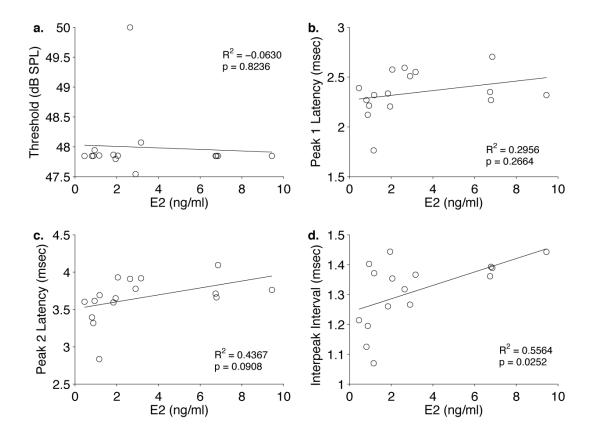
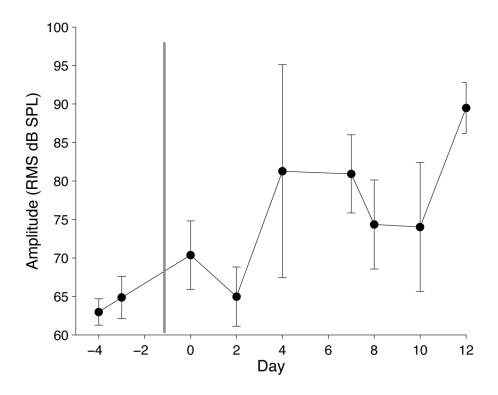

Supplementary Table 1. Number of missing ABR latency data points filled in with mean values


PEAK 1* PEAK 2**

	Non-breeding		Breeding		Non-breeding		Breeding	
	Male	Female	Male	Female	Male	Female	Male	Female
Click	0	0	0	0	0	0	0	0
500 Hz	3	1	4	4	3	1	4	4
1000 Hz	1	0	4	3	1	0	4	3
2000 Hz	1	0	2	2	1	0	2	2
3000 Hz	1	0	0	1	1	0	2	1
4000 Hz	1	0	0	0	1	0	1	0
6000 Hz	1	0	1	0	1	0	1	0
8000 Hz	1	0	2	2	1	0	2	1


^{*}Filled in values represent 35 out of 312 total peak 1 data points (11.2%)
**Filled in values represent 37 out of 312 total peak 1 data points (11.9%)


Supplementary Fig 1. Blind observer and quantitative analyses verify visual estimates of ABR thresholds. Each circle represents the threshold value for a representative ABR response. The dashed line represents the unity line. Pearson's r and p value are indicated for each comparison. a) Blind observer threshold estimates (y-axis) for a subset (10%) of all ABR responses significantly correlate with estimates made by one author (x-axis). b) Visual estimates (x-axis) significantly correlate with an automated estimate (y-axis) comparing the maximum voltage response in a 10 msec post-stimulus window with the maximum pre-stimulus voltage displacement plus 2 standard deviations.

Supplementary Fig 2. ABR latencies, but not thresholds, correlate with male plasma T level. a) Individual ABR thresholds were averaged across all stimulus frequencies to give a single threshold value for each bird. These values are plotted as a function of individual T levels. Thresholds do not correlate with hormone level in male white-crowned sparrows. b) Individual iso-intensity peak 1 latencies were averaged across all stimulus frequencies to give a single peak 1 latency for each bird. Peak 1 latencies significantly correlate with T level (p<0.05). Similar results were found for Peak 2 latencies (c) and Inter-peak intervals (d).

Supplementary Fig 3. ABR latencies and thresholds do not correlate with female plasma E_2 level. *a*) Individual ABR thresholds were averaged across all stimulus frequencies to give a single threshold value for each bird. These values are plotted as a function of individual E_2 levels. Thresholds do not correlate with hormone level in female white-crowned sparrows. *b*) Individual iso-intensity peak 1 latencies were averaged across all stimulus frequencies to give a single peak 1 latency for each bird. Peak 1 latencies do not significantly correlate with E_2 level. Similar results were found for Peak 2 latencies (*c*) and Inter-peak intervals (*d*).

Supplementary Fig 4. Non-breeding songs have lower amplitudes than breeding songs. We recorded an individual male white-crowned sparrow under non-breeding conditions until day 0, at which point we implanted him with a subcutaneous T pellet and switched him to a long-day photoperiod. The vertical grey line separates songs produced under non-breeding conditions (left) from those produced during the transition into breeding (right). After exposure to breeding-like conditions, song amplitude gradually rises from 70.4 +/- 4.45 dB SPL on day 0 to 87.5 +/- 4.15 dB SPL on day 12. Data are mean +/- STDEV.