Salicylaldimine Ruthenium Alkylidene Complexes: Metathesis Catalysts Tuned for Protic Solvents

Joseph B. Binder, Ilia A. Guzei, and Ronald T. Raines*

Page	Contents
S 1	Table of Contents
S2	Figure S1: Solid-state molecular structure of complex 7a
S3	Figure S2: Solid-state molecular structure of complex 7a
S4	Table S1: Crystal data and structure refinement of complex 7a
S5	Table S2: Atomic coordinates of complex 7a
S6	Table S3: Bond lengths and angles of complex 7a
S9	Table S4: Anisotropic displacement parameters of complex 7a
S10	Table S5: Hydrogen coordinates of complex 7a
S11	Table S6: Torsion angles of complex 7a

Figure 1S. Solid-state molecular structure of complex **7a**. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability.

Figure 2S. Solid-state molecular structure of complex 7a. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability.

Identification code	raines05	
Empirical formula	C43H45BrClN3ORu	
Formula weight	836.25	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	$P\overline{I}$	
Unit cell dimensions	a = 11.2903(8) Å	$\alpha = 107.0270(10)^{\circ}$
	b = 11.3962(8) Å	$\beta = 90.5140(10)^{\circ}$
	c = 16.3627(12) Å	$\gamma = 110.8190(10)^{\circ}$
Volume	1866.5(2) Å ³	
Ζ	2	
Density (calculated)	1.488 Mg/m^{3}	
Absorption coefficient	1.600 mm^{-1}	
F(000)	856	
Crystal size	$0.36 \times 0.31 \times 0.30$ mm	m ³
Theta range for data collection	1.31 to 26.39°	
Index ranges	$-14 \le h \le 14, -14 \le k$	$\leq 14, -20 \leq l \leq 20$
Reflections collected	27052	
Independent reflections	7597 [R(int) = 0.0252]	2]
Completeness to theta = 26.39°	99.4%	
Absorption correction	Multi-scan with SAD	ABS
Max. and min. transmission	0.6454 and 0.5966	2
Refinement method	Full-matrix least-squa	ares on F^2
Data / restraints / parameters	7597 / 0 / 459	
Goodness-of-fit on F^2	1.079	
Final <i>R</i> indices [<i>I</i> >2sigma(I)]	R1 = 0.0262, wR2 = 0	0.0662
<i>R</i> indices (all data)	R1 = 0.0335, wR2 = 0	0.0739
Largest diff. peak and hole	0.925 and -0.396 e.Å	-3

 Table S1. Crystal data and structure refinement of complex 7a.

	x	У	Z	U(eq)
$\overline{\mathbf{Ru}(1)}$	6706(1)	9153(1)	2513(1)	14(1)
Br(1)	1145(1)	2716(1)	1665(1)	26(1)
Cl(1)	6017(1)	7643(1)	3327(1)	22(1)
O(1)	7410(1)	10286(1)	1727(1)	16(1)
N(1)	5202(2)	7849(2)	1528(1)	16(1)
N(2)	9405(2)	9574(2)	2856(1)	17(1)
N(3)	9121(2)	11259(2)	3741(1)	17(1)
C(1)	7012(2)	10059(2)	926(1)	16(1)
C(2)	7702(2)	10975(2)	510(2)	19(1)
C(3)	7386(2)	10780(2)	-341(2)	21(1)
C(4)	6342(2)	9662(2)	-841(2)	21(1)
C(5)	5635(2)	8787(2)	-449(1)	19(1)
C(6)	5933(2)	8943(2)	429(1)	16(1)
C(7)	5125(2)	7959(2)	762(1)	17(1)
C(8)	4242(2)	6665(2)	1611(1)	16(1)
C(9)	3092(2)	6684(2)	1011(1) 1912(1)	17(1)
C(10)	2169(2)	5496(2)	1912(1) 1936(1)	17(1) 18(1)
C(11)	2409(2) 2417(2)	4348(2)	1668(1)	19(1)
C(12)	3561(2)	4331(2)	1391(1)	19(1)
C(12) C(13)	4499(2)	5503(2)	1367(1)	17(1)
C(13)	2844(2)	7948(2)	2219(2)	21(1)
C(14)	5779(2)	5526(2)	1100(2)	21(1) 22(1)
C(16)	8514(2)	10075(2)	3139(1)	15(1)
C(10)	10498(2)	11565(2)	3937(2)	22(1)
C(17)	10723(2)	10503(2)	3207(2)	19(1)
C(10)	8542(2)	10303(2) 12092(2)	4284(1)	16(1)
C(20)	8664(2)	12092(2) 13280(2)	4147(1)	10(1) 18(1)
C(20)	8110(2)	13200(2) 14077(2)	4685(2)	20(1)
C(21)	7442(2)	13715(2)	5338(2)	20(1)
C(22)	7365(2)	12542(2)	5468(1)	20(1) 21(1)
C(24)	7919(2)	11715(2)	4954(1)	19(1)
C(25)	9340(2)	13679(2)	3426(2)	24(1)
C(26)	6792(2)	14561(2)	5878(2)	27(1)
C(20)	7821(2)	10450(2)	5115(2)	24(1)
C(28)	9173(2)	8281(2)	2255(1)	17(1)
C(29)	8989(2)	7224(2)	2578(2)	19(1)
C(30)	8820(2)	5994(2)	1994(2)	19(1)
C(31)	8828(2)	5790(2)	1115(2)	19(1)
C(32)	9046(2)	6860(2)	819(2)	19(1)
C(32)	9246(2)	8127(2)	1378(2)	19(1) 18(1)
C(34)	8979(2)	7388(2)	3527(2)	25(1)
C(35)	8582(2)	4424(2)	504(2)	25(1) 26(1)
C(36)	9574(2)	9273(2)	1029(2)	23(1)
C(37)	5970(2)	10202(2)	3222(1)	19(1)
C(38)	5700(2)	10202(2) 11372(2)	3222(1) 3206(2)	20(1)
C(30)	6186(2)	1272(2) 12122(2)	2666(2)	23(1)
C(40)	5873(3)	12132(2) 13216(3)	2700(2)	29(1)
C(41)	5058(3)	13554(3)	3269(2)	$\frac{29(1)}{38(1)}$
C(42)	<u>4575(3)</u>	12827(3)	3207(2) 3814(2)	40(1)
C(-2)	4808(2)	12027(3) 11745(3)	3790(2)	30(1)
	1070(2)	117 (5)	5790(2)	50(1)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) of complex **7a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

 Table S3. Bond lengths [Å] and angles [°] of complex 7a.

Ru(1)-C(37)	1.838(2)	C(20)-C(25)	1.505(3)
Ru(1)-C(16)	2.032(2)	C(21)-C(22)	1.389(3)
Ru(1)-O(1)	2.0530(15)	C(21)-H(21)	0.9500
Ru(1)-N(1)	2.1080(18)	C(22)-C(23)	1.388(3)
Ru(1)-Cl(1)	2.3976(6)	C(22)-C(26)	1.506(3)
Br(1)-C(11)	1.902(2)	C(23)-C(24)	1.397(3)
O(1)-C(1)	1.301(3)	C(23)-H(23)	0.9500
N(1)-C(7)	1.301(3)	C(24)-C(27)	1.506(3)
N(1)-C(8)	1.444(3)	C(25)-H(25A)	0.9800
N(2)-C(16)	1.347(3)	C(25)-H(25B)	0.9800
N(2)-C(28)	1.442(3)	C(25)-H(25C)	0.9800
N(2)-C(18)	1.475(3)	C(26)-H(26A)	0.9800
N(3)-C(16)	1.346(3)	C(26)-H(26B)	0.9800
N(3)-C(19)	1.441(3)	C(26)-H(26C)	0.9800
N(3)-C(17)	1.477(3)	C(27)-H(27A)	0.9800
C(1)-C(2)	1 417(3)	C(27)-H(27B)	0 9800
C(1) - C(6)	1 428(3)	C(27)-H(27C)	0 9800
C(2)-C(3)	1 367(3)	C(28)-C(33)	1 400(3)
C(2)-H(2)	0.9500	C(28) - C(29)	1.404(3)
C(3)-C(4)	1 410(3)	C(29)-C(30)	1 392(3)
C(3)-H(3)	0.9500	C(29)-C(34)	1.5)2(3)
C(4)-C(5)	1 364(3)	C(30)-C(31)	1.388(3)
C(4)-H(4)	0.9500	C(30)-H(30)	0.9500
C(5)-C(6)	1 417(3)	C(31)-C(32)	1384(3)
C(5)-H(5)	0.9500	C(31)-C(35)	1 509(3)
C(6)-C(7)	1 423(3)	C(32)-C(33)	1.509(3) 1 402(3)
C(7)-H(7)	0.9500	C(32)-E(33)	0.9500
C(8)-C(9)	1 398(3)	C(32) - T(32) C(33) - C(36)	1 505(3)
C(8)-C(13)	1.000(0)	C(34)-H(34A)	0.9800
C(9)-C(10)	1 396(3)	C(34)-H(34B)	0.9800
C(9)-C(14)	1.507(3)	C(34)-H(34C)	0.9800
C(10)-C(11)	1 381(3)	C(35)-H(35A)	0.9800
C(10)-E(11)	0.9500	C(35)-H(35R)	0.9800
C(11)-C(12)	1 377(3)	C(35)-H(35C)	0.9800
C(12)-C(12)	1 393(3)	C(36)-H(364)	0.9800
C(12) - C(13) C(12) - H(12)	0.9500	C(36) H(36R)	0.9800
$C(12)$ - $\Pi(12)$ C(13) $C(15)$	1 505(3)	C(36) H(36C)	0.9800
C(13)- $C(13)$	0.9800	C(37) C(38)	1.76(3)
C(14) - H(14R) C(14) + H(14R)	0.9800	C(37) - C(38)	0.9500
C(14) - H(14C)	0.9800	$C(37)^{-11}(37)$ C(38) C(30)	1.308(A)
$C(14) - \Pi(14C)$ $C(15) - \Pi(15A)$	0.9800	C(38) - C(39)	1.390(4) 1.402(3)
C(15) H(15R)	0.9800	C(38)-C(43)	1.402(3) 1.297(2)
C(15) - H(15C)	0.9800	C(39)-C(40) C(30) $H(30)$	1.587(5)
C(17) C(18)	1 528(3)	$C(39)$ - $\Pi(39)$ C(40) $C(41)$	1.395(4)
C(17) + C(10) C(17) + C(17A)	0.0000	C(40) - C(41) C(40) - H(40)	0.0500
C(17) H(17R)	0.9200	$C(40) - \Pi(40)$ C(41) C(42)	1 270(1)
C(18) H(18A)	0.9900	C(41) + C(42)	0.0500
C(10) - H(10A) C(12) - H(12D)	0.9200	$C(41)^{-11}(41)$ C(42) C(42)	1 205(1)
$C(10) - \Pi(10D)$ C(10) C(20)	0.7700	C(42) - C(43) C(42) - U(43)	0.0500
C(17)- $C(20)C(10)$ $C(24)$	1.370(3) 1.200(2)	$C(42)$ - $\Pi(42)$ $C(42)$ $\Pi(42)$	0.9500
C(20) C(21)	1.377(3) 1.201(2)	C(+3)-11(+3)	0.2500
$(20)^{-}(21)$	1.371(3)		

C(37)-Ru(1)-C(16)	98.28(9)	C(8)-C(13)-C(15)	120.8(2)
C(37)-Ru(1)-O(1)	98.70(9)	C(9)-C(14)-H(14A)	109.5
C(16)-Ru(1)-O(1)	83.79(7)	C(9)-C(14)-H(14B)	109.5
C(37)-Ru(1)-N(1)	103.07(8)	H(14A)-C(14)-H(14B)	109.5
C(16)-Ru(1)-N(1)	158.34(8)	C(9)-C(14)-H(14C)	109.5
O(1)-Ru(1)-N(1)	89.40(6)	H(14A)-C(14)-H(14C)	109.5
C(37)-Ru(1)-Cl(1)	88.79(8)	H(14B)-C(14)-H(14C)	109.5
C(16)-Ru(1)-Cl(1)	94.73(6)	C(13)-C(15)-H(15A)	109.5
O(1)-Ru(1)-Cl(1)	172.50(4)	C(13)-C(15)-H(15B)	109.5
N(1)-Ru(1)-Cl(1)	89.35(5)	H(15A)-C(15)-H(15B)	109.5
C(1)-O(1)-Ru(1)	128.81(14)	C(13)-C(15)-H(15C)	109.5
C(7)-N(1)-C(8)	113.62(18)	H(15A)-C(15)-H(15C)	109.5
C(7)-N(1)-Ru(1)	123.27(15)	H(15B)-C(15)-H(15C)	109.5
C(8)-N(1)-Ru(1)	122.74(14)	N(3)-C(16)-N(2)	107.30(18)
C(16)-N(2)-C(28)	126.34(18)	N(3)-C(16)-Ru(1)	132.79(16)
C(16)-N(2)-C(18)	113.45(18)	N(2)-C(16)-Ru(1)	119.09(15)
C(28)-N(2)-C(18)	120.19(17)	N(3)-C(17)-C(18)	102.23(17)
C(16)-N(3)-C(19)	126.97(18)	N(3)-C(17)-H(17A)	111.3
C(16)-N(3)-C(17)	113.04(18)	C(18)-C(17)-H(17A)	111.3
C(19)-N(3)-C(17)	119.04(17)	N(3)-C(17)-H(17B)	111.3
O(1)-C(1)-C(2)	117.95(19)	C(18)-C(17)-H(17B)	111.3
O(1)-C(1)-C(6)	124.8(2)	H(17A)-C(17)-H(17B)	109.2
C(2)-C(1)-C(6)	117.2(2)	N(2)-C(18)-C(17)	101.67(17)
C(3)-C(2)-C(1)	121.8(2)	N(2)-C(18)-H(18A)	111.4
C(3)-C(2)-H(2)	119.1	C(17)-C(18)-H(18A)	111.4
C(1)-C(2)-H(2)	119.1	N(2)-C(18)-H(18B)	111.4
C(2)-C(3)-C(4)	121.2(2)	C(17)-C(18)-H(18B)	111.4
C(2)-C(3)-H(3)	119.4	H(18A)-C(18)-H(18B)	109.3
C(4)-C(3)-H(3)	119.4	C(20)-C(19)-C(24)	121.9(2)
C(5)-C(4)-C(3)	118.2(2)	C(20)-C(19)-N(3)	118.9(2)
C(5)-C(4)-H(4)	120.9	C(24)-C(19)-N(3)	119.2(2)
C(3)-C(4)-H(4)	120.9	C(21)-C(20)-C(19)	118.0(2)
C(4)-C(5)-C(6)	122.6(2)	C(21)-C(20)-C(25)	120.5(2)
C(4)-C(5)-H(5)	118.7	C(19)-C(20)-C(25)	121.5(2)
C(6)-C(5)-H(5)	118.7	C(22)-C(21)-C(20)	121.9(2)
C(5)-C(6)-C(7)	117.2(2)	C(22)-C(21)-H(21)	119.0
C(5)-C(6)-C(1)	119.0(2)	C(20)-C(21)-H(21)	119.0
V(1) - C(6) - C(1)	123.8(2)	C(23)-C(22)-C(21)	118.6(2) 120.7(2)
N(1)-C(7)-C(6)	129.6(2)	C(23)-C(22)-C(26)	120.7(2)
N(1)-C(7)-H(7)	115.2	C(21)-C(22)-C(20) C(22)-C(24)	120.8(2) 121.8(2)
$C(0) - C(7) - \Pi(7)$	113.2	C(22) - C(23) - C(24)	121.0(2)
C(9) - C(8) - C(13)	121.8(2) 120.70(10)	$C(22)-C(23)-\Pi(23)$ $C(24)-C(23)-\Pi(23)$	119.1
C(9)-C(0)-N(1) C(12) C(8) N(1)	120.70(19) 117.40(10)	$C(24)-C(25)-\Pi(25)$ C(23)-C(24)-C(10)	119.1 117.8(2)
C(13)-C(8)-N(1)	117.49(19) 118.2(2)	C(23) - C(24) - C(19) C(23) - C(24) - C(27)	11/.0(2) 120.5(2)
C(10) - C(9) - C(8)	118.3(2) 120.1(2)	C(23)-C(24)-C(27)	120.3(2) 121.7(2)
C(10)- $C(9)$ - $C(14)$	120.1(2) 121.6(2)	C(19)-C(24)-C(27) C(20) C(25) H(25A)	121.7(2) 100.5
C(3)-C(3)-C(14) C(11) C(10) C(0)	121.0(2) 110.6(2)	C(20) - C(25) - H(25R) C(20) - C(25) - H(25R)	109.5
C(11) - C(10) - C(9) C(11) - C(10) - H(10)	119.0(2)	$U(20)-U(23)-\Pi(23D)$ U(25A) C(25) U(25B)	109.5
C(11)- $C(10)$ - $H(10)$	120.2	$\Gamma(23A) - C(23) - \Pi(23B)$ $C(20) - C(25) - \Pi(25C)$	109.5
C(9)- $C(10)$ - $H(10)C(12)$ $C(11)$ $C(10)$	120.2 122.3(2)	$U(20)-U(23)-\Pi(23U)$ U(25A) C(25) U(25C)	109.5
C(12)- $C(11)$ - $C(10)C(12)$ $C(11)$ Br(1)	122.3(2) 117.85(17)	H(25R) - C(25) - H(25C) H(25R) - C(25) - H(25C)	109.5
C(10)- $C(11)$ -Br(1)	119.80(17)	C(22)-C(23)-H(25C)	109.5
C(11) - C(12) - C(13)	119 3(2)	C(22) - C(26) - H(26R)	109.5
C(11)-C(12)-H(12)	120.4	H(26A)-C(26)-H(26B)	109.5
C(13)-C(12)-H(12)	120.4	C(22)-C(26)-H(26D)	109.5
C(12)-C(13)-C(13)	118 7(2)	H(26A)-C(26)-H(26C)	109.5
C(12)- $C(13)$ - $C(15)$	120 5(2)	H(26B)-C(26)-H(26C)	109.5
-() = () = ()			

C(24)-C(27)-H(27B) 109.5 C(31)-C(35)-H(35C) 10	09.5
$H(2\pi A) = G(2\pi) H(2\pi B)$ 100 f $H(2\pi A) = G(2\pi B) H(2\pi B)$	00 5
H(2/A)-C(2/)-H(2/B) 109.5 $H(35A)-C(35)-H(35C)$ 10	09.5
C(24)-C(27)-H(27C) 109.5 H(35B)-C(35)-H(35C) 10	09.5
H(27A)-C(27)-H(27C) 109.5 C(33)-C(36)-H(36A) 10	09.5
H(27B)-C(27)-H(27C) 109.5 C(33)-C(36)-H(36B) 10	09.5
C(33)-C(28)-C(29) 121.4(2) H(36A)-C(36)-H(36B) 10	09.5
C(33)-C(28)-N(2) 119.8(2) C(33)-C(36)-H(36C) 10	09.5
C(29)-C(28)-N(2) 118.6(2) H(36A)-C(36)-H(36C) 10	09.5
C(30)-C(29)-C(28) 118.0(2) H(36B)-C(36)-H(36C) 10	09.5
C(30)-C(29)-C(34) 119.8(2) C(38)-C(37)-Ru(1) 13	34.46(18)
C(28)-C(29)-C(34) 122.2(2) C(38)-C(37)-H(37) 11	12.8
C(31)-C(30)-C(29) 122.2(2) Ru(1)-C(37)-H(37) 11	12.8
C(31)-C(30)-H(30) 118.9 C(39)-C(38)-C(43) 11	18.1(2)
C(29)-C(30)-H(30) 118.9 C(39)-C(38)-C(37) 12	25.3(2)
C(32)-C(31)-C(30) 118.5(2) $C(43)-C(38)-C(37)$ 11	16.6(2)
C(32)-C(31)-C(35) 121.4(2) $C(40)-C(39)-C(38)$ 12	20.9(2)
C(30)-C(31)-C(35) 120.1(2) C(40)-C(39)-H(39) 11	19.5
C(31)-C(32)-C(33) 121.9(2) C(38)-C(39)-H(39) 11	19.5
C(31)-C(32)-H(32) 119.0 C(41)-C(40)-C(39) 12	20.2(3)
C(33)-C(32)-H(32) 119.0 C(41)-C(40)-H(40) 11	19.9
C(28)-C(33)-C(32) 117.9(2) C(39)-C(40)-H(40) 11	19.9
C(28)-C(33)-C(36) 122.4(2) C(42)-C(41)-C(40) 11	19.9(3)
C(32)-C(33)-C(36) 119.6(2) C(42)-C(41)-H(41) 12	20.0
C(29)-C(34)-H(34A) 109.5 C(40)-C(41)-H(41) 12	20.0
C(29)-C(34)-H(34B) 109.5 C(41)-C(42)-C(43) 12	20.1(3)
H(34A)-C(34)-H(34B) 109.5 C(41)-C(42)-H(42) 11	19.9
C(29)-C(34)-H(34C) 109.5 C(43)-C(42)-H(42) 11	19.9
H(34A)-C(34)-H(34C) 109.5 C(42)-C(43)-C(38) 12	20.7(3)
H(34B)-C(34)-H(34C) 109.5 C(42)-C(43)-H(43) 11	19.7
C(31)-C(35)-H(35A) 109.5 C(38)-C(43)-H(43) 11	19.7
C(31)-C(35)-H(35B) 109.5	

Symmetry transformations were used to generate equivalent atoms.

	7.1		22		12	12
	U^{I1}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Ru(1)	14(1)	10(1)	15(1)	2(1)	2(1)	4(1)
Br(1)	26(1)	17(1)	29(1)	7(1)	8(1)	-1(1)
Cl(1)	25(1)	16(1)	21(1)	7(1)	2(1)	3(1)
O(1)	16(1)	13(1)	17(1)	4(1)	2(1)	3(1)
N(1)	15(1)	12(1)	18(1)	3(1)	3(1)	5(1)
N(2)	15(1)	12(1)	20(1)	1(1)	1(1)	4(1)
N(3)	16(1)	14(1)	18(1)	1(1)	1(1)	6(1)
C(1)	17(1)	15(1)	18(1)	3(1)	3(1)	10(1)
C(2)	19(1)	14(1)	25(1)	6(1)	3(1)	6(1)
C(3)	21(1)	20(1)	26(1)	13(1)	8(1)	8(1)
C(4)	25(1)	21(1)	18(1)	6(1)	3(1)	11(1)
C(5)	22(1)	14(1)	18(1)	1(1)	1(1)	7(1)
C(6)	17(1)	14(1)	19(1)	4(1)	4(1)	9(1)
C(7)	16(1)	13(1)	20(1)	1(1)	2(1)	7(1)
C(8)	17(1)	12(1)	15(1)	2(1)	-1(1)	2(1)
C(9)	17(1)	18(1)	15(1)	5(1)	1(1)	6(1)
C(10)	16(1)	21(1)	17(1)	6(1)	5(1)	6(1)
C(11)	20(1)	13(1)	17(1)	4(1)	1(1)	-2(1)
C(12)	20(1) 21(1)	12(1)	19(1)	2(1)	2(1)	5(1)
C(12) C(13)	16(1)	12(1) 16(1)	19(1) 18(1)	$\frac{2(1)}{3(1)}$	2(1) 2(1)	5(1)
C(13) C(14)	22(1)	18(1)	25(1)	$\frac{3(1)}{8(1)}$	$\frac{2(1)}{6(1)}$	$\frac{3(1)}{8(1)}$
C(14)	19(1)	16(1)	29(1)	2(1)	$\frac{0(1)}{4(1)}$	7(1)
C(15)	20(1)	10(1) 11(1)	$\frac{25(1)}{15(1)}$	5(1)	$\frac{1}{1}$	6(1)
C(10) C(17)	18(1)	10(1)	25(1)	$\frac{3(1)}{1(1)}$	-3(1)	7(1)
C(17) C(18)	16(1)	15(1) 16(1)	23(1) 22(1)	2(1)	-3(1)	5(1)
C(10)	18(1)	13(1)	$\frac{22(1)}{14(1)}$	$\frac{2(1)}{1(1)}$	-1(1)	5(1)
C(19)	10(1)	13(1) 14(1)	17(1)	-1(1) 3(1)	-1(1) 1(1)	$\frac{J(1)}{A(1)}$
C(20)	$\frac{19(1)}{23(1)}$	14(1) 12(1)	$\frac{1}{(1)}$	$\frac{3(1)}{2(1)}$	-1(1)	7(1)
C(21) C(22)	23(1) 22(1)	12(1) 18(1)	$\frac{22(1)}{10(1)}$	2(1) 2(1)	2(1)	$\frac{7(1)}{8(1)}$
C(22) C(23)	22(1) 24(1)	10(1) 21(1)	19(1) 16(1)	$\frac{2(1)}{5(1)}$	$\frac{2(1)}{4(1)}$	6(1)
C(23)	24(1) 20(1)	$\frac{21(1)}{15(1)}$	10(1) 17(1)	$\frac{3(1)}{4(1)}$	$\frac{4(1)}{2(1)}$	$\frac{0(1)}{4(1)}$
C(24)	20(1)	13(1) 22(1)	$\frac{1}{(1)}$	$\frac{4(1)}{8(1)}$	-2(1)	4(1)
C(25)	$\frac{29(1)}{22(1)}$	22(1) 22(1)	22(1) 20(1)	6(1)	$\frac{7(1)}{10(1)}$	11(1) 14(1)
C(20) C(27)	33(1) 30(1)	$\frac{22(1)}{10(1)}$	29(1) 21(1)	$\frac{0(1)}{7(1)}$	10(1)	$\frac{14(1)}{9(1)}$
C(27)	30(1)	19(1) 14(1)	21(1) 21(1)	$\frac{7(1)}{2(1)}$	1(1) 2(1)	6(1)
C(20)	13(1) 17(1)	14(1) 10(1)	21(1) 22(1)	$\frac{2(1)}{6(1)}$	2(1) 2(1)	0(1)
C(29)	$\frac{1}{(1)}$	19(1) 14(1)	22(1) 26(1)	0(1) 8(1)	$\frac{2(1)}{4(1)}$	$\frac{0(1)}{7(1)}$
C(30)	20(1)	14(1) 15(1)	20(1)	0(1)	4(1)	7(1)
C(31)	10(1)	13(1) 10(1)	23(1) 10(1)	3(1)	4(1)	7(1)
C(32)	19(1) 15(1)	19(1)	19(1)	4(1)	5(1)	9(1)
C(33)	15(1)	10(1)	23(1)	0(1)	3(1)	(1)
C(34)	33(1)	23(1)	21(1) 21(1)	$\frac{7(1)}{2(1)}$	2(1)	13(1)
C(35)	29(1)	15(1)	31(1)	3(1)	6(1)	8(1)
C(36)	29(1)	20(1)	26(1)	9(1)	$\prod_{i=1}^{i}$	12(1)
C(37)	$\frac{1}{(1)}$	16(1)	18(1)	I(1)	0(1)	4(1)
C(38)	18(1)	$\frac{1}{(1)}$	22(1)	-1(1)	-1(1)	/(1)
C(39)	26(1)	19(1)	21(1)	1(1)	U(1)	$\Pi(1)$
C(40)	57(1)	24(1)	28(1)	6(1)	1(1)	16(1)
C(41)	43(2)	33(2)	47(2)	9(1)	(1)	29(1)
C(42)	42(2)	38(2)	52(2)	11(1)	20(1)	30(1)
C(43)	27(1)	28(1)	37(2)	8(1)	11(1)	14(1)

Table S4. Anisotropic displacement parameters (Å² × 10³) of complex **7a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$.

	x	у	Z	U(eq)
H(2)	8404	11745	831	23
H(3)	7878	11410	-600	25
H(4)	6137	9521	-1435	25
H(5)	4916	8044	-777	23
H(7)	4426	7283	366	20
H(10)	1377	5477	2134	22
H(12)	3709	3528	1223	22
H(12) $H(14\Delta)$	3345	8493	2783	32
H(14R)	1033	7738	2785	32
H(14C)	2004	8/35	1805	32
H(14C) H(15A)	5707	4627	070	32
$\Pi(1SA)$	5/9/	4057	970	22
H(15B)	0451 5022	0144	15/5	<i>33</i>
H(15C)	5922	5815	288	33
H(1/A)	10693	11489	4507	27
H(17B)	11020	12464	3927	27
H(18A)	11171	10875	2769	23
H(18B)	11220	10073	3427	23
H(21)	8191	14893	4604	23
H(23)	6924	12295	5920	25
H(25A)	9099	14369	3314	35
H(25B)	9095	12908	2905	35
H(25C)	10265	14021	3590	35
H(26A)	6128	14027	6146	41
H(26B)	6403	14906	5513	41
H(26C)	7422	15301	6329	41
H(27A)	7523	10452	5676	35
H(27B)	8663	10383	5113	35
H(27C)	7215	9693	4661	35
H(30)	8694	5269	2203	23
H(32)	9060	6731	219	22
H(34A)	8254	6660	3609	37
H(34R)	8901	8233	3829	37
H(34C)	9777	7379	3761	37
$H(35\Delta)$	8468	4423	_91	30
H(35R)	7807	3788	621	30
H(35D)	0310	J 1 7 5	585	30
$\Pi(33C)$ $\Pi(26A)$	9310	41/3	1400	39
$\Pi(30A)$	9507	9937	1400	33 25
П(30В) Ц(26С)	9132	890/	444	33 25
H(30C)	10499	9642	101/	55
H(3/)	5/03	9930	3708	22
H(39)	6739	11903	2269	27
H(40)	6218	13727	2332	35
H(41)	4833	14287	3283	46
H(42)	4020	13063	4206	48
H(43)	4571	11256	4173	36

Table S5. Hydrogen coordinates (×10 ⁴) and isotropic	displacement parameters (Å ² × 10 ³)
of complex 7a.	

 Table S6. Torsion angles [°] of complex 7a.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\overline{C(37)}$ -Ru(1)-O(1)-C(1)	-108.13(18)	C(18)-N(2)-C(16)-Ru(1)	164.69(15)
$\begin{split} \widehat{N}(h) = \widehat{N}(h) = \widehat{V}(h) = (1) - (1$	C(16)-Ru(1)-O(1)-C(1)	154.40(18)	C(37)-Ru(1)-C(16)-N(3)	-15.3(2)
$\begin{array}{cccc} (i_1) : Ru(1) - O(1) - O(1) \\ (i_1) : Ru(1) - N(1) - O(1) \\ (i_2) : Ru(1) - N(1) - O(1) \\ (i_1) : Ru(1) - N(1) - O(1) \\ (i_2) : Ru(1) - N(1) - O(1) \\ (i_1) : Ru(1) - O(1) - O(1) \\ (i_1) : Ru(1) - O(1) - O(1) \\ (i_1) : Ru(1) - O(1) - O(1) \\ (i_1) : Ru(1) - N(1) - O(1) \\ (i_1) : Ru(1) - N(1) - O(1) \\ (i_1) : Ru(1) - O(1) - O(1) \\ (i_1) : Ru$	N(1)-Ru(1)-O(1)-C(1)	-5.00(17)	O(1)-Ru(1)-C(16)-N(3)	82.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl(1)-Ru(1)-O(1)-C(1)	75 4(4)	N(1)-Ru(1)-C(16)-N(3)	154 99(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37)-Ru(1)-N(1)-C(7)	104 10(18)	Cl(1)-Ru(1)-C(16)-N(3)	-1048(2)
$\begin{array}{ccccc} 0(1) = R(1)^{N}(1) - C(7)^{'} & 5 \ 31(17)^{'} & 0(1) + R(1)^{-}(C16)^{N}(2)^{'} & 485.55(17)^{'} \\ C(1) + R(1) - N(1) - C(7)^{'} & 1-67.29(17)^{'} & N(1) + R(1)^{-}(C16)^{-}N(2)^{'} & 4-3.2(3)^{'} \\ C(1) + R(1) - N(1) - C(8)^{'} & 43.25(17)^{'} & C(1) + R(1)^{-}(C16)^{-}N(2)^{'} & 87.80(19)^{'} \\ C(1) + R(1) - N(1) - C(8)^{'} & 106.6(2)^{'} & C(10)^{-}N(2)^{-}C(18)^{'} & -17.80(19)^{'} \\ C(1) + R(1) - N(1) - C(8)^{'} & 5.35(15)^{'} & C(10) - N(2) - C(18)^{'} - C(17)^{'} & -167.92(19)^{'} \\ R(1) - 0(1) - C(1) - C(2)^{'} & -17.19(14)^{'} & C(22) - N(2) - C(18)^{'} - C(17)^{'} & -167.92(19)^{'} \\ R(1) - 0(1) - C(1) - C(2)^{'} & -2.5(3)^{'} & C(17)^{-}N(6)^{'} - C(20)^{'} & 81.6(3)^{'} \\ C(1) - C(2) - C(3)^{'} & -2.5(3)^{'} & C(17)^{-}N(6)^{'} - C(20)^{'} & 81.6(3)^{'} \\ C(2) - C(3) - C(4)^{'} & 0.8(4)^{'} & C(10)^{-}N(3)^{-}C(19)^{-}C(20)^{'} & 81.6(3)^{'} \\ C(2) - C(3) - C(4)^{'} & 0.8(4)^{'} & C(10)^{-}N(3)^{-}C(19)^{-}C(20)^{'} & 81.6(3)^{'} \\ C(2) - C(3) - C(4)^{'} & 0.8(4)^{'} & C(10)^{-}N(3)^{-}C(19)^{-}C(20)^{'} & 21.10^{'} \\ C(2) - C(3) - C(4)^{'} & 0.8(4)^{'} & C(10)^{-}N(3)^{-}C(19)^{-}C(20)^{'} & 21.13^{'} \\ C(2) - C(3) - C(4)^{'} & 0.13^{'} & C(2)^{-}C(2)^{'} & (21)^{'} & -179.28(19)^{'} \\ C(4) - C(5) - C(6)^{'} & -177.4(2)^{'} & N(3)^{-}C(19)^{-}C(20)^{-}C(21)^{'} & -179.8(2)^{'} \\ C(1) - C(6)^{-}C(7)^{'} & 2.5(3)^{'} & C(22)^{-}C(22)^{-}C(23)^{'} & 2.1(3)^{'} \\ C(2) - C(1)^{-}C(6)^{'} & -177.4(2)^{'} & N(3)^{-}C(19)^{-}C(20)^{-}C(21)^{'} & -179.8(2)^{'} \\ C(1) - C(1)^{-}C(6)^{'} & -178.2(2)^{'} & C(20)^{-}C(21)^{-}C(22)^{'} & -179.8(2)^{'} \\ C(1) - C(1)^{-}C(6)^{'} & -178.2(2)^{'} & C(20)^{-}C(21)^{-}C(22)^{'} & -179.8(2)^{'} \\ C(1) - C(1)^{-}C(6)^{'} & -177.4(2)^{'} & N(3)^{'} & C(22)^{-}C(23)^{'} & -179.9(1)^{'} \\ C(2) - C(1)^{-}C(6)^{'} & -177.4(2)^{'} & N(3)^{'} & C(22)^{-}C(23)^{'} & -179.8(2)^{'} \\ C(1) - C(1)^{-}C(6)^{'} & -178.2(2)^{'} & C(20)^{-}C(21)^{-}C(22)^{'} & -179.8(2)^{'} \\ C(1) - C(1)^{-}C(6)^{'} & -178.8(2)^{'} & -177.8(2)^{'} \\ C(1) - C(1)^{-}C(6)^{'} & -178.8(2)^{'} &$	C(16)-Ru(1)-N(1)-C(7)	-66 1(3)	C(37)-Ru(1)-C(16)-N(2)	17652(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)-Ru(1)-N(1)-C(7)	531(17)	O(1)-Ru(1)-C(16)-N(2)	-85.55(17)
$\begin{array}{c} C(37) - Ru(1) - V(1) - C(3) & -R3 - 25(17) & C(1) - Ru(1) - V(1) - C(1) - V(1) & -V(1) - V(1) \\ C(10) - Ru(1) - V(1) - C(8) & 106.6(2) & C(10) - N(3) - C(17) - C(18) & 112.4(3) \\ O(1) - Ru(1) - V(1) - C(8) & 5.35(15) & C(16) - N(2) - C(18) - C(17) & -178.00(19) \\ C(10) - Ru(1) - V(1) - C(8) & 5.35(15) & C(16) - N(2) - C(18) - C(17) & -167.92(19) \\ Ru(1) - O(1) - C(1) - C(6) & 2.7(3) & N(3) - C(17) - C(18) - N(2) & -110.3(3) \\ C(10) - C(1) - C(2) - C(3) & -2.5(3) & C(17) - N(3) - C(19) - C(20) & 81.6(3) \\ C(1) - C(2) - C(3) & -2.5(3) & C(17) - N(3) - C(19) - C(20) & 81.6(3) \\ C(1) - C(2) - C(3) & -2.5(3) & C(17) - N(3) - C(19) - C(20) & 81.6(3) \\ C(2) - C(3) - C(4) & 0.8(4) & C(16) - N(3) - C(19) - C(20) & -19.8(3) \\ C(3) - C(4) - C(5) - C(6) & -1.8(3) & C(24) - C(19) - C(20) & -19.8(3) \\ C(3) - C(4) - C(5) - C(6) & -1.8(3) & C(24) - C(19) - C(20) & -179.28(19) \\ C(4) - C(5) - C(6) - (7) & -179.7(2) & N(3) - C(19) - C(20) - C(21) & -19.8(2) \\ O(1) - C(1) - C(6) - C(7) & -179.7(2) & N(3) - C(19) - C(20) - C(21) & -19.8(2) \\ O(1) - C(1) - C(6) - C(7) & 2.5(3) & C(25) - C(20) - C(21) - C(22) & -0.6(3) \\ O(1) - C(1) - C(6) - C(7) & 2.5(3) & C(25) - C(20) - C(21) - C(22) & -0.6(3) \\ O(1) - C(1) - C(6) - C(7) & 2.5(3) & C(21) - C(22) - C(23) & 2.1(3) \\ C(2) - C(1) - C(6) - C(7) & 2.5(3) & C(21) - C(22) - C(23) & -1.2(3) \\ C(2) - C(1) - C(6) - (7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) & -1.7(3) \\ C(7) - N(1) - C(8) - C(9) & -9.90(19) & 0.16) - N(2) - C(23) - C(24) - C(27) & -178.3(2) \\ C(1) - C(1) - C(1) & -1.8(3) & N(2) - C(28) - C(29) - C(23) & -1.7(3) \\ C(7) - N(1) - C(8) - C(1) & -1.78.5(2) & C(20) - C(23) - C(24) - C(27) & -178.3(2) \\ C(1) - C(1) - C(1) & -1.78.10(16) & C(33) - C(28) - C(29) - C(30) & -177.3(2) \\ N(1) - C$	Cl(1)-Ru(1)-N(1)-C(7)	-16729(17)	N(1)-Ru(1)-C(16)-N(2)	-132(3)
$\begin{array}{c} C(16)-Ru(1)+V(1)-C(18) & 106.6(2) & C(16)-V(3)-C(18) & 12.4(3) \\ O(1)-Ru(1)+V(1)-C(18) & 177.96(16) & C(19)-V(3)-C(17)-C(18) & 178.00(19) \\ C(1)-Ru(1)-V(1)-C(2) & 177.9(16) & C(19)-V(2)-C(18)-C(17) & 13.4(2) \\ Ru(1)-O(1)-C(1)-C(2) & -177.19(14) & C(28)-V(2)-C(18)-C(17) & 167.92(19) \\ Ru(1)-O(1)-C(1)-C(2) & -177.19(14) & C(28)-V(2)-C(19)-C(20) & 11.6(3) \\ C(1)-C(2)-C(3) & 1-69(2) & C(16)-V(3)-C(19)-C(20) & 11.6(3) \\ C(1)-C(2)-C(3) & -2.5(3) & C(17)-V(3)-C(19)-C(20) & 11.6(3) \\ C(2)-C(3)-C(4)-C(5) & 1.3(3) & C(17)-V(3)-C(19)-C(24) & -2.5(3) \\ C(2)-C(3)-C(4)-C(5) & 1.3(3) & C(17)-V(3)-C(19)-C(24) & -2.5(3) \\ C(3)-C(4)-C(5)-C(6) & -1.8(3) & C(24)-C(19)-C(20)-C(21) & -1.8(3) \\ C(4)-C(5)-C(6)-C(7) & -179.7(2) & N(3)-C(19)-C(20)-C(21) & -1.8(3) \\ C(2)-C(3)-C(4)-C(5) & 2.0(3) & C(2)-C(2)-C(22) & -0.6(3) \\ C(1)-C(1)-C(6)-C(5) & 2.0(3) & C(19)-C(20)-C(25) & 2.4(3) \\ C(2)-C(1)-C(6)-C(7) & -178.2(2) & C(20)-C(21)-C(22) & -176.6(2) \\ Ru(1)-N(1)-C(7)-C(6) & -13.3(3) & C(2)-C(2)-C(22)-C(23) & 2.1(3) \\ C(8)-N(1)-C(7)-C(6) & -176.5(2) & C(20)-C(21)-C(22) & -176.6(2) \\ Ru(1)-N(1)-C(7)-C(6) & -176.5(2) & C(20)-C(21)-C(22)-C(23) & 2.1(3) \\ C(3)-C(6)-C(7)-N(1) & 178.1(2) & C(26)-C(23)-C(24) & -1.2(3) \\ C(3)-C(6)-C(7)-N(1) & -1.7(4) & C(22)-C(23)-C(24) & -1.2(3) \\ C(5)-C(6)-C(7)-N(1) & -1.78.2(2) & C(20)-C(21)-C(22) & -2.7(3) \\ C(1)-C(6)-C(7) & -1.78.3(2) & C(20)-C(21)-C(22) & -2.7(3) \\ C(1)-C(6)-C(7) & -1.78.3(2) & C(20)-C(21)-C(22) & -2.7(3) \\ C(1)-C(6)-C(7)-N(1) & -1.78.1(2) & C(26)-C(23)-C(24) & -1.2(3) \\ C(3)-C(4)-C(9)-C(14) & 177.9(2) & C(3)-C(23)-C(24)-C(23) & -1.78.8(2) \\ Ru(1)-N(1)-C(8)-C(13) & -88.5(2) & C(20)-C(21)-C(22) & -2.7(3) \\ C(7)-N(1)-C(8)-C(13) & -88.5(2) & C(20)-C(21)-C(22) & -2.7(3) \\ C(7)-N(1)-C(8)-C(13) & -88.5(2) & C(20)-C(21)-C(23) & -2.7(3) \\ C(7)-N(1)-C(8)-C(13) & -88.5(2) & C(20)-C(23)-C(24) & -2.7(3) \\ C(1)-C(1)-C(1) & -1.78.10(16) & C(3)-C(23)-C(23) & -1.77.3(2) \\ C(9)-C(1)-C(1) & -1.78.10(16) & C(3)-C(23)-C(23) & -1.77.3(2) \\ C(9)-C(1)-C(1) & -1.78.10(16) & C(3)-C(23)-C(23) & -1.77.3(2) \\ C(9)-$	C(37)-Ru(1)-N(1)-C(8)	-83.25(17)	$C_{1}(1) - R_{1}(1) - C_{1}(1) - N_{2}(2)$	87.06(16)
$\begin{array}{c} C(1) F(1) F(1) F(1) C(1) \\ (C(1) F(1) F(1) F(1) \\ (C(1) F(1) F(1) F(1) \\ (C(1) F$	C(16)-Ru(1)-N(1)-C(8)	106.6(2)	C(16)-N(3)-C(17)-C(18)	124(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)-Ru(1)-N(1)-C(8)	177 96(16)	C(19)-N(3)-C(17)-C(18)	-178.00(19)
$ \begin{array}{c} {\rm Ru}(1) - {\rm O}(1) - {\rm C}(1) - {\rm C}(2) & -177.19(14) & {\rm C}(28) - {\rm RU}(17) & -167.92(19) \\ {\rm Ru}(1) - {\rm O}(1) - {\rm C}(1) - {\rm C}(2) & -117.19(14) & {\rm C}(28) - {\rm RU}(17) & -167.92(19) \\ {\rm Ru}(1) - {\rm O}(1) - {\rm C}(2) - {\rm C}(3) & -2.5(3) & {\rm C}(17) - {\rm C}(18) - {\rm RO}(2) & 81.6(3) \\ {\rm C}(1) - {\rm C}(2) - {\rm C}(3) & -2.5(3) & {\rm C}(17) - {\rm N}(3) - {\rm C}(19) - {\rm C}(20) & 81.6(3) \\ {\rm C}(1) - {\rm C}(2) - {\rm C}(3) - {\rm C}(4) & 0.8(4) & {\rm C}(16) - {\rm N}(3) - {\rm C}(19) - {\rm C}(24) & -95.9(3) \\ {\rm C}(3) - {\rm C}(4) - {\rm C}(5) - {\rm C}(6) & -1.8(3) & {\rm C}(17) - {\rm N}(3) - {\rm C}(19) - {\rm C}(20) - {\rm C}(21) & -1.8(3) \\ {\rm C}(2) - {\rm C}(3) - {\rm C}(4) - {\rm C}(5) - {\rm C}(6) & -1.8(3) & {\rm C}(19) - {\rm C}(20) - {\rm C}(21) & -1.8(3) \\ {\rm C}(4) - {\rm C}(5) - {\rm C}(6) - {\rm C}(1) & 0.1(3) & {\rm C}(24) - {\rm C}(19) - {\rm C}(20) - {\rm C}(21) & -1.8(3) \\ {\rm C}(4) - {\rm C}(5) - {\rm C}(6) - {\rm C}(1) & 0.1(3) & {\rm C}(19) - {\rm C}(20) - {\rm C}(21) & -1.78.2(2) \\ {\rm O}(1) - {\rm C}(1) - {\rm C}(6) - {\rm C}(5) & -1.77.4(2) & {\rm N}(3) - {\rm C}(19) - {\rm C}(20) - {\rm C}(22) & -0.6(3) \\ {\rm O}(1) - {\rm C}(1) - {\rm C}(6) - {\rm C}(5) & -1.77.8(2) & {\rm C}(20) - {\rm C}(21) - {\rm C}(22) - {\rm C}(23) & -1.78.8(2) \\ {\rm C}(2) - {\rm C}(1) - {\rm C}(6) - {\rm C}(7) & 2.5(3) & {\rm C}(2) - {\rm C}(22) - {\rm C}(23) & -1.78.8(2) \\ {\rm C}(2) - {\rm C}(1) - {\rm C}(6) - {\rm C}(7) & 1.78.2(2) & {\rm C}(20) - {\rm C}(21) - {\rm C}(22) - {\rm C}(23) & -1.77.8(2) \\ {\rm C}(2) - {\rm C}(1) - {\rm C}(6) - {\rm C}(7) & 1.78.1(2) & {\rm C}(26) - {\rm C}(22) - {\rm C}(23) & -177.8(2) \\ {\rm C}(1) - {\rm C}(6) - {\rm C}(7) + {\rm N}(1) & 1.78.1(2) & {\rm C}(26) - {\rm C}(22) - {\rm C}(23) & -179.90(19) \\ {\rm C}(1) - {\rm C}(6) - {\rm C}(7) + {\rm N}(1) & 1.78.1(2) & {\rm C}(26) - {\rm C}(22) - {\rm C}(23) & -179.90(19) \\ {\rm R}(1) - {\rm N}(1) - {\rm C}(8) - {\rm C}(9) & 92.9(2) & {\rm C}(20) - {\rm C}(19) - {\rm C}(24) - {\rm C}(23) & -179.90(19) \\ {\rm R}(1) - {\rm N}(1) - {\rm C}(8) - {\rm C}(9) & 92.9(2) & {\rm C}(20) - {\rm C}(19) - {\rm C}(24) - {\rm C}(23) & -179.90(19) \\ {\rm R}(1) - {\rm N}(1) - {\rm C}(8) - {\rm C}(1) & -2.0(3) & {\rm N}(3) - {\rm C}(1) - {\rm C}(24)$	Cl(1)-Ru(1)-N(1)-C(8)	5 35(15)	C(16)-N(2)-C(18)-C(17)	134(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{1}(1)-O(1)-C(1)-C(2)$	-177 19(14)	C(10) - C(10) - C(17) C(28) - N(2) - C(18) - C(17)	-167.92(19)
$\begin{array}{ccccc} (1) - (2) - (2) - (2) & (1) - (2) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (1) - (2) - (2) & (2) & (2) - (2) - (2) & (2) & (2) - (2) - (2) & (2) & (2) - (2) - (2) & (2) & (2) - (2) - (2) & (2) & (2) - (2) - (2) & (2) & (2) - (2) - (2) & (2) - (2) - (2) & (2) - (2) - (2) - (2) & (2) - ($	Ru(1)-O(1)-C(1)-C(2)	22(3)	N(3)-C(17)-C(18)-N(2)	-107.92(19)
$\begin{array}{c} C(1) - C(1) - C(2) - C(3) & -1.0 + C(1) + C(1) + C(2) & -1.1 + 1.0 + C(1) + C(2) & -1.1 + 1.0 + C(1) + C(2) & -1.0 + C(2) & -1.0 + C(2) & -1.0 + C(2) & -1.0 + C(2) + C(2)$	O(1)-C(1)-C(2)-C(3)	1769(2)	C(16)-N(3)-C(19)-C(20)	-14.2(2)
$\begin{array}{c} C(1)-C(2)-C(3)-C(4)-C(5) & -2(2) & C(1)-P(1)-C(2) & 72.1(3) \\ C(2)-C(3)-C(4)-C(5) & 1.3(3) & C(1)-N(3)-C(1)-C(24) & 72.1(3) \\ C(2)-C(3)-C(4)-C(5)-C(6) & -1.8(3) & C(2)-C(1)-C(2)-C(21) & -1.8(3) \\ C(4)-C(5)-C(6)-C(7) & -179.7(2) & N(3)-C(1)-C(2)-C(25) & 179.8(2) \\ C(4)-C(5)-C(6)-C(1) & 0.1(3) & C(2)-C(2)-C(25) & 2.4(3) \\ C(2)-C(1)-C(6)-C(5) & 2.0(3) & C(1)-C(2)-C(2)-C(22) & -0.6(3) \\ O(1)-C(1)-C(6)-C(7) & 2.5(3) & C(2)-C(2)-C(2)-C(22) & -0.6(3) \\ O(1)-C(1)-C(6)-C(7) & 2.5(3) & C(2)-C(2)-C(2)-C(22) & -1.78(2) \\ C(2)-C(1)-C(6)-C(7) & -178.2(2) & C(2)-C(2)-C(2)-C(22) & -2.1(3) \\ C(2)-C(1)-C(6)-C(7) & -178.5(2) & C(2)-C(2)-C(2)-C(24) & -1.7(3) \\ C(3)-N(1)-C(7)-C(6) & -176.5(2) & C(2)-C(2)-C(2)-C(24) & -1.7(5,6(2) \\ Ru(1)-N(1)-C(7)-C(6) & -3.3(3) & C(2)-C(2)-C(2)-C(24) & -1.7(5,6(2) \\ Ru(1)-N(1)-C(7)-N(1) & -1.7(4) & C(2)-C(2)-C(2)-C(24) & -1.7(5,6(2) \\ C(1)-C(6)-C(7)-N(1) & -1.7(4) & C(2)-C(2)-C(2)-C(24) & -1.7(5,6(2) \\ C(1)-C(6)-C(7)-N(1) & -1.7(4) & C(2)-C(2)-C(2)-C(2) & -2.7(3) \\ C(7)-N(1)-C(8)-C(1) & 9.2.8(2) & C(2)-C(1)-C(24)-C(27) & -178.3(2) \\ C(1)-C(8)-C(9)-C(10) & -2.0(3) & N(3)-C(1)-C(24)-C(23) & -179.90(19) \\ Ru(1)-N(1)-C(8)-C(1) & -2.0(3) & N(3)-C(1)-C(24)-C(23) & -179.90(19) \\ Ru(1)-N(1)-C(8)-C(10) & -2.0(3) & N(3)-C(1)-C(24)-C(23) & -179.90(19) \\ C(13)-C(8)-C(9)-C(10) & 176.53(19) & C(16)-N(2)-C(28)-C(33) & -95.2(3) \\ C(13)-C(8)-C(9)-C(10) & 176.53(19) & C(16)-N(2)-C(28)-C(33) & -95.2(3) \\ C(13)-C(8)-C(9)-C(10) & 176.53(19) & C(16)-N(2)-C(28)-C(33) & -95.2(3) \\ C(13)-C(8)-C(9)-C(10) & 176.53(19) & C(16)-N(2)-C(28)-C(29) & -90.2(3) \\ C(8)-C(9)-C(10)-C(11) & -178.7(2) & C(38)-C(28)-C(29) & -90.2(3) \\ C(13)-C(8)-C(9)-C(11) & -178.7(2) & C(39)-C(39)-C(31) & -0.6(3) \\ C(13)-C(10)-C(11)-C(12) & 1.4(3) & N(2)-C(28)-C(29)-C(34) & 2.2(3) \\ R(1)-C(1)-C(12)-C(13) & 178.16(16) & C(28)-C(29)-C(30) & -2.9(3) \\ C(10)-C(11)-C(12)-C(13) & 178.5(2) & C(3)-C(3)-C(31) & -173.5(19) \\ C(10)-C(11)-C(12)-C(13) & 178.6(2) & C(3)-C(3)-C(31) & -173.6(2) \\ C(10)-C(11)-C(12)-C(13) & 177.3(2) & C(29)-C(30)-C(31) & -0.5(3)$	C(6)-C(1)-C(2)-C(3)	-2 5(3)	C(17)-N(3)-C(19)-C(20)	81 6(3)
$\begin{array}{c} C(1)-C(2)-C(2)-C(2)-C(2) & 0.53(7) & C(1))-C(1)-C(24) &$	C(1)-C(2)-C(3)-C(4)	-2.5(5)	C(16)-N(3)-C(19)-C(20)	72 1(3)
$\begin{array}{c} C(2) C(4) C(5) C(6) & 1.5.(3) & C(1) P(C) C(2) C(2) & 1.5.(3) \\ C(4) C(5) C(6) - C(7) & -179.7(2) & N(3) C(19) - C(20) - C(2) & 1.79.28(19) \\ C(4) - C(5) - C(6) - C(1) & 0.1(3) & C(24) - C(19) - C(20) - C(2) & 2.4(3) \\ C(2) - C(1) - C(6) - C(5) & 2.0(3) & C(19) - C(20) - C(2) & 2.2(3) \\ C(2) - C(1) - C(6) - C(7) & 2.5(3) & C(25) - C(20) - C(2) - C(22) & 4.6(3) \\ O(1) - C(1) - C(6) - C(7) & 2.5(3) & C(25) - C(20) - C(2) - C(22) & 2.6(3) \\ C(2) - C(1) - C(6) - C(7) & 2.5(3) & C(25) - C(20) - C(2) - C(22) & 4.6(3) \\ O(1) - C(1) - C(6) - C(7) & -178.2(2) & C(20) - C(21) - C(22) - C(23) & 2.1(3) \\ C(2) - C(1) - C(6) - C(7) & -178.2(2) & C(20) - C(21) - C(22) - C(23) & -176.6(2) \\ N(1) - N(1) - C(7) - C(6) & -176.5(2) & C(20) - C(21) - C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & 1.78.1(2) & C(26) - C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & -1.7.(4) & C(22) - C(23) - C(24) - C(27) & -178.8(2) \\ N(1) - N(1) - C(8) - C(19) & 92.9(2) & C(20) - C(19) - C(24) - C(23) & 2.7(3) \\ C(7) - N(1) - C(8) - C(13) & 84.8(2) & N(3) - C(19) - C(24) - C(23) & -179.90(19) \\ N(1) - N(1) - C(8) - C(13) & -88.5(2) & C(20) - C(19) - C(24) - C(23) & -179.90(19) \\ N(1) - N(1) - C(8) - C(13) & -88.5(2) & C(20) - C(19) - C(24) - C(23) & -179.90(19) \\ N(1) - C(8) - C(9) - C(10) & -2.0(3) & N(3) - C(19) - N(2) - C(28) - C(29) & -30.3(3) \\ C(13) - C(8) - C(9) - C(14) & 177.02) & C(18) - N(2) - C(28) - C(29) & -30.3(3) \\ C(13) - C(8) - C(9) - C(14) & 177.30(2) & C(16) - N(2) - C(28) - C(29) & -30.3(3) \\ C(13) - C(8) - C(9) - C(14) & -178.10(16) & C(33) - C(28) - C(29) - C(30) & -2.9(3) \\ C(10) - C(11) - C(12) - C(13) & 178.10(16) & C(33) - C(28) - C(29) - C(30) & -2.9(3) \\ C(10) - C(11) - C(12) - C(13) & 178.10(16) & C(33) - C(28) - C(29) - C(30) & -177.35(19) \\ C(9) - C(10) - C(11) - (12) - C(13) & 178.10(16) & C(23) - C(33) & -177.35(19) \\ C(10) - C(11) - C(12) - C(13) & 178.10(16) & C(23) - C(33) - C(33) & -2.9(3) \\ C(10) - C(11) - C(12) - C(13) & 177.36(2) & C(23) - C(33) & -177.35(2) \\ C(10) - C(11)$	C(2)-C(3)-C(4)-C(5)	13(3)	C(17)-N(3)-C(19)-C(24)	-95.9(3)
$\begin{array}{c} C(3)-C(4)-C(5)-C(6)-C(7) & -179.7(2) \\ C(4)-C(5)-C(6)-C(7) & -179.7(2) \\ C(4)-C(5)-C(6)-C(1) & 0.1(3) \\ C(24)-C(5)-C(25) & 179.8(2) \\ O(1)-C(1)-C(6)-C(5) & -177.4(2) \\ N(3)-C(19)-C(20)-C(25) & 2.4(3) \\ C(2)-C(1)-C(6)-C(7) & 2.5(3) \\ C(2)-C(1)-C(6)-C(7) & 2.5(3) \\ C(2)-C(1)-C(6)-C(7) & -178.2(2) \\ C(2)-C(1)-C(6)-C(7) & -178.2(2) \\ C(2)-C(1)-C(6)-C(7) & -178.2(2) \\ C(2)-C(1)-C(6)-C(7) & -178.2(2) \\ C(2)-C(2)-C(2)-C(2)-C(2) \\ C(2)-C(2)-C(2) \\ C(2)-C(2) \\ C(2) \\ C(2)-C(2) \\ C(2) \\ C(2)-C(3) \\ C(3)-C(3) \\ C(3)-C$	C(3)-C(4)-C(5)-C(6)	-1.8(3)	C(24)-C(19)-C(20)-C(21)	-1.8(3)
$\begin{array}{c} (c_1)-c_1(0)-c_1(0)-c_1(1) & (-1)^{-1}(1) & $	C(4)-C(5)-C(6)-C(7)	-1.0(3)	N(3)-C(19)-C(20)-C(21)	-1.0(3)
$\begin{array}{c} C(1)-C(0)-C(1)-C(1)-C(1)-C(1)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2$	C(4)-C(5)-C(6)-C(1)	0.1(3)	C(24)-C(19)-C(20)-C(25)	179.20(1)) 179.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)-C(1)-C(6)-C(5)	-177 A(2)	N(3)-C(19)-C(20)-C(25)	2 A(3)
$\begin{array}{c} C(3) = C(1) - C(6) - C(7) & 2.5(3) & C(23) - C(23) - C(23) - C(23) & C(23) - C(23) \\ C(2) - C(1) - C(6) - C(7) & -178.2(2) & C(20) - C(21) - C(22) - C(23) & 2.1(3) \\ C(3) - N(1) - C(7) - C(6) & -176.5(2) & C(20) - C(21) - C(22) - C(26) & -176.6(2) \\ Ru(1) - N(1) - C(7) - C(6) & -3.3(3) & C(21) - C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & 178.1(2) & C(26) - C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) & -1.7(5) \\ C(7) - N(1) - C(8) - C(9) & 93.8(2) & C(22) - C(23) - C(24) - C(19) & -1.1(3) \\ C(7) - N(1) - C(8) - C(9) & 92.9(2) & C(20) - C(19) - C(24) - C(23) & -179.90(19) \\ Ru(1) - N(1) - C(8) - C(13) & 84.8(2) & N(3) - C(19) - C(24) - C(23) & -179.90(19) \\ Ru(1) - N(1) - C(8) - C(13) & -88.5(2) & C(20) - C(19) - C(24) - C(27) & -178.3(2) \\ C(13) - C(8) - C(9) - C(14) & 177.0(2) & C(16) - N(2) - C(28) - C(33) & -83.2(3) \\ N(1) - C(8) - C(9) - C(14) & 177.0(2) & C(18) - N(2) - C(28) - C(33) & -83.2(3) \\ N(1) - C(8) - C(9) - C(14) & -4.5(3) & C(16) - N(2) - C(28) - C(29) & -90.2(3) \\ C(4) - C(9) - C(10) - C(11) & 0.3(3) & C(18) - N(2) - C(28) - C(29) & -90.2(3) \\ C(4) - C(9) - C(10) - C(11) & -178.7(2) & C(33) - C(28) - C(29) - C(30) & -177.35(19) \\ C(9) - C(10) - C(11) - C(12) & 1.4(3) & N(2) - C(28) - C(29) - C(30) & -177.35(19) \\ C(9) - C(10) - C(11) - C(12) & 1.4(3) & N(2) - C(28) - C(29) - C(30) & -177.35(19) \\ C(9) - C(10) - C(11) - C(12) & 1.7(3) & C(29) - C(30) - C(31) & -179.6(2) \\ C(11) - C(12) - C(13) & -1.3(3) & N(2) - C(28) - C(29) - C(34) & 2.2(3) \\ B(1) - C(11) - C(12) - C(13) & -1.3(3) & N(2) - C(28) - C(29) - C(34) & 2.2(3) \\ B(1) - C(11) - C(12) - C(13) & -1.75.6(2) & C(30) - C(31) - C(32) - C(33) & -0.5(3) \\ C(9) - C(8) - C(13) - C(15) & 5.8(3) & C(29) - C(30) - C(31) - C(32) & -177.3(2) \\ N(1) - C(8) - C(13) - C(15) & 5.8(3) & C(29) - C(33) - C(32) & -177.3(2) \\ N(1) - C(8) - C(13) - C(15) & 5.8(3) & C(29) - C(33) - C(36) & -177.7(2) \\ C(19) - N(3) - C(16) - N(2) & -175.5(2) & C(31) - C(32) - C(33) - C(36) & -173.7(2) \\ $	C(2)-C(1)-C(6)-C(5)	20(3)	C(19)-C(20)-C(21)-C(22)	-0.6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)-C(1)-C(6)-C(7)	2.0(3)	C(25)-C(20)-C(21)-C(22)	177 8(2)
$\begin{array}{c} C(2) = C(1) - C(7) - C(6) & -176.5(2) & C(20) - C(21) - C(22) - C(26) & -1.76.6(2) \\ Ru(1) - N(1) - C(7) - C(6) & -3.3(3) & C(21) - C(22) - C(23) - C(24) & -1.2(3) \\ C(5) - C(6) - C(7) - N(1) & 178.1(2) & C(26) - C(22) - C(23) - C(24) & 177.5(2) \\ C(1) - C(6) - C(7) - N(1) & -1.7(4) & C(22) - C(23) - C(24) - C(27) & 179.8(2) \\ Ru(1) - N(1) - C(8) - C(9) & -93.8(2) & C(22) - C(23) - C(24) - C(23) & -179.90(19) \\ Ru(1) - N(1) - C(8) - C(13) & 84.8(2) & N(3) - C(19) - C(24) - C(23) & -179.90(19) \\ Ru(1) - N(1) - C(8) - C(13) & -88.5(2) & C(20) - C(19) - C(24) - C(27) & -178.3(2) \\ C(13) - C(8) - C(9) - C(10) & -2.0(3) & N(3) - C(19) - C(24) - C(27) & -178.3(2) \\ C(13) - C(8) - C(9) - C(10) & 176.53(19) & C(16) - N(2) - C(28) - C(33) & -83.2(3) \\ N(1) - C(8) - C(9) - C(14) & 177.0(2) & C(18) - N(2) - C(28) - C(23) & -83.2(3) \\ N(1) - C(8) - C(9) - C(14) & -4.5(3) & C(16) - N(2) - C(28) - C(29) & -90.2(3) \\ C(8) - C(9) - C(10) - C(11) & 0.3(3) & C(18) - N(2) - C(28) - C(29) & -90.2(3) \\ C(9) - C(10) - C(11) & -178.7(2) & C(33) - C(28) - C(29) - C(30) & -2.9(3) \\ C(9) - C(10) - C(11) - (12) & 1.4(3) & N(2) - C(28) - C(29) - C(30) & -177.35(19) \\ C(9) - C(10) - C(11) - C(12) & 1.4(3) & N(2) - C(28) - C(29) - C(30) & -177.35(19) \\ C(9) - C(10) - C(11) - C(12) & 1.4(3) & N(2) - C(28) - C(29) - C(34) & 2.2(3) \\ Br(1) - C(11) - C(12) - C(13) & -1.3(3) & N(2) - C(28) - C(29) - C(34) & 2.2(3) \\ Br(1) - C(11) - C(12) - C(13) & -178.10(16) & C(33) - C(28) - C(29) - C(34) & 2.2(3) \\ Br(1) - C(13) - C(18) & -0.4(3) & C(34) - C(29) - C(30) - C(31) & -179.6(2) \\ C(11) - C(12) - C(13) - C(15) & -177.3(2) & C(29) - C(30) - C(31) & -179.6(2) \\ C(11) - C(12) - C(13) - C(15) & -175.6(2) & C(35) - C(31) - C(32) & -173.3(2) \\ N(1) - C(8) - C(13) - C(15) & -175.6(2) & C(35) - C(31) - C(32) - C(33) & -0.5(3) \\ C(9) - C(8) - C(13) - C(15) & -175.6(2) & C(35) - C(31) - C(32) - C(33) & -0.5(3) \\ C(11) - N(3) - C(16) - N(2) & -173.1(2) & N(2) - C(28) - C(33) - C(36) & -177.3(2) \\ N(1) - C(8) - C(13) - C(15) & -175.6(2) & C(35) - C(31) $	C(2)-C(1)-C(6)-C(7)	-1782(2)	C(20)-C(21)-C(22)	21(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)-C(1)-C(0)-C(7)	-176.5(2)	C(20)-C(21)-C(22)-C(25)	-176.6(2)
$\begin{array}{ccccc} C(5)-C(6)-C(7)-N(1) & 178.1(2) & C(2)-C(2)-C(2) & 177.5(2) \\ C(1)-C(6)-C(7)-N(1) & -1.7(4) & C(22)-C(23)-C(24)-C(19) & -1.1(3) \\ C(7)-N(1)-C(8)-C(9) & -93.8(2) & C(22)-C(23)-C(24)-C(27) & 179.8(2) \\ Ru(1)-N(1)-C(8)-C(13) & 84.8(2) & N(3)-C(19)-C(24)-C(23) & 2.7(3) \\ C(7)-N(1)-C(8)-C(13) & 84.8(2) & N(3)-C(19)-C(24)-C(23) & -179.90(19) \\ Ru(1)-N(1)-C(8)-C(13) & -88.5(2) & C(20)-C(19)-C(24)-C(27) & -178.3(2) \\ C(13)-C(8)-C(9)-C(10) & 176.53(19) & C(16)-N(2)-C(28)-C(33) & -83.2(3) \\ N(1)-C(8)-C(9)-C(14) & 177.0(2) & C(18)-N(2)-C(28)-C(33) & -83.2(3) \\ N(1)-C(8)-C(9)-C(14) & 177.3(2) & C(18)-N(2)-C(28)-C(29) & -90.2(3) \\ C(9)-C(10)-C(11) & 0.3(3) & C(16)-N(2)-C(28)-C(29) & -90.2(3) \\ C(9)-C(10)-C(11) & -178.7(2) & C(33)-C(28)-C(29)-C(30) & -2.9(3) \\ C(9)-C(10)-C(11)-E(12) & 1.4(3) & N(2)-C(28)-C(29)-C(30) & -177.35(19) \\ C(9)-C(10)-C(11)-E(12) & 1.4(3) & N(2)-C(28)-C(29)-C(34) & 176.6(2) \\ C(10)-C(11)-C(12)-C(13) & -1.3(3) & N(2)-C(28)-C(29)-C(34) & 176.6(2) \\ C(11)-C(12)-C(13) & -1.3(3) & N(2)-C(28)-C(29)-C(34) & 1.76.6(2) \\ C(11)-C(12)-C(13) & -178.16(16) & C(28)-C(29)-C(34) & 1.77.35(19) \\ C(9)-C(10)-C(11)-C(12) & 1.73.1(2) & N(2)-C(28)-C(29)-C(33) & -1.77.3(2) \\ C(9)-C(8)-C(13)-C(15) & 177.3(2) & C(29)-C(30)-C(31)-C(35) & -1.77.3(2) \\ C(9)-C(8)-C(13)-C(15) & -175.6(2) & C(3)-C(31)-C(32) & 1.7(3) \\ C(9)-C(8)-C(13)-C(15) & -175.6(2) & C(3)-C(3)-C(3) & -185.(2) \\ N(1)-C(8)-C(13)-C(15) & -175.6(2) & C(3)-C(3)-C(3) & -175.6(2) \\ C(11)-C(12)-C(13)-C(15) & -175.6(2) & C(3)-C(3)-C(3) & -175.6(2) \\ C(11)-C(13)-C(15) & -175.6(2) & C(3)-C(3)-C(3) & -175.6(2) \\ C(11)-C(13)-C(15) & -175.6(2) & C(3)-C(3)-C(3) & -173.7(2) \\ C(9)-C(8)-C(13)-C(15) & -173.1(2) & N(2)-C(28)-C(3)-C(3) & -173.7(2) \\ C(19)-N(3)-C(16)-N(2) & -173.1(2) & N(2)-C(28)-C(3)-C(3) & -173.7(2) \\ C(19)-N(3)-C(16)-N(1) & -173.6(117) & C(3)-C(3)-C(3) & -173.7(2) \\ C(19)-N(3)-C(16)-N(1) & -173.6(117) & C(3)-C(3)-C(3)-C(36) & -173.7(2) \\ C(19)-N(3)-C(16)-N(1) & -173.6(117) & C(3)-C(3)-C(3)-C(3) & -173.6(3) \\ C(28)-N(2)-C(16)-N(3) & -6.2(3) & C(10)-C(3)$	$R_{II}(1)-N(1)-C(7)-C(6)$	-33(3)	C(21)-C(22)-C(23)-C(24)	-1.2(3)
$\begin{array}{c} C(3) \in C(3) = C(7) + C(1) \\ C(1) = C(6) = C(7) + C(1) \\ C(1) = C(8) + C(9) \\ C(1) = C(8) + C(9) \\ C(1) = C(8) + C(13) \\ C(1) = C(8) + C(13) \\ C(1) = C(13) + C(13) \\ C(1) = C(13) + C(13) \\ C(13) + C(13) + C(13) \\ C(14) + C(9) + C(14) \\ C(14) + C(9) + C(14) \\ C(14) + C(13) + C(11) \\ C(13) + C(13) + C(11) \\ C(13) + C(13) + C(11) \\ C(13) + C(13) + C(13) \\ C(14) + C(13) + C(11) \\ C(13) + C(13) + C(13) \\ C(14) + C(13) + C(13) \\ C(14) + C(13) + C(13) \\ C(14) + C(13) + C(13) \\ C(13) + C(13) \\ C(13) + C(13) + C(13) \\ C(13) + C(13) \\ C(13) + C(13) \\ C(13) + C(13)$	C(5)-C(6)-C(7)-N(1)	178 1(2)	C(26)-C(22)-C(23)-C(24)	1775(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)-C(6)-C(7)-N(1)	-170.1(2)	C(22)-C(23)-C(24)-C(19)	-1 1(3)
$\begin{array}{c} C(1) \cap (1) - C(2) - C(2$	C(7)-N(1)-C(8)-C(9)	-93 8(2)	C(22) - C(23) - C(24) - C(17)	179.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{1}(1)-N(1)-C(8)-C(9)$	92 9(2)	C(22) - C(23) - C(24) - C(23)	27(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-N(1)-C(8)-C(13)	84 8(2)	N(3)-C(19)-C(24)-C(23)	-179.90(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{\rm II}(1)$ - $N(1)$ - $C(8)$ - $C(13)$	-88 5(2)	C(20)-C(19)-C(24)-C(27)	-1783(2)
$\begin{array}{c} C(1) > C(3) - C(1) > C($	C(13)-C(8)-C(9)-C(10)	-20(3)	N(3)-C(19)-C(24)-C(27)	-0.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(8)-C(9)-C(10)	17653(19)	C(16)-N(2)-C(28)-C(33)	95 2(3)
$\begin{array}{c} C(15) C(0) C(14) & -1.78.(2) & C(15) C(25) & -90.2(3) \\ C(16)-C(10)-C(11) & 0.3(3) & C(16)-N(2)-C(28)-C(29) & -90.2(3) \\ C(14)-C(9)-C(10)-C(11) & -178.7(2) & C(33)-C(28)-C(29)-C(30) & -2.9(3) \\ C(9)-C(10)-C(11)-C(12) & 1.4(3) & N(2)-C(28)-C(29)-C(30) & -177.35(19) \\ C(9)-C(10)-C(11)-Br(1) & -178.10(16) & C(33)-C(28)-C(29)-C(34) & 176.6(2) \\ C(10)-C(11)-C(12)-C(13) & -1.3(3) & N(2)-C(28)-C(29)-C(34) & 2.2(3) \\ Br(1)-C(11)-C(12)-C(13) & 178.16(16) & C(28)-C(29)-C(30)-C(31) & 0.0(3) \\ C(11)-C(12)-C(13) & -178.10(16) & C(28)-C(29)-C(30)-C(31) & -179.6(2) \\ C(11)-C(12)-C(13) & 178.16(16) & C(28)-C(29)-C(30)-C(31) & -179.6(2) \\ C(11)-C(12)-C(13)-C(18) & -0.4(3) & C(29)-C(30)-C(31)-C(32) & 1.7(3) \\ C(9)-C(8)-C(13)-C(12) & 2.0(3) & C(29)-C(30)-C(31)-C(32) & 1.77.3(2) \\ C(9)-C(8)-C(13)-C(12) & -176.52(19) & C(30)-C(31)-C(32) & -177.3(2) \\ N(1)-C(8)-C(13)-C(15) & -175.6(2) & C(35)-C(31)-C(32) & -0.5(3) \\ C(9)-C(8)-C(13)-C(15) & 5.8(3) & C(29)-C(28)-C(33)-C(32) & 178.5(2) \\ N(1)-C(8)-C(13)-C(15) & 5.8(3) & C(29)-C(28)-C(33)-C(32) & 178.42(19) \\ C(17)-N(3)-C(16)-N(2) & -173.1(2) & N(2)-C(28)-C(33)-C(36) & -173.7(2) \\ C(19)-N(3)-C(16)-N(1) & 17.8(3) & N(2)-C(28)-C(33)-C(36) & 0.7(3) \\ C(17)-N(3)-C(16)-Ru(1) & -173.61(17) & C(31)-C(32)-C(33)-C(36) & -2.3(3) \\ C(28)-N(2)-C(16)-N(3) & -6.2(3) & C(16)-Ru(1)-C(37)-C(38) & 95.1(2) \\ C(28)-N(2)-C(16)-Ru(1) & -13.8(3) & O(1)-Ru(1)-C(37)-C(38) & 95.1(2) \\ C(28)-N(2)-C(16)-Ru(1) & -13.8(3) & O(1)-Ru(1)-C(37)-C(38) & 10.1(2) \\ \end{array}$	C(13)-C(8)-C(9)-C(14)	177.0(2)	C(18)-N(2)-C(28)-C(33)	-83.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(8)-C(9)-C(14)	-4 5(3)	C(16)-N(2)-C(28)-C(29)	-90.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)-C(9)-C(10)-C(11)	0.3(3)	C(18)-N(2)-C(28)-C(29)	91.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-C(9)-C(10)-C(11)	-178.7(2)	C(33)-C(28)-C(29)-C(30)	-2.9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(10)-C(11)-C(12)	1.4(3)	N(2)-C(28)-C(29)-C(30)	-177.35(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(10)-C(11)-Br(1)	-178.10(16)	C(33)-C(28)-C(29)-C(34)	176.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-C(11)-C(12)-C(13)	-1.3(3)	N(2)-C(28)-C(29)-C(34)	2.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(1)-C(11)-C(12)-C(13)	178.16(16)	C(28)-C(29)-C(30)-C(31)	0.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-C(12)-C(13)-C(8)	-0.4(3)	C(34)-C(29)-C(30)-C(31)	-179.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-C(12)-C(13)-C(15)	177.3(2)	C(29)-C(30)-C(31)-C(32)	1.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(8)-C(13)-C(12)	2.0(3)	C(29)-C(30)-C(31)-C(35)	-177.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(8)-C(13)-C(12)	-176.52(19)	C(30)-C(31)-C(32)-C(33)	-0.5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(8)-C(13)-C(15)	-175.6(2)	C(35)-C(31)-C(32)-C(33)	178.5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(8)-C(13)-C(15)	5.8(3)	C(29)-C(28)-C(33)-C(32)	4.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-N(3)-C(16)-N(2)	-173.1(2)	N(2)-C(28)-C(33)-C(32)	178.42(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)-N(3)-C(16)-N(2)	-4.4(3)	C(29)-C(28)-C(33)-C(36)	-173.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-N(3)-C(16)-Ru(1)	17.8(3)	N(2)-C(28)-C(33)-C(36)	0.7(3)
C(28)-N(2)-C(16)-N(3)175.2(2)C(31)-C(32)-C(33)-C(36)175.5(2)C(18)-N(2)-C(16)-N(3)-6.2(3)C(16)-Ru(1)-C(37)-C(38)95.1(2)C(28)-N(2)-C(16)-Ru(1)-13.8(3)O(1)-Ru(1)-C(37)-C(38)10.1(2)	C(17)-N(3)-C(16)-Ru(1)	-173.61(17)	C(31)-C(32)-C(33)-C(28)	-2.3(3)
C(18)-N(2)-C(16)-N(3)-6.2(3)C(16)-Ru(1)-C(37)-C(38)95.1(2)C(28)-N(2)-C(16)-Ru(1)-13.8(3)O(1)-Ru(1)-C(37)-C(38)10.1(2)	C(28)-N(2)-C(16)-N(3)	175.2(2)	C(31)-C(32)-C(33)-C(36)	175.5(2)
C(28)-N(2)-C(16)-Ru(1) -13.8(3) $O(1)-Ru(1)-C(37)-C(38)$ 10.1(2)	C(18)-N(2)-C(16)-N(3)	-6.2(3)	C(16)-Ru(1)-C(37)-C(38)	95.1(2)
	C(28)-N(2)-C(16)-Ru(1)	-13.8(3)	O(1)-Ru(1)-C(37)-C(38)	10.1(2)

N(1)-Ru(1)-C(37)-C(38)	-81.3(2)
Cl(1)-Ru(1)-C(37)-C(38)	-170.3(2)
Ru(1)-C(37)-C(38)-C(39)	-12.3(4)
Ru(1)-C(37)-C(38)-C(43)	168.22(19)
C(43)-C(38)-C(39)-C(40)	-0.6(3)
C(37)-C(38)-C(39)-C(40)	179.9(2)
C(38)-C(39)-C(40)-C(41)	-0.6(4)
C(39)-C(40)-C(41)-C(42)	1.2(4)
C(40)-C(41)-C(42)-C(43)	-0.4(5)
C(41)-C(42)-C(43)-C(38)	-0.9(5)
C(39)-C(38)-C(43)-C(42)	1.4(4)
C(37)-C(38)-C(43)-C(42)	-179.1(2)

Symmetry transformations were used to generate equivalent atoms.