-295.
- Roberts, R. C., C. D. Mohr & L. Shapiro, (1996) Developmental programs in bacteria. *Curr Top Dev Biol* **34**: 207-257.
- Simon, R., U. Prieffer & A. Puhler, (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. *Biotechnology* 1: 784-790.

- Thanbichler, M., A. A. Iniesta & L. Shapiro, (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in *Caulobacter crescentus*. *Nuc Acids Res* **35**: e137.
- Walhout, A. J. M. & M. Vidal, (2001) High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. *Methods* 24: 297-306.
- Ye, Q. & H. J. Worman, (1995) Protein-protein interactions between human nuclear lamins expressed in yeast. *Exp Cell Res* **219**: 292-298.

Supporting Figure Legends

Figure S1. Coverslip, short-term adherence and biofilm assays of a $\Delta hfaC$ mutant. A) Coverslip assay of *hfaC* mutant. Panels A, C and E are phase microscopy of bound cells. Panels B, D and F are fluorescence microscopy of holdfast bound with WGA-FITC. Panels A and B are CB15; C and D are NA1000 and E and F are CB15 $\Delta hfaC$. B) Short-term binding and biofilm assay. Graph of relative short-term and biofilm formation. White bars represent the short-term binding data (45 min) and black bars represent the biofilm assay (24 h time point). Coverslips below the graph are from a representative assay at the 24 h time point stained with crystal violet.

Figure S2. Cover-slip binding assay and lectin labeling showing holdfast shedding in *hfa* deletions complemented with M2-tagged constructs. Panels A, C, E, G, I, K, M and O are phase contrast images of cells. Panels B, D, F, H, J, L, N and P are fluorescence images of holdfast stained with WGA-lectin. All images are representative areas of the glass cover-slip that were submerged in a culture of each strain, washed, stained, and imaged. (A, B) CB15/pUJ142 (positive control); (C, D) NA1000 /pUJ142 (negative control); (E, F) CB15 $\Delta hfaA$ /pUJ142; (G, H) CB15 $\Delta hfaA$ /pUJ142; (I, J) CB15 $\Delta hfaB$ /pUJ142; (K, L) CB15 $\Delta hfaB$ /pUJhfaBM2; (M, N) CB15 $\Delta hfaD$ /pUJ142; (O, P) CB15 $\Delta hfaD$ /pUJhfaDM2.

Movie S1. Timelapse movie of HfaBmCherry localization during the *C. crescentus* cell cycle. HfaBmCherry was visualized in cells placed on an M2G agarose pad at 30°C using epifluorescence microscopy and DIC imaging. This time series is in 10 min intervals for a total of 6h and 50 min. Here we see a predivisional cell just before division, which gives rise to a new swarmer cell. The new swarmer is then followed through the cell cycle back to a predivisional cell just before cell division. HfaBmCherry localization can be seen at both the tip of the stalk and the swarmer pole in the predivisional cell. After cell division, HfaB is maintained at the swarmer pole during the swarmer to stalked transition. HfaB is then pushed out at the tip of the stalk as it is elongated in the stalked cells and early predivisional cells. Finally, HfaB localization can be seen again at both the new swarmer pole and the stalked pole in the late predivisional cell.

Figure S3. Western blot of HfaBmCherry in CB15, *hfsDAB*, *podJ*, and *hfaA* mutants and localization of HfaB-mCherry in an *hfaA* mutant. OM fractions were isolated from each strain and 7 μg of protein from each OM fraction were examined by Western blot. Western blots were probed with anti-dsRed antibody, which binds to mCherry. (A) Western blot Samples: CB15 *hfaB*::pCHYC-1hfaB; CB15 Δ*hfsDAB hfaB*::pCHYC-1hfaB; CB15 Δ*hfsDAB hfaB*::pCHYC-1hfaB; CB15 Δ*hfaA hfaB*::pCHYC-1hfaB.
(B) Western blot Samples: CB15 *hfaB*::pCHYC-1hfaB; CB15 Δ*hfaA hfaB*::pCHYC-1hfaB. (C) Localization of HfaB-mCherry in CB15 and an *hfaA* mutant.

Figure S4. Immunofluorescence localization of HfaA-M2 and HfaD-M2 in CB15 $\Delta hfsDAB$ and CB15 $\Delta podJ$. Panel A, CB15 HfaA-M2; Panel B, CB15 HfaD-M2; Panel C, CB15 $\Delta hfsDAB$ HfaA-M2; Panel D, CB15 $\Delta hfsDAB$ HfaD-M2; Panel E, CB15 $\Delta podJ$ HfaA-M2 and Panel F, CB15 $\Delta podJ$ HfaDM2.

Figure S5. Western blot of Hfa proteins in *hfsDAB* and *podJ* mutants. For each strain, OMP were isolated and 10 µg were examined by Western Blot with anti-M2-HRP antibody.

Figure S6. HfaA has amino acid similarity to curlin proteins. HfaA, CsgA, and AgfA CLUSTALW alignment. High identity is shown with an asterisk (*) in the consensus. High similarity is shown with a semicolon in the consensus (:) and low similarity is shown with one dot (.) in the consensus. The aa of the signal sequences are in light grey. The conserved alanine at the signal sequence cleavage site is underlined and in black. The aa of the 22-aa secretion targeting sequence of CsgA is shown in dark grey. P28307, *E. coli* CsgA; P0A1E7, *Salmonella enteritidis* AgfA; AAC14298, *C. crescentus* CB15

Figure S7. HfaA alignment in closely related prostehcatebacteria and HfaA predicted secondary structure. (A) Clustal alignment of HfaA from *C. crescentus* strain CB15 (AAC14298), *Caulobacter sp.* strain K31 (ABZ72853), *Asticcacaulis biprosthecum* (xxxxxxx, submission of genome sequence in progress), *Asticcacaulis excentricus* (ZP04772105), *Brevundimonas diminuta* (xxxxxxx, submission of genome sequence in progress), *Maricaulis maris* (ABI65376), and *Oceanicaulis alexandrii* (ZP00958005). High identity is shown with an asterisk (*) in the consensus. High similarity is shown with a semicolon in the consensus (:) and low similarity is shown with one dot (.) in the consensus. The predicted signal sequence cleavage site is indicated with an arrow. Predicted AGGRESCAN and TANGO aggregation domains for HfaA are indicated by gray and black lines, respectively, above the sequence.

Figure S8. Secondary structure prediction of HfaA. PSI-pred was used to predict the secondary structure of HfaA. The predicted aggregation/amyloid domains are indicated above the structure region with a black line for TANGO and a gray line for AGGRESCAN. Arrows indicate extended strand structure and cylinders indicate alpha-helical structure.

Figure S9. Transcription of *hfa* promoter in *hfa*, *hfsDAB* and *podJ* mutants. Transcription was measured using β -galactosidase assays of *hfa* promoter transcriptional fusions. A) Transcription of the *hfa* promoter in each of the *hfa* deletions. B) Transcription of the *hfa* promoter in the *hfsDAB* and *podJ* mutants.

Figure S10. Secondary structure prediction of CsgG. PSI-pred was used to predict the secondary structure of CsgG. Arrows indicate extended strand structure and cylinders indicate alpha-helical structure.

Figure S11. Secondary structure prediction of HfaB. PSI-pred was used to predict the secondary structure of CsgB. Arrows indicate extended strand structure and cylinders indicate alpha-helical structure.

TABLE S1.	Complementation	of hfa mutants	by hfa-M2	gene fusions.
	1	<i>J</i>	5 5	0

Strain	Lectin Binding ^a (mean±SE)	Cell adherence ^b (mean±SE)
CB15/pUJ142	41.0±4.7	99.9±0.005
NA1000/pUJ142	0.2±0.2	9.6±1.9
CB15 <i>ΔhfaA</i> /pUJ142	23.6±6.4	77.5±5.7
СВ15 <i>ДһfaB</i> /pUJ142	2.4±0.3	41.6±1.2
CB15 <i>ΔhfaD</i> /pUJ142	46.9±14.8	72.7±1.5
CB15 <i>ΔhfaA</i> /pUJ142hfaAM2	64.6±16.4	111.6±8.5
CB15 <i>ΔhfaB</i> /pUJ142hfaBM2	73.1±19.1	75.1±2.6
CB15 <i>ΔhfaD</i> /pUJ142hfaDM2	77.7±11.1	95.5±5.3

^a Percent of predivisional cells with polar WGA-lectin binding ^b Cell adherence to polystyrene measured by short-term binding assay

Strain	Derivation/phenotype/genotype	Reference
Caulobacter cresce	ntus	
CB15	Wildtype	(Poindexter, 1964)
NA1000	syn-1000, previously called CB15N, holdfast deficient	(Evinger & Agabian, 1977)
YB2412	CB15 mcpA::pRMC22	this study
YB2578	CB15 hfaA::pJM23hfaA	this study
YB2579	CB15 hfaD::pJM23hfaD	(Cole <i>et al.</i> , 2003)
YB2580	CB15 hfaB::pJM21hfaB	(Cole et al., 2003)
YB991	CB15 $\Delta rsaA$	this study
YB2138	CB15 $\Delta podJ$; same as YB3079	(Hinz et al., 2003)
YB2551	CB15/placPHfaA	(Cole et al., 2003)
YB2851	CB15 $\Delta hfsD$, $hfsA$, $hfsB$	this study
YB3073	CB15/plac290	(Cole et al., 2003)
YB4250	CB15 $\Delta h fa A$	this study
YB4251	CB15 $\Delta h fa B$	this study
YB4252	CB15 $\Delta h f a D$	this study
YB4258	YB4250/pMR20Phfa-hfaA	this study
YB5618	YB4250/pUJ142hfaAM2	this study
YB4259	YB4251/pMR20Phfa-hfaB	this study
YB4270	YB4251/pUJ142hfaAM2	this study
YB5619	YB4251/pUJ142hfaBM2	this study
YB4271	YB4251/pUI142hfaDM2	this study
YB4260	YB4252/pMR20Phfa-hfaD	this study
YB5620	YB4252/pUI142hfaDM2	this study
YB4227	YB991 hfaA::nIM23hfaA	this study
YB4228	YB991 hfaB::nIM21hfaB	this study
YB4229	YB991 hfaD::pIM23hfaD	this study
YB4248	YB2138 <i>hfaA</i> ::pIM23hfaA	this study
YB4249	YB2138 <i>hfaD</i> ::pIM23hfaD	this study
YB5625	YB2851 <i>hfaA</i> ::pIM23hfaA	this study
YB5626	YB2851 <i>hfaD</i> ::pIM23hfaD	this study
YB4284	CB15 <i>hfaB</i> ···pCHYChfaAB	this study
YB5616	YB2138 hfaB···pCHYChfaAB	this study
YB5617	YB2851 <i>hfaB</i> ···pCHYChfaAB	this study
YB5631	YB4250/placPHfaA	this study
YB5632	YB4251/placPHfaA	this study
YB5633	YB4252/placPHfaA	this study
YB5634	YB2138/placPHafA	this study
YB5637	YB4250 hfaB···nCHYChfaB	this study
YB5957	YB2851/placPHfaA	this study
E. coli		
DH5aF'	Φ 80 dLacZ Δ M15 Δ (lacZYA-argF)U169 endA1 recA1	(Liss, 1987)
	hsdR17 (r ^{-m+})deoR thi-1 supE44 gyrA96 relA1	
S17-1	<i>E. coli</i> 294::RP4-2 (Tc::Mu)(Km::Tn7)	(Simon et al., 1983)
SM10	thi-1 thr leu tonA supE recA::RP4-2 Tc::Mu, Km ^R	(Simon et al., 1983)
Alpha-Select	F- deoR endAl recAl relAl gyrA96 hsdR17($r_{\rm k}$, $m_{\rm k}$)	Bioline
L	supE44 thi-1 phoA Δ (lacZYA argF)U169 ϕ 80lacZ Δ M15 λ -	
Saccharomyces cer	evisiae	
AH109	MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4A.	(James et al., 1996)
	LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3, GAL2 _{UAS} -GAL2 _{TATA}	

TABLE S2. Bacterial strains

	-ADE2, URA3::MEL1 _{UAS} -MEL1 _{TATA} -lacZ	
Plasmids		
pMR20	shuttle plasmid for <i>E. coli</i> and <i>Caulobacter</i> . Tc ^R	(Roberts et al., 1996)
pLVC9	conjugation helper plasmid carrying a ColEI <i>mob</i> . Tc^{R}	(G. Warren, unpublished)
pUJ142	Derivative of pBBR1MCS, contains a xylose inducible	(U. Jenal, unpublished)
pour l <u>-</u>	promoter for expression Cm^R	(errenai, anpaenina)
nIM21 and nIM23	ColE1 ori Kan ^R oriT vectors with the M2 epitope in	(Allev et al. 1993)
p310121 and p310125	different reading frames with respect to the polylinker	(They et al., 1995)
pNPTS138	plasmid for generation of deletions using SacB Km ^R	(MRK Alley uppublished)
plac 290	lac7 transcriptional fusion vector TcR IncP-1 renlicon mob+	(Gober & Shapiro 1992)
pRCM22	full length MonA M2 on a replicating vector. To ^R	(Allevet al 1003)
preivizz	integrating plasmid for constantion of mCharry fusion. Sp ^R	(Thenhighler et al. 2007)
pCHIC-I pIM21UfaD	1.7 lth DCD product from aligas Ufa A 215 Dat and Ufa Dand	(11a101c11e1 et al., 2007)
	1.7 KU FCK product from ongos filaA215Fst and filabend	(Cole et al., 2003)
	cut with Psu and BamHI and cloned into pJM21 cut	
D (OOLIG A	with BamHI and Psti	.1
рјм23нтаА	698 bp PCR product from oligos HIAA215Pst and	this study
	HiaAend2 cut with PstI and BamHI and cloned into pJM23	
DADATE D	cut with BamHI and Psti	$\langle C, 1, \langle 1, 2002 \rangle$
pJM23HfaD	A 350-bp PCR product from oligos HfaDmid and HfaDend	(Cole et al., 2003)
	cut with EcoRI and BamHI and cloned into pJM23 cut with	
	EcoRI and BamHI.	
pMR20Phfa-hfaA	A 710 bp PCR product from oligos HhfaPrF and	(Cole et al., 2003)
	HfaAendPst cut with BclI and PstI cloned into pMR20 cut	
	with BamHI and PstI.	
pMR20Phfa-hfaB	A 253-bp PCR product from oligos HfaAPrF and HfaAPrR	this study
	cut with BclI and NdeI and a 1000-bp PCR product from	
	oligos HfaBNde and HfaBendPst cut with NdeI and PstI	
	cloned into pMR20 cut with BamHI and PstI.	
pMR20Phfa-hfaD	A 253-bp PCR product from oligos HfaAPrF and HfaAPrR	(Cole et al., 2003)
	cut with BclI and NdeI and a 1286-bp PCR product	
	from oligos HfaDNde and HfaDendPst cut with NdeI and	
	PstI cloned into pMR20 cut with BamHI and PstI.	
pUJ142hfaAM2	A 450-bp PCR product from oligos HfaAEcoATG and	this study
	pJM-M2tagR cut with EcoRI and HindIII and cloned into	
	pUJ142 cut with EcoRI and HindIII.	
pUJ142hfaBM2	A 1.2 kb PCR product from oligos HfaBEcoATG and	this study
	pJM-M2tagR cut with EcoRI and HindIII and cloned into	
	pUJ142 cut with EcoRI and HindIII.	
pUJ142hfaDM2	A 1.3 kb PCR product from oligos HfaDEcoATG and	this study
	pJM-M2tagR cut with EcoRI and HindIII and cloned into	
	pUJ142 cut with EcoRI and HindIII.	
pNPTS138∆hfaA	A 459 bp PCR product upstream of <i>hfaA</i> from oligos	this study
	FhfaupA and RhfaupA cut with HindIII and BamHI a 513	
	bp PCR product downstream of <i>hfaA</i> from oligos	
	FmhfadownA and RmhfadownA and cut with BamHI	
	and EcoRI were cloned into the HindIII and EcoRI	
	restriction sites of pNPTS138.	
pNPTS138∆hfaB	A 456 bp PCR product upstream of <i>hfaB</i> from oligos	this study
	FhfaBup and RhfaBup2 cut with HindIII and BamHI and a	-
	485 bp PCR product downstream of <i>hfaB</i> from oligos	
	FhfaBdwn2 and RmhfadownB and cut with BamHI and	
	EcoRI were cloned into the HindIII and EcoRI restriction	
	sites of pNPTS138.	
pNPTS138∆hfaD	A 485 bp PCR product upstream of <i>hfaD</i> from oligos	this study
-	FhfaDup and RhfaDup2 cut with HindIII and BamHI and a	-

	477 bp PCR product downstream of <i>hfaD</i> from oligos FmhfadownD and RmhfadownD and cut with BamHI and EcoRI were cloned into the HindIII and EcoRI restriction	
	sites of pNPTS138.	41. 4 1
pNP1S138ArsaA	A 4/1 bp PCR product upstream of <i>rsaA</i> from oligos	this study
	HindiffsaA and REcoRifsaA cut with Hindiff and EcoRi and a 520 hp DCP product downstream of read from	
	alid a 550 bp FCK product downstream of <i>isaA</i> from	
	EcoRI and Sall were cloned into the HindIII and Sall	
	restriction sites of pNPTS138	
pNPTShfsDB	A 500 bp product upstream of <i>hfsD</i> from oligos hfsDBamup	this study
	and hfsDXhoup cut with BamHI and XhoI and a 500 bp0 PCR	uns study
	product downstream of <i>hfsB</i> using primers hfsBHine2 and	
	And hfsBXhoe2 and cut with XhoI and HindIII were cloned	
	into pNPTS138 using restriction sites BamHI and HindIII.	
pCHYChfaAB	A 2 kb PCR product from oligos HfaPrNdeF and HfaBKpnend	this study
	that contains the hfa promoter, hfaA, and hfaB and cut with	-
	NdeI and KpnI and cloned into the NdeI and KpnI restriction	
	sites of pCHYC-1.	
pCHYChfaB	A 1.1 kb PCR product isolated from the CB15 $\Delta h faA$	this study
	using oligos HfaPrNdeF and HfaBKpnend that contains	
	the hfa promoter and hfaB and cut with NdeI and KpnI was	
	cloned into the NdeI and KpnI restriction sites of pCHYC-1	
pGBKT7-53	encodes fusions between the GAL4 DNA-binding domain	(Li & Fields, 1993)
	and murine p53; interacts with large T-antigen in Y2H assay	
pGADT7-T	encodes fusion between the GAL4 activation domain	(Iwabuchi <i>et al.</i> , 1993)
ODV/77 L	and SV40 large T-antigen; interacts with p53 in Y2H assay	(D 1
pGBKT ^{*/} -Lam	encodes a fusion between the GAL4 DNA-binding	(Bartel <i>et al.</i> , 1993) $(N = 0.07)$
	domain and human lamin-C and provides a control for	(Ye & Worman, 1995)
	fortuitous interaction between an unrelated protein and either	
	ne pGAD1/-1 control or other protein to be tested. Lamin-C	
	proteins	
nGBKT7_hfa∆	A 365-bp PCR product of <i>hfa</i> 4 from oligos hfa A EcoE6070	this study
podkt /-max	and hfaABamR7358 cut with EcoRI and BamHI and ligated	uns study
	into pGBKT7 cut with EcoRI and BamHI	
pGADT7-hfaA	A 365-bp PCR product of <i>hfaA</i> from oligos hfaAEcoE6970	this study
Point I mail	and hfaAendPst2 cut with EcoRI and PstI and ligated	and stady
	into pGADT7 cut with EcoRI and PstI	
pGBKT7-hfaB	A 959-bp PCR product of <i>hfaB</i> from oligos hfaBEcoF7385	this study
1	and hfaBBamR8372 cut with EcoRI and BamHI and ligated	2
	into pGBKT7	
pGADT7-hfaB	A 959-bp PCR product of <i>hfaB</i> from oligos hfaBEcoF7385	this study
	and hfaBPstR8372 cut with EcoRI and PstI and ligated	
	into pGADT7 cut with EcoRI and PstI	
pGBKT7-hfaD	A 1183-bp PCR product of <i>hfaD</i> from oligos hfaDEcoF8327	this study
	and hfaDBamR9536 cut with EcoRI and BamHI and ligated	
	into pGBKT7 cut with EcoRI and BamHI.	
pGADT7-hfaD	A 1183-bp PCR product of <i>hfaD</i> from oligos hfaDEcoF8327	this study
	and hfaDPstI9536 cut with EcoRI and PstI and ligated	
	into pGAD17 cut with EcoR1 and Pst1.	
pSP64-hfaAbait	A 500-bp PCK product of <i>hfaA</i> fused to c-myc epitope	this study
	CPKHindHIE and CPKVhalD and ant with the due of VI	
	UDKINIALI AND UDKADAIK AND CUT WITH HINDIII AND Xbal	
nSD61 hfoDhait	and figured into pSP04p01yA cut With Hindiff and Abal. A 1300 bp PCP product of $hfaD$ fund to a mya spitore.	this study
poro4-maDuan	A 1500-op FCK product of njuD fused to c-myc epitope	uns study

	amplified from pGBKT7-hfaD template using oligos	
	GBKHindIIIF and GBKXbaIR and cut with HindIII and XbaI	
	and ligated into pSP64polyA cut with HindIII and XbaI.	
pSP64-Lam	A750-bp PCR product of Lamin-C fused to c-myc epitope	this study
	amplified from pGBKT7-Lam using oligos GBKXbaF and	
	GBKXmaR and cut with XbaI and XmaI and ligated into	
	pSP64polyA cut with XbaI and XmaI.	
pSP64-hfaAprey	A 500-bp PCR product of hfaA fused to HA-epitope	this study
	amplified from pGADT7-hfaA template using oligos	
	GADHindIIIF and GADXbaIR and cut with <i>Hin</i> dIII and <i>Xba</i> I	
	and ligated into pSP64polyA cut with HindIII and XbaI.	
pSP64-hfaDprey	A 1300-bp PCR product of <i>hfaD</i> fused to HA-epitope	this study
	amplified from pGADT7-hfaD template using oligos	
	GADHindIIIF and GADXbaIR and cut with HindIII and XbaI	
	and ligated into pSP64polyA cut with HindIII and XbaI.	

TABLE S3. DNA Primers

Primer	Sequence 5' to 3' ^a	Source
HfaAPrF	CAGCAGAAGGTGCGGAATGATCACGGCCGC	CB15
HfaAPrR	CCGATGCCAGGCCATATGAGGCTCCGCGAC	CB15
HfaPrNdeF	CAGCAGAAGGTGCCATATGATCACGGCCGC	CB15
HfaAendPst	GGACCGCGCCTGCAGGCTTGACCATCATTT	CB15
HfaAEcoATG	GTCGCGGAGGAATTCATGGCCTGGCATCGG	CB15
FhfaupA	GCGATCACGAAGCTTACGAGGTAG	CB15
RhfaupA	CCCACGCGTGGATCCGTTCCGATG	CB15
FmhfadownA	CGTCGTGGAAGGATCCGTTCCGATG	CB15
RmhfadownA	GGCGTCAATGAATTCCGAGCGGAT	CB15
HfaA215Pst	GCAGCAGAAGGTCTGCAGTGATCACGGCCG	CB15
HfaAend2	TTGTGCGCTTGACCGGATCCTGGGAGTACCGCCCT	CB15
HfaBNde	GCGGTACTCCCATATGATGGTCAAGCG	CB15
HfaBendPst	CTCGGCGTCGTCCTCCAGCTAGTAGCGACC	CB15
HfaBKpnend	GGCGTCGTCGGTCGGTACCGTAGCGACC	CB15
FhfaBup	CGATGGTCGAAGCTTCCGTCACGC	CB15
RhfaBup2	GCAGGCGCTGAGGGATCCGGTGGCCAG	CB15
FhfaBdown2	GCCTTCACGCCGGGATCCAACAATCTGGGA	CB15
RmHfadownB	CACGTTGGCGAATTCCGACTGGCT	CB15
HfaBEcoATG	GGTACGAATTCATGATGGTCAAGCGCACAG	CB15
FhfaupD	GGCATCACCAAGCTTAACTACAAC	CB15
RhfaDup2	CGGGCTCGGCGTGGATCCCTGGCTAGTAGC	CB15
FmHfadownD	GCCAGCTTCGGATCCAACGCGCCC	CB15
RmHfadownD	GCGGCCTGGGAATTCTAGTCCTGA	CB15
HfaDNde	TGGGAACGACATATGCGCAGACCCGCG	CB15
HfaDendPst	TCGCAGCGCCTGCAGGGCCCGGGACTTGCAG	CB15
HfaDEcoATG	ACAACAATCTGGGAAGAATTCATGCGCAGACCC	CB15
pJM-M2tagR	CACCTAGATCCTTTAAGCTTTTACTTGTCGTCGTC	pJM23
FHindIIIrsaA	GACCTCCAGAAGCTTGGCCCAGTC	CB15
RecoRIrsaA	CGCAGTCACGAATTCGGCCGTCGT	CB15
FmEcoRIrsaA	TTCGCCACCGAATTCCTGACGCTA	CB15
RsalIrsaA	GCCGTCGAAGTCGAGACCGCC	CB15
HfsDBamup	CTGGCCACGGATCCCAACGACC	CB15
HfsDXhoup	CATCTCGACCTCGAGATCCACCAT	CB15
HfsBHine2	CATCCATAGCCAAGCTTAGGCGCCGGGA	CB15
HfsBXhoe2	CAGCCTTCCTGCTCGAGATCCTGCCGTG	CB15
GADForPCR	CGTATAACGCGTTTGGAATCACTACAGGGATG	pGADT7
GADRevPCR	CGATGCACAGTTGAAGTGAACTTGCGG	pGADT7
GBKForPCR	GGAGACTGATATGCCTCTAACATTGAGACAGC	pGBKT7
GBKRevPCR	GTAGAGGTGTGGTCAATAAGAGCGACC	pGBKT7
hfaAEcoF6970	GGCGTCGCCGAATTCCAATCGATGTCG	CB15
hfaABamR7358	CTGTGCGCTGGATCCTCATTTCGGAGT	CB15
hfaBEcoF7385	GCGGCGCTCGAATTCTGCGGCAGCACG	CB15
hfaBBamR8372	CTCGGCGTCGTCGGATCCCTAGTAGCG	CB15
hfaDEcoF8327	CGTGATGGAATTCGGGGGTCGCTACTAGCCA	CB15
hfaDBamR9536	CGTCGAGGGCCCGGATCCTCAGTTCCC	CB15
hfaAendPst2	CTGTGCGCTGCAGCATCATTTCGGAGTACC	CB15
hfaBPstR8372	CTCGGCGTCGTCCTGCAGCTAGTAGCG	CB15
htaDPstR9536	CGTCGAGGGCCCCTGCAGTCAGTTCCC	CB15
GBKHindIIIF	GGAATTIGTAATAAGCTICACTAT	pGBKT7
GBKXbalK		pGBKT7
GADHINdIIIF	GATCH HAATAAGCTICACTATAGGGCG	pGADT7
GADXbalK	GIIGAAGIGATCIAGAGGGGTIIITT	pGADT7

GBKXbaF	GTATCGCCGGAATCTAGAATACGACTC	pGBKT7
GBKXmaR	GAAATTCGCCCGGGATTAGCTTGGCT	pGBKT7

	signal sequence 22 aa region
CSGA ECOLI	MKLLKVAAIAAIVFSGSALAGVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGN 54
AGFA_SALEN	MKLLKVAAFAAIVVSGSALAGVVPQWGGGGNHNGGGNSSGPDSTLSIYQYGSAN 54
HFAA_CcCB15	MAWHRNIKTRGAMVVAATLGASGVAAAAQSMSTNSASFNAGYGRSSGQESRMVEYSTRDAN 60
	:* ** : : * * * * *
CSGA ECOLI	SALALQTDARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSATLDQWNGKNSEMT 114
AGFA SALEN	AALALQSDARKSETTITQSGYGNGADVGQGADNSTIELTQNGFRNNATIDQWNAKNSDIT 114
HFAA_CcCB15	GNRVVVDGVMLTGSDQSVFSSSRSSGSLDAYSGVGAVGGYAGSTAIGNNLT 111
_	: : **: .* : *::*
CSGA_ECOLI	VKQFGGGNGAAVDQTASNSSVNVTQVGFGNNATAHQY 151
AGFA_SALEN	VGQYGGNNAALVNQTASDSSVMVRQVGFGNNATANQY 151
HFAA_CcCB15	VITQGNNNTVIVNSSQVNSGNVTAGANVVKGGTPK 146
	* ** . *:.: :* :*.:

Signal Sequence

			10
CBIJ	77 0 1		40
Caulobacter sp.	K31	MAAYEKKLPGNDRSRTIGAAVLTLLATSLALPGLTHAUTLDSN-SASFNA	49
A. Diprostnecum			35
A. excentiicus		-MAPNATAAATAGLVVLTGAPALAQTMSTT-SSGFET	35
B. diminuta		-MAVRRKILAGGGLALAVIAAPALAQTTGSGGMASFQN	37
M. maris			42
O. alexandrii		-MTRQLKVWLCATAAAIFAASSAMAQSTAAN-PSEWNR	36
CB15		GYGRSSGOESRMVEYSTRDANGNRVVVDGVMLTGSDOSVFSSSRSSGSLD	90
Caulobacter sp.	K31	GYGRVAGSENHVVEYSTRDANGNRVIVDGVMLTGADOSVYSSSHSSGSLD	99
A. biprosthecum		GYGIGRNOMOHGVDPSTRDANGNRVLLDGSILTGSDOSVFSYSKTLGAGD	85
A. excentricus		GYGRTRGOEERAIDPSTRDANGNRVLLDGVIVTGGDOSVYSKSMTYGAGD	85
B. diminuta		GYGGAROSVTTAOTGSTRDONGNRLIVDGIIOAGASAYS-AOSGGVSO	84
M. maris		PVSLDTGFAVNOAIGFOKDAOGNRVVLSGTSOLSAGTSGGGTOSRLM	89
0. alexandrii		PYGOAYGSENOAYVGARVGGNRVVLNGIIOTGVGVSAOASALTOSATG	84
		. ***:::.* . * . : .	
CD15			126
Caulobactor co	221		1/5
A hiprosthogum	KJI		120
A. Dipioschecum			120
R. excentitus			123
M maria			13/
0 alevandrij			134
o. arexandrii		· · · · · · · · · · · · · · · · · · ·	134
CB15		-GANVVKGGTPK 147	
Caulobacter sp.	K31	-GTNVGKSGNGQ 156	
A. biprosthecum		NGSSSATAPTGTTTNDITGQVN-F 152	
A. excentricus		NGNQTATGATGTDITGNLNGF 150	
B. diminuta		-RTDLTGTLTGF 144	
M. maris		VGELPNVSGN 144	
0. alexandrii		AGATANTQSSQGEAANDR 152	
		•	

