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Web-based Supplementary Materials for “A semiparametric

missing-data-induced intensity method for missing covariate data in

individually matched case-control studies”

by

Mulugeta Gebregziabher and Bryan Langholz

Web Appendix A: Derivation of the CCA from the missing data induced model

This approach, which elaborates on the discussion in Section 2 of the paper, is based on

choosing the appropriate (stratified) partial likelihood based on the induced model. So,

consider φ completely unstructured in t and z. The induced model is

λ(t, x, z, m; α(.), β1, β2; φ(., .)) = α(t) exp(β1x(1−m) + β2z + φ(t, z)m)

=





α(1−m)(t) exp(β1x + β2z) for non-missing

αm(t, z) exp(β2z) for missing

.(A.1)

where αm(t, z) = α(t)φ(t, z). In forming a partial likelihood, it is natural to define separate

baseline hazards for parts of the model that are unstructured functions of t. Thus, for the

induced model (A.1), stratification is first on missing status, with non-missing in one stratum

(with parametric terms for Z and X). Among the missing, stratification is also on z. Although

the model for the missing subject includes a exp(β2z) factor, the likelihood contributions

from the missing are “matched” on z so that such factors will cancel from numerator and

denominator, i.e., subjects with missing X can be dropped from the analysis, equivalent to

the CCA.

Empirical observations from our simulation studies also indicate that if we saturate the

model with interactions of M with t and Z, the parameter estimates from MMI tend to be

similar to CCA estimates.
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Web Appendix B: Asymptotic information calculations

Expression for β asymptotic Fisher information from the SMI partial likelihood with

dichotomous X

We start with a theorem for the consistency and asymptotic normality of and, in particular,

the asymptotic information for, the SMI partial likelihood

Theorem 1: Let (Ni, Yi, Xi,Mi), i = 1, 2, . . . be independent replicates of (N, Y, X,M)

as defined in Section 2 with G-intensity of the form λ(t|G) = λ0(t) exp(β0X(t)(1−M(t)) +

η0M(t)) and let U = {1, . . . , m}. For 1:(m−1) individually matched data, assuming the con-

ditional independence assumption for the missingness and Conditions 1-6 of Goldstein and

Langholz (1992), β̂, η̂ are consistent and asymptotically normal with per subject asymptotic

information given by

Γ = E





∫ τ

0

1

m

∑

j∈U

exp(β0Xj(t)(1−Mj(t)) + η0Mj(t))vU(t)p(t)λ0(t) dt



 ,

where p(t) = Pr(Yi(t) = 1) and vr is a 2×2 information matrix which is a function of set r

with components,

vββ,r(t) =
∑

i∈U

Pi(t; β0, η0)[Xi(t)(1−Mi(t))− Eβ,r(t; β0, η0)]
2

vβη,r(t) =
∑

i∈U

Pi(t; β0, η0)[Xi(t)(1−Mi(t))− Eβ,r(t; β0, η0)][Mi(t)− Eη,r(t; β0, η0)]

vηη,r(t) =
∑

i∈U

Pi(t; β0, η0)[Mi(t)− Eη,r(t; β0, η0)]
2

and

Pi,r(t; β, η) =
Yi(t) exp(βXi(t)(1−Mi(t)) + ηMi(t))∑

j∈r Yj(t) exp(βXj(t)(1−Mj(t)) + ηMj(t))

Pi(t; β, η) =
Yi(t) exp(βXi(t)(1−Mi(t)) + ηMi(t))∑m

j=1 Yj(t) exp(βXj(t)(1−Mj(t)) + ηMj(t))

Eβ,r(t; β, η) =
∑

j∈r

Xj(t)(1−Mj(t))Pj(t; β, η)

Eη,r(t; β, η) =
∑

j∈r

Mj(t)Pj(t; β, η)
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Further, the AFI for β, accounting for the estimation of η0 is the inverse of the β, β corner

of the inverse expected information matrix,

AFISMI = (Γ−1
ββ )−1 = Γββ − Γβη[Γηη]

−1Γηβ. (A.2)

The proof of consistency and asymptotic normality, and the expression for the asymptotic

information per subject Γ is a direct application of Theorem 3 of Goldstein and Langholz

(1992) using the missing data induced intensity that results under simple random sampling

of controls and the conditional independence assumption. We note that the conditions are

standard and mild, the main requirement that the integral of the expected information exists.

The expression for AFISMI is the Fisher information for β when estimating η0 as a nuisance

parameter and is based on a well known expression for computing a corner of the inverse of

a matrix.

Special case used for efficiency comparisons

We refer to the conditions and notation given in section 2.1 of the main paper. For full (non-

missing) data from 1:m− 1 data, the asymptotic information for β was derived in Goldstein

& Langholz (1992), expression (22) and can be written as

AFIfull =
1

m

∑

(m0,m1):m0+m1=m

(
m

m0 m1

)
πm1(1− π)m0

m1e
β0m0

m0 + m1eβ0
.

where we are using
(

m
m0 m1

)
in a non-standard way, that is consistent with the multinomial

coefficient, to represent the binomial coefficient m!
m0!m1!

.

For CCA partial likelihood estimation analysis, contributions to the asymptotic informa-

tion are only the subject of members in risk set with non-missing data. Thus, we view

the problem computing the AFI for the sampling distribution from the “non-missing status

stratum” when the control selection was simple randomly sampling from the entire risk set.

Conditional on the number of non-missing in the sample m−m2, the controls are a simple

random sample of m−m2−1 from the controls not missing X in the risk set. So, noting that
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the probability of exposure conditional on non-missing is pr(X = 1|M = 0) = π1/(1− q)

AFI(m−m2) =
1

m−m2

∑

(m0,m1):m0+m1=m−m2

(
m−m2

m0 m1

) (
π0

1− q

)m0
(

π1

1− q

)m1 m1e
β0m0

m0 + m1eβ0

Thus, applying Theorem 4 of Borgan, Goldstein, and Langholz (1995), the CCA information

is the mean of AFI(m−m2) over the distribution of number of missing among the controls,

m2 − 1. With some calculation, the CCA AFI can be shown to be

AFICCA =
1

m

m∑

m2=0

(
m

m2 m−m2

)
qm2(1− q)m−1−m2 AFI(m−m2)

=
1

m

m∑

m2=0

(
m

m2 m−m2

) ∑

(m0,m1):m0+m1=m−m2

(
m−m2

m0 m1

)
[(1− q)− π1]

m0πm1
1

m1e
β0m0

m0 + m1eβ0

=
1

m

∑

(m0,m1,m2):
∑2

j=0
mj=m

(
m

m0 m1 m2

)
πm0

0 πm1
1 qm2

m1e
β0m0

m0 + m1eβ0
.

Finally, for the SMI partial likelihood estimator, note that the (m0,m1,m2) combinations

have a multinomial(π0, π1, q; m) distribution, that vU only depends on (m0,m1,m2) from the

realization U and simplifying, Γ is proportional to

1

m

∑

(m0,m1,m2):
∑2

j=0
mj=m

(
m

m0 m1 m2

)
πm0

0 πm1
1 qm2v(m0, m1, m2)(m0 + m1e

β0 + m2e
η0)

where the components v(m0,m1,m2) are as described in the main paper. The AFISMI

corresponding to β can be computed using (A.2).

Γ∗(q, b) in the main paper yields the above expression for the values of q and b indicated.

Web Appendix C: Additional Simulation results comparing CCA, SMI, and

MMI methods

Additional bias and efficiency simulation results when n = 100 for 1:2 matching with no

confounding (βZ = 0) with βX = 0 and βX = 0.69 and are given in Tables 1 to 2, respectively.

[Table 1 about here.]

[Table 2 about here.]
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Web Appendix D: Simulation results comparing semi-parametric induced

intensity estimators to other estimators

Using the simulation study described in Section 3 of the main paper, we compared the three

induced-intensity estimators to the following missing data approaches:

Mid-Point Imputation (MPI). The mid-point of the predicted probability of X = 1 was

calculated from a logistic regression of X on Z and D, by plugging D = 1/2 in the prediction

model. The analysis was then implemented by replacing the missing X values by the predicted

mid-points (Paik and Sacco, 2000).

Weighted Conditional Likelihood (WCL). Propensity scores were computed for X being

observed (i.e. M=0) as a function of D and Z. A subject’s “weight” was then defined as

the log of the ratio of the propensity scores for the case and control for that subject. These

weights were included as an offset term in the model (Lipsitz et al., 1998).

Multiple Imputation (MI). Five data sets with the missing X observations were imputed

using a monotone logistic regression procedure that included Z and D. Then each data set

was analyzed using methods described in ((Rubin, 1987)).

The results are tabulated in Tables 3 to 6 and are described in Section 3.2 of the main

text.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

Web Appendix E: : Comparison with other methods via data examples

Two other methods of interest that are not easy to implement using standard software are

the Classic (SCC2000) and Bayesian (SCB2000) approaches of Satten and Caroll (Satten
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and Carroll, 2000) as well as the Bayesian semi-parametric method (BSP2005) (Sinha et al.,

2004; Sinha et al., 2005). Even though we need to undertake simulation studies to make real

comparison, we provide analysis results that show overall how one gets different results for

some data examples. We present results for the analysis of two data sets (the LA endometrial

cancer study and the low-birth weight study that have been extensively studied these papers).

Interestingly, in those examples, we clearly see the gain in efficiency when using modeled

missing indicators. In practice, the simplicity of the MMI and the fact that it does not

necessarily require MAR and leads to valid inference when missingness does not depend on

case-control status is an advantage. The proposed method is very simple to use and can be

performed using existing standard software without requiring any complex programming. It

does not also require making model assumptions on the missing covariate.

[Table 7 about here.]

[Table 8 about here.]
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Table 1
Percent relative bias (PRB), Relative efficiency(REff),Power or Type I error rate and 95% CI (95CI) for n = 100

and 1:2 matching, 50% missing. Based on 1000 trials.

Simulation Scenario: βX=0 and βZ=0

for exp(β̂X) for exp(β̂Z)
Method Miss Type PRB Reff Power 95CI PRB Reff TypeIError 95CI

FULLadj 0.01 1.00 0.04 0.96 0.01 1.00 0.06 0.94
CCA MCAR 0.04 0.48 0.05 0.95 0.01 0.50 0.05 0.95

MAR(Z) 0.02 0.50 0.05 0.95 0 0.50 0.07 0.93
MAR(D) 0.04 0.39 0.03 0.97 0.02 0.40 0.05 0.95

NI(X) 0.02 0.49 0.04 0.96 0.02 0.57 0.05 0.95
NI(X,Z) 0.04 0.49 0.05 0.95 0.02 0.53 0.07 0.93

SMI MCAR 0.02 0.72 0.06 0.94 0.01 1.00 0.06 0.94
MAR(Z) 0 0.72 0.04 0.96 0.01 1.00 0.06 0.94
MAR(D) 0.05 0.57 0.03 0.97 0.01 0.89 0.05 0.95

NI(X) 0 0.67 0.05 0.95 0.01 1.00 0.05 0.95
NI(X,Z) 0.01 0.70 0.05 0.95 0.01 1.00 0.06 0.94

MMI MCAR 0.03 0.69 0.05 0.95 0 0.71 0.07 0.93
MAR(Z) 0 0.70 0.04 0.96 0 0.71 0.07 0.93
MAR(D) 0.06 0.54 0.04 0.96 0.01 0.57 0.05 0.95

NI(X) 0.01 0.66 0.06 0.94 0.02 0.77 0.05 0.95
NI(X,Z) 0.01 0.67 0.04 0.96 0 0.74 0.06 0.94

MI MCAR 0.03 0.65 0.06 0.94 0.01 0.94 0.05 0.95
MAR(Z) 0.01 0.67 0.06 0.94 0.01 0.94 0.06 0.94
MAR(D) 0.04 0.53 0.06 0.94 0.02 0.89 0.04 0.96

NI(X) 0.02 0.62 0.07 0.93 0.01 0.94 0.05 0.95
NI(X,Z) 0.01 0.65 0.06 0.94 0.01 0.94 0.06 0.94
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Table 2
Percent relative bias (PRB), Relative efficiency(REff),Power or Type I error rate and 95% CI (95CI) for n = 100

and 1:2 matching, 50% missing. Based on 1000 trials.

Simulation Scenario: βX=0.69 and βZ=0

for exp(β̂X) for exp(β̂Z)
Method Miss Type PRB Reff Power 95CI PRB Reff TypeIError 95CI

FULLadj 4.3 1.00 0.69 0.96 0.01 1.00 0.05 0.95
CCA MCAR 18.8 - 0.26 0.96 0.02 0.49 0.04 0.96

MAR(Z) 20.3 - 0.25 0.94 0.01 0.49 0.05 0.95
MAR(D) 26.1 - 0.21 0.96 0.00 0.40 0.03 0.97

NI(X) 13.0 - 0.24 0.96 0.00 0.56 0.05 0.95
NI(X,Z) 17.4 - 0.27 0.97 0.01 0.53 0.05 0.95

SMI MCAR 4.3 0.75 0.38 0.96 0.10 1.00 0.08 0.92
MAR(Z) 2.9 0.75 0.40 0.94 0.10 1.00 0.08 0.92
MAR(D) 2.9 0.61 0.29 0.96 0.11 0.90 0.06 0.94

NI(X) 7.2 - 0.34 0.95 0.10 1.00 0.08 0.92
NI(X,Z) 4.3 0.73 0.38 0.96 0.10 1.00 0.08 0.92

MMI MCAR 4.3 0.71 0.42 0.95 0.02 0.72 0.05 0.95
MAR(Z) 5.8 0.71 0.41 0.94 0.01 0.72 0.06 0.94
MAR(D) 8.7 - 0.32 0.96 0.00 0.56 0.03 0.97

NI(X) 2.9 0.68 0.37 0.96 0.00 0.75 0.03 0.97
NI(X,Z) 7.2 - 0.40 0.96 0.00 0.75 0.04 0.96

MI MCAR 5.8 0.65 0.39 0.94 0.01 0.90 0.05 0.95
MAR(Z) 7.2 - 0.39 0.93 0.00 0.90 0.06 0.94
MAR(D) 11.6 - 0.33 0.92 0.01 0.82 0.05 0.95

NI(X) 4.3 0.64 0.36 0.95 0.04 0.95 0.04 0.96
NI(X,Z) 7.2 - 0.39 0.93 0.02 0.95 0.04 0.96
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Table 3
Percent relative bias in exp(β̂X) in complete case analysis (CCA), single missing indicator(SMI), modeled missing
indicator (MMI), weighted conditional likelihood (WCL), mid-point imputation(MPI) and multiple imputation (MI)

for simulation scenarios, no versus strong-negative confounding, 1:1 design, missing data proportion =20% and
50%, number of case-control sets=400, exp(βX)=2,exp(βZ)=1.42, pr(X = 1) = 0.5. Based on 1000 trials.

pr(M = 1) Confounding Missing type CCA SMI MMI WCL MPI MI

50% no MCAR 1.6 0.9 1.1 1.6 1.0 0.6
MAR(Z) 1.8 0.7 0.9 1.8 0.8 0.5
MAR(D) 3.0 2.3 2.6 3.0 0.3 1.8
NI(X) 4.4 1.4 1.7 4.4 1.8 1.5
NI(X,Z) 2.7 1.8 2.1 2.7 2.1 1.8

50% strong MCAR 2.6 -9.6 0.2 2.6 0.0 1.3
MAR(Z) 2.0 -7.9 1.1 2.0 1.0 1.7
MAR(D) 4.7 -8.2 1.9 4.7 1.3 1.9
NI(X) 3.7 -5.4 1.0 3.7 -0.2 1.2
NI(X,Z) 3.9 -3.6 1.0 3.9 0.8 2.2

20% no MCAR 0.6 0.4 0.5 0.6 0.3 0.4
MAR(Z) 0.5 0.5 0.6 0.5 0.4 0.9
MAR(D) 0.2 0.2 0.2 0.2 -0.1 0.4
NI(X) 0.6 0.4 0.5 0.6 0.4 0.5
NI(X,Z) 0.3 0.5 0.6 0.3 0.5 0.6

20% strong MCAR 1.7 -3.3 1.2 1.7 1.1 1.2
MAR(Z) 2.4 -3.4 1.4 2.4 1.2 1.6
MAR(D) 1.7 -1.3 1.5 1.7 1.4 1.5
NI(X) 0.4 -1.7 0.5 0.4 0.1 1.1
NI(X,Z) 1.2 0.9 1.0 1.1 0.8 1.5
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Table 4
Percent relative bias in exp(β̂Z) in complete case analysis (CCA), single missing indicator(SMI), modeled missing
indicator (MMI), weighted conditional likelihood (WCL),mid-point imputation(MPI) and multiple imputation (MI)

for simulation scenarios, no versus strong-negative confounding, 1:1 design, missing data proportion =20% and
50%, number of case-control sets=400, exp(βX)=2,exp(βZ)=1.42, pr(X = 1) = 0.5. Based on 1000 trials.

Pr(M=1) Confounding Missing type CCA SMI MMI WCL MPI MI

50% no MCAR 1.9 0.8 0.7 1.9 0.8 0.5
MAR(Z) 2.1 0.8 0.5 2.1 0.8 0.5
MAR(D) 2.4 0.6 0.5 2.9 0.7 0.6
NI(X) 2.7 0.9 0.9 2.7 0.8 0.6
NI(X,Z) 1.9 2.1 0.6 -0.1 -0.8 -1.2

50% strong MCAR 1.5 -11 0.7 1.5 0.6 0.1
MAR(Z) 1.0 -12 0.9 1.0 0.8 0.2
MAR(D) 2.8 -11 1.0 2.8 1.0 0.3
NI(X) 0.0 -7.5 0.0 -4.1 -3.1 -3.5
NI(X,Z) 0.3 -7.4 -0.1 -5.6 -4.3 -4.7

20% no MCAR 1.5 0.8 1.1 1.4 0.7 0.4
MAR(Z) 1.2 0.9 1.1 1.1 0.7 0.4
MAR(D) 0.9 0.6 0.7 1.1 0.7 0.4
NI(X) 1.3 0.8 1.1 1.3 0.7 0.4
NI(X,Z) 1.2 1.1 0.9 -0.4 -1.1 -1.3

20% strong MCAR 1.0 -4.5 0.9 1.0 0.8 0.1
MAR(Z) 0.9 -5.3 0.7 0.8 0.8 0.2
MAR(D) 0.7 -2.7 0.6 0.8 0.8 0.1
NI(X) 0.2 -2.1 0.4 -2.1 -0.2 -0.7
NI(X,Z) 0.5 -1.8 0.7 -3.1 -1.3 -1.8
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Table 5
Relative efficiency in β̂X in complete case analysis (CCA), single missing indicator(SMI), modeled missing indicator

(MMI), weighted conditional likelihood (WCL), mid-point imputation(MPI) and multiple imputation (MI) for
simulation scenarios, no versus strong-negative confounding, 1:1 design, missing data proportion =20% and 50%,

number of case-control sets=400, exp(βX)=2,exp(βZ)=1.42, pr(X = 1) = 0.5. Based on 1000 trials.

Pr(M=1) Confounding Missing type CCA SMI MMI WCL MPI MI

50% no MCAR 0.48 0.71 0.71 0.48 0.71 0.67
MAR(Z) 0.48 0.77 0.77 0.48 0.77 0.71
MAR(D) 0.40 0.53 0.53 0.40 0.63 0.56
NI(X) 0.44 0.67 0.67 0.44 0.67 0.50
NI(X,Z) 0.46 0.67 0.67 0.46 0.67 0.67

50% strong MCAR 0.50 - 0.71 0.50 0.71 0.59
MAR(Z) 0.53 - 0.71 0.53 0.71 0.77
MAR(D) 0.42 - 0.59 0.42 0.71 0.63
NI(X) 0.42 - 0.63 0.42 0.67 0.59
NI(X,Z) 0.48 - 0.71 0.48 0.71 0.71

20% no MCAR 0.91 1.00 1.00 0.91 1.0 1.00
MAR(Z) 0.91 1.00 1.00 0.91 1.0 1.00
MAR(D) 0.91 1.00 1.00 0.91 1.0 1.00
NI(X) 0.91 1.00 1.00 0.91 1.0 1.00
NI(X,Z) 0.91 1.00 1.00 0.91 1.0 1.00

20% strong MCAR 0.83 - 0.91 0.83 0.91 0.91
MAR(Z) 0.83 - 0.91 0.83 0.91 0.91
MAR(D) 0.77 - 0.83 0.77 0.91 0.91
NI(X) 0.83 - 0.91 0.83 0.91 0.91
NI(X,Z) 0.83 - 0.91 0.83 0.91 0.91
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Table 6
Relative efficiency in β̂Z in complete case analysis (CCA), single missing indicator(SMI), modeled missing indicator

(MMI), weighted conditional likelihood (WCL), mid-point imputation(MPI) and multiple imputation (MI) for
simulation scenarios, no versus strong-negative confounding, 1:1 design, missing data proportion =20% and 50%,

number of case-control sets=400, exp(βX)=2,exp(βZ)=1.42, pr(X = 1) = 0.5. Based on 1000 trials.

Pr(M=1) Confounding Missing type CCA SMI MMI WCL MPI MI

50% no MCAR 0.46 1.00 0.71 0.46 1.0 0.91
MAR(Z) 0.42 1.00 0.59 0.42 1.0 0.91
MAR(D) 0.42 0.77 0.53 0.42 1.0 0.91
NI(X) 0.48 1.00 0.71 0.48 1.0 0.91
NI(X,Z) 0.44 1.00 0.63 0.44 1.0 0.91

50% strong MCAR 0.53 - 0.71 0.53 0.91 1.00
MAR(Z) 0.46 - 0.67 0.46 0.91 0.91
MAR(D) 0.40 - 0.56 0.40 0.83 0.83
NI(X) 0.56 - 0.71 0.56 - -
NI(X,Z) 0.50 - 0.71 0.50 - -

20% no MCAR 0.91 1.00 1.00 0.91 1.0 1.00
MAR(Z) 0.91 1.00 1.00 0.91 1.0 1.00
MAR(D) 0.91 1.00 1.00 0.91 1.0 1.00
NI(X) 0.91 1.00 1.00 0.91 1.0 1.00
NI(X,Z) 0.91 1.00 1.00 0.91 1.0 1.00

20% strong MCAR 0.77 - 0.91 0.77 1.0 1.00
MAR(Z) 0.77 - 0.91 0.77 1.0 1.00
MAR(D) 0.77 - 0.83 0.77 1.0 1.00
NI(X) 0.77 - 0.91 0.77 - 1.00
NI(X,Z) 0.77 - 0.91 0.77 - -
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Table 7
Analysis of the risk of endometrial cancer in relation to obesity using five different missing data methods. Los

Angeles, 1971-1975.

Missing data methods1

Variable CCA SMI MMI MI SCC(2000)

OB 1.44(1.39) 1.46(1.07) 1.55(1.08) 1.79(1.40) 1.41(1.41)
GALL 3.25(1.28) 2.92(1.04) 3.15(1.10) 3.09(1.19) 3.25(1.19)
EST 3.51(1.40) 3.41(0.93) 3.47(0.93) 3.68(1.37) 3.47(1.37)
OBxGALL -0.14(0.92) 0.24(0.81) 0.05(0.87) 0.08(0.90) -0.19(0.89)
OBxEST -1.10(1.39) -0.94(1.04) -0.97(1.04) -1.20(1.40) -0.88(1.39)
GALLxEST -2.26(1.17) -2.19(1.03) -2.26(1.02) -2.26(1.07) -2.32(1.06)

CCA=complete case analysis
SMI=single missing indicator
MMI=modeled missing indicator with time and missing indicator interaction
MI=multiple imputation
SCC(2000)= Conditional logistic method, Satten and Carrol, 2000
categories are percentiles, numbers in table are log odds ratio with their standard errors
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Table 8
Analysis of the low birth weight data in Hosmer and Lemeshow 2000.

Missing data analysis results

Method β̂1 SE(β̂1) β̂2 SE(β̂2) β̂3 SE(β̂3)

FULL 0.861 0.454 0.853 0.513 -1.128 1.359
CCA 0.923 0.547 0.941 0.625 -1.340 1.581
SMI 0.870 0.514 0.872 0.524 -1.037 1.391
MMI1 0.847 0.519 1.077 0.597 -1.017 1.385
MMI2 0.869 0.516 0.876 0.525 -1.220 1.624
WCL 0.925 0.547 0.887 0.625 -1.459 1.580
MPI 0.741 0.503 0.855 0.507 -1.270 1.347
MI 0.979 0.553 0.824 0.519 -1.140 1.391

Missing data analysis as in Sinha et al 2005

BSP(2005) 1.190 0.820 0.960 0.550 -1.120 1.270
SCB(2005) 0.650 0.590 0.860 0.530 -1.220 1.240
CCA 0.650 0.530 0.880 0.600 -1.060 1.620

Full data analysis as in Sinha et al 2005
BSP(2005) 1.210 0.560 0.910 0.490 -1.170 1.260
SCB(2005) 0.960 0.460 0.790 0.520 -1.340 1.250
CLR 0.860 0.450 0.850 0.510 -1.130 1.360

β1 for maternal smoking, β2 for UI and β3 for LWT
CCA=complete case analysis adjusted for LWT and UI
FULL=Full data analysis using conditional logistic (CLR) adjusting for LWT and UI
SMI=single missing indicator, MMI=modeled missing indicator
MMI1=MMI with interaction between missing indicator and UI
MMI2=MMI with interaction between missing indicator and LWT
MPI=mid-point imputation
WCL= weighted conditional likelihood, MI=multiple imputation
BSP(2005)= Bayesian Semi-Parametric method, Sinha et al 2005
SCB(2005) is a parametric Bayes method, Sinha et al 2005
CLR is a Full data Bayes based conditional logisitc, Sinha et al 2005


