SUPPLEMENTARY DATA

Dis3-like 1: a novel exoribonuclease associated with the human exosome

Raymond H.J. Staals¹, Alfred W. Bronkhorst¹, Geurt Schilders¹, Shimyn Slomovic², Gadi Schuster², Albert J.R. Heck³, Reinout Raijmakers³, Ger J.M. Pruijn¹*

¹ Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands

² Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel

³ Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University and Netherlands Proteomics Centre, Utrecht, The Netherlands

SUPPLEMENTARY FIGURE LEGENDS

Figure S1: Yeast and human Dis3 and Dis3-like sequence alignment.

A multiple alignment of the amino acid sequences of yeast Dis3 (yDis3), human Dis3 (hDis3), human Dis3-like 1 (hDis3L1) and human Dis3-like 2 (hDis3L2) was generated by the MUSCLE algorithm (Edgar, 2004). The secondary structure of hDis3L1, as predicted by PsiPred, is depicted below the sequence alignment; β -strands are represented with green arrows and α -helices with red bars. Protein domains predicted by SMART are indicated by colored boxes surrounding the sequences. The graphical presentation of the

alignments was generated with Jalview (Waterhouse *et al.*, 2009) using the default colour scheme used for alignments in Clustal X.

Figure S2: hDis3L1 lacks endonuclease activity.

(A) HEp-2 cells were transfected with expression constructs encoding EGFP or EGFPhDis3L1 and after 48 hrs cell lysates were subjected to immunoprecipitation with anti-GFP antibodies. Precipitated material was incubated with a radiolabeled substrate RNA (Input) and the reaction products were subsequently analyzed by denaturing polyacrylamide gel electrophoresis followed by autoradiography. The incubations were performed in the presence the indicated concentrations of Mn²⁺. (B) Ribonuclease assay as described above (A), but with immunoprecipitated hDis3L1 mutants D62N, D166N, D486N (in addition to the wild type protein) in the presence of 1 mM Mn²⁺. Mononucleotide degradation products, most likely resulting from low levels of exoribonuclease activity, are indicated.

Figure S3: SiRNA-mediated hDis3L1 knock-down.

The lysates from HEp-2 cells transfected with siRNAs for EGFP or hDis3L1 that were used for the activity assay, as depicted in Figure 4B, were analyzed by incubating western blots with anti-hDis3L1 and anti-hRrp4 antibodies. Anti- γ -tubulin antibodies were used as a loading control.

Figure S4: Analysis of cell fractionation and efficiency of knock-down for cells used to study cytoplasmic rRNA degradation.

(A) Following cell fractionation, RNA purified from the cytoplasmic and nuclear fractions was stained with EtBr and the rRNA and tRNA distribution was compared with that of total cellular RNA. Tot., total cell RNA; Cyt., cytoplasmic RNA; Nuc., nuclear RNA. In addition, the RNA samples were subjected to northern blot hybridization using a probe for the nuclear U2 snRNA. The positions of the various RNAs are indicated. (**B**) The efficiency of siRNA-mediated silencing of exosome subunits hDis3L1, hRrp40 and PM/Scl-100 was monitored by RT-PCR using RNA isolated from the respective cells. RT-PCR analysis of β -actin mRNA was performed in parallel to control for equal amounts of starting material with the RNA from mock and siRNA-transfected cells.

Figure S5: hDis3 does not stably interact with the exosome core.

Anti-hRrp40 antibodies were used to precipitate exosome complexes from a HEp-2 cell lysate in the presence of NaCl concentrations ranging from 25 mM to 150 mM, as indicated. The coprecipitation of hDis3 and hRrp4 (exosome core control) was monitored by western blotting using polyclonal and monoclonal antibodies, respectively, to these proteins. In the 'Input' lane the total cell lysate was loaded.

Staals et al., Supplementary Figure S1

			PIN domain
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	1 1 1	MSVPAIAPRRKRLADGLSVTQKVFVRSRNGGATKIVREHYLRSDIPCLSRSCTKCPQIVVPDAQNELPKFILSDSPLELSAP - MLKSKTFLKKTRAGGVMKIVREHYLRDDIGCGAPGCAACGGAHEGPALEPQPQDPASSVCF - MLQKREKVLLLRTFQGRTLRIVREHYLRPCVPCHSPLC	GKHYVVLDTNVVLQAI99 QPHYLLPDTNVLLHQI77 VTHYVIPDWKVVQDYL70 GPH26
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	100 78 71 27	DLLENPNCFFDVIVPQIVLDEVRN-KSYPVYTRLRTLCRDSDDHKRFIVFHNEFSEHTFVERLENETINDRNDRAIRKTCOW DVLEDPA-IRNVIVLQTVLQEVRN-RSAPVYKRIRDVTNNQEKHFYTFTNEHHRETYVEQEQGENANDRNDRAIRKTCOW EILEFPE-LKGIIFMQTAGQAVQHORGRQYNKLRNLLKDAR-HDCILFANEFQQCCYLPRERGESMEKWQTSJVNAAVW DIGASPG	SEHLK PYD I NVV 193 NEHLKKMSADNQLQV I 172 YHHCQ D - RMP I V 161 48
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	194 173 162 49	LVTNDRLNREAATKEVESNIITKSLVQYIELLPNADDIRDSIPQMDSFDKDLERDTFSDFTFPEYYSTARVMGGLKNGV FITNDRRNKEKAIEEG-IPAFTCEEYVKSLTANPELIDRLACLSEEGNEIESGKIIFSEHLPLSKLQQGIKSGT MVTEDEEAIQQYGSETEG-VFVITFKNYLDNFWPDLKAAHELCDSILQSRRERENESQESHGK-EYPEHLPLEVLEAGIKSGT - IFETYMSKEDVSEGLKRGT	Y L Y Q G N L Q I SEYNF - L E 287 Y L Q G T F A S R E NY - L E 260 Y I Q G I L N V N K H R A Q I E 258 L I Q G V L R I N P K K F - H E 82
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	288 261 259 83	GSVSLPRFSKPVLIVGOKNLNRAFNGDQVIVELLPQSEWK	SEHFDVNDNPD I EAGD 351 IDE GQ 315 IND CD 317 IND SPDV I VEAQFDGSD 174
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	352 316 318 175	Cold shock domai DDD	PQSSSTQNVFVILMDK 429 SDIKESRRHLFTPADK 378 ISQCKNAQKILVTPWDY 372 INSELFRKYALFSPSDH 273
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	430 379 373 274	RNB domain CLPKVR IRTRRAAELLDKR IVIS IDSWPTTHKYPLGHFVRDLGT IES AGAETEALLLEHDVEYRPFSKKVLEOLF RIPRIR IETRQASTLEGRR I IVAIDGWPRNSRYPNGHFVRNLGDVGEKETETEVLLLEHDVPHQPFSQAVLSFLF RIPKIR ISTQQAETLQDFRVVVRIDSWESTSVYPNGHFVRVLGRIGDLEGEIATILVENSISVIPFSEAQMCEME RVPR I YVPLKDCPQDFVARPKDYANTLFICR IVDWKEDCNFALGQLAKSLGQAGE IEPETEGILTEYGVDFSDFSSEVLECLF	AE GHDWKAPTKLDD 518 KMPWSITEK 462 VNTPESPWKVSPE 460 QGLPWTIPPE 366
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	519 463 461 367	D486N PEAVSKDPLLTKRKDLRD-KLICSIDPPGCVDIDDALHAKKLPNGNWEVGVHIADVTHFVKPGTALDAEGAARGTSVYLVDKE DMKNREDLRH-LCICSVDPPGCTDIDDALHCRELENGNLEVGVHIADVSHFIRPGNALDQESARRGTTVYLCEKF COKRKDLRKSHLVFSIDPKGCEDVDDTLSVRTLNNGNLELGVHIADVTHFVAPNSYIDIEARTRATTYYLADRE COKRKDLRKSHLVFSIDPKGCEDVDDTLSVRTLNNGNLELGVHIADVSHFIPGSDLDKVAAERATSVYLVDK COKRKDLRKSHLVFSIDPKGCEDVDDTLSVRTLNNGNLELGVHIADVSHFVPEGSDLDKVAAERATSVYLVDK	IDMLPMLLGTDLCSLK 616 IDMVPELLSSNLCSLK 552 YDMLPSVLSADLCSLL 551 VPMLPRLLCEELCSLN 456
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	617 553 552 457	PYVDR FAFSV IWELDDSA-NIVNVNFMKSVIRSREAFSYEQAOLRIDD	KLSVKLKOKRLEAGALN 695 KLAKILKKRRIEKGALT 631 FARHVRAKRDGCGALE 650 STAKQLROORFVDGALR 550
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	696 632 651 551	LASPEVKVHMDSETSDPNEVEIKKLLATNSLVEEFMLLANISVARKIYDAFPQTAMLRRHAAPPSTNFEILNEMLNTRKNMS LSSPEVRFHMDSETHDPIDLQTKELRETNSMVEEFMLLANISVAKKIHEEFSEHALLRKHPAPPPSNYEILVKAARSS-NLE LEGVEVCVQLD-DKKNIHDLIPKQPLEVHETVAECMILANHWVAKKIWESFPHQALLRQHPPPHQEFFSELRECAKAK-GFF LDQLKLAFTLDHETGLPQGCHIYEYRESNKLVEEFMLLANMAVAHKIHRAFPEQALLRRHPPPQTRMLSDLVEFCDQM-GLP	SLESSKALADSLDRC - 793 KTDTAKSLAESLDQA - 728 DTRSNKTLADSLDNA - 746 DFSSAGALNKSLTQTF 648
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	794 729 747 649	- VDPEDPYFNTLVR IMSTRCMMAAQYFYSGAYSYP - DFRHYGLAVD IYTHFTSP IRRYCDVVAHRQLAGA IGYEP LSLT - ESPTFPYLNTLLR ILATRCMMQAYYFCSGMDN DFHHYGLASP IYTHFTSP IRRYADV IVHRLLAVA IGADC TYPEL - NDPHDP IVNRLLRSMATGAMSNALYFSTGSCAEE - EFHHYGLALDKYTHFTSP IRRYSD IVVHRLLAVA IGADC TYPEL GDDKYSLARKEVLTNMCSRPMQMALYFCSGLLQDPAQFRHYALNVPLYTHFTSP IRRFADVLVHSLLAAALGYRERLDMAPD	RDKNKMDMICRNINRK 887 TDKHKLADICKNLNFR 820 FSNKDLEELCRHINNR 843 LQKQADHCNDR 742
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	888 821 844 743	HRNAQFAGRAS I EYYVGQVMRNNEST ET GYVI KVFNNG I VVL VPKFGVEGL I RLDNLT EDPNSAAFDEVEY HKMAQYAQRASVAFHTQLFFKSKG I VSEE AY I LFVRKNA I VVL I PKYGLEGTVFFEEKO KPNP NQAAQHSQKQSTELFQCMYFKDKDPATEERC I SDGVI YS I RTNGVLLF I PRFG I KGAAYL KNKDGLV I SCOPDSCSEWKPGSL RMASKRVQELSTSLFFAVLVKESGPLESE AMVMG I LKQAFDVLVLRYGVQKR I YCNALA LRSHHFQKVQKKPELT	LTFVPTNSDKP 01 YDDEIPSLKIED 898 0RFQNKITSTTDGES 942 1 WEPEDMEQEPAQ 831
yDis3 hDis3 hDis3L1 hDis3L2 jnetpred	971 899 943 832	RDVYVFDKVEVQV	1001 958 /RQTKGRSLYTLLEEIR 1041 885

P D62N

Staals et al., Supplementary Figure S2A-B

(B)

(A)

EGFP-hDis3l1

Staals et al., Supplementary Figure S3

Staals et al., Supplementary Figure S4A-B

Staals et al., Supplementary Figure S5

