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In this supplementary note, we study the asymptotic loss efficiency for the generalized lin-

ear model (GLIM) under the Kullback-Leibler (KL) loss. To the best of our knowledge, there

is no literature studying the asymptotic loss efficiency for GLIM. After a series of attempts,

we found that the extension of the asymptotic loss efficiency from the linear regression model

to GLIM is a challenging task. For example, the Taylor expansion commonly used in the

asymptotic analysis cannot be utilized when a candidate model is not in the neighborhood of

the true model. As a result, a general framework for theoretical developments is required. To

this end, (a) we first present the asymptotic theory for the GLIM estimator with the given

candidate model, which also allows the candidate model to be misspecified. This theory

leads us to study the asymptotic bias and variance of the parameter estimator. (b) From the

result of asymptotic bias, we next find that the parameter estimator is not consistent when

the candidate model is misspecified. Thus, we restrict ourselves to candidate models in the

neighborhood of the true model so that the Taylor expansion is applicable. (c) We further

demonstrate that the KL loss is asymptotically equivalent to a squared loss for the linear

regression model. (d) We finally show the KL asymptotic loss efficiency for the classical

AIC-type variable selection criterion and for the AIC-type tuning parameter selector.
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1. The Asymptotic Theory of the GLIM Estimator

It is known that when the candidate model is a correct model (i.e., the true model

or the overfitted model, see Shao, 1997), under certain regularity conditions, the resulting

parameter estimator of GLIM is consistent and follows an asymptotic multivariate normal

distribution. In this section, we present the asymptotic theory of the GLIM estimator

without assuming that the candidate model is a correct model.

Consider the generalized linear model, whose density function is

f(y; θ, φ) = exp
{

[yθ − b(θ)] /a(φ) + c(y, φ)
}
,

where a(·), b(·) and c(·, ·) are suitably chosen functions, θ is the canonical parameter, and

φ is a scale parameter that is also called the dispersion parameter. Additionally, a(·) is

assumed to be positive and b(·) is a second order smooth function with b′′(θ) > 0 and b′′′(θ)

bounded for every θ ∈ Θ. Given θ, denote the mean and variance of y by µ and σ2. It can be

easily shown that E(y) = µ = b′(θ) and V ar(y) = σ2 = a(φ)b′′(θ). In general, the canonical

parameter θ is related to the systematic parameter η though the pre-specified link function

g(·), so that η = g(µ) = g ◦ b′(θ). In this note, we restrict the discussion to canonical link

functions. That is, we assume g−1(·) = b′(·) so that θ = η. Furthermore, we denote the true

canonical parameter by θ0, where θ0 lies in a set Θ with bounded support. Moreover, we

assume that the canonical parameter θ is a function of covariates x (i.e., θ = θ(x)), where x

is fixed. Analogous to classical variable selection criteria (Shao, 1997), our results are still

valid for the random x if we impose additional conditions.

The goal of variable selection is to find a best submodel α ⊂ ᾱ that is parsimonious and in

which θ(x) is well approximated by xαβα for some parameter βα. For the sake of simplicity,

we only consider the case where the dispersion parameter φ is known, which includes the

normal linear regression with known variance, the logistic regression model, and the Poisson

log-linear model. It is noteworthy that our results can be carried out when the dispersion
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parameter is replaced by its consistent estimator.

For the given candidate model α, the conditional density function of y|x is

fα(y; βα, φ) = exp
{ [

yxT
αβα − b(xT

αβα)
]
/a(φ) + c(y, φ)

}
.

Let f0 be the true (conditional) density function of y|x. Then, the Kullback-Leibler (KL)

discrepancy between the true model and the candidate model is (omitting irrelevant terms)

ρ
(
θ0(x),xT

αβα

)
= E0

{
log

(
f0

fα

)}

=
1

a(φ)

[
b′(θ0(x))(θ0(x)− xT

αβα)− b(θ0(x)) + b(xT
αβα)

]
, (1)

where E0 denotes expectation under the true model.

Based on a sample of n observations, the objective function, n−1
∑n

i=1 ρ
(
θ0(xi),x

T
αi

βα

)
,

is convex, because its second derivative with respect to βα is n−1
∑n

i=1 b′′(xT
αiβα)xαix

T
αi/a(φ),

which is a positive definite matrix. This allows us to adopt the approach of Hjort and Pollard

(1993) by assuming that there exists a unique optimal parameter β∗α that is the minimizer

of the limit of n−1
∑n

i=1 ρ
(
θ0(xi),x

T
αiβα

)
over βα for each candidate model α. We next

introduce some notation from Hjort and Pollard (1993) so that we are able to employ their

Theorem 2.3 to establish the asymptotic distribution of the maximum likelihood estimator

(MLE) of βα, β̂
∗
α = argmaxβα

`(βα), where `(βα) =
∑n

i=1

[
yixT

αiβα−b(xT
αiβα)

a(φ)
+ c(yi, φ)

]
.

Let gi(yi,βα|xi) = a(φ)−1[−yix
T
αiβα + b(xT

αiβα)]. Then, the MLE β̂
∗
α is the minimizer of

∑n
i=1 gi(yi,βα|xαi), and

gi(yi,β
∗
α + t|xαi)− gi(yi, β

∗
α|xαi) =

1

a(φ)

[−yix
T
αit + b(xT

αi(β
∗
α + t))− b(xT

αiβ
∗
α)

]

= {δ(xαi) + Di(yi|xαi)}T t + Ri(yi, t|xαi),
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where t = (t1, · · · , tdα)T ,

δ(xαi) = a(φ)−1
[
b′(xT

αiβ
∗
α)− b′(θ(xi))

]
xαi,

Di(yi|xαi) = −a(φ)−1 [yi − b′(θ(xi))]xαi,

and Ri(yi, t|xαi) = a(φ)−1
[
b(xT

αi(β
∗
α + t))− b(xT

αiβ
∗
α)− b′(xT

αiβ
∗
α)xT

αit
]
.

Because Eyi = b′(θ(xi)), it is easy to verify that E(Di(yi|xαi)) = 0. In addition,

V ar(Di(yi|xαi)) = Bi(xαi) = b′′(θ(xi))xαix
T
αi,

ERi(yi, t|xαi) =
1

2
tTAi(xαi)t + vi,0(t|xαi) and V arRi(yi, t|xαi) = vi(t|xi),

where Ai(xαi) = b′′(xT
αiβ

∗
α)xαix

T
αi/a(φ),

vi,0(t|xαi) =
1

6a(φ)

dα∑
j=1

dα∑

k=1

dα∑

l=1

b′′′(xT
αiβ

∗
α)xαijxαikxαilξjξkξl,

and 0 ≤ ξj ≤ tj for j = 1, · · · , dα. For the sake of simplification, we further introduce the

following notation:

Jn =
n∑

i=1

Ai(xαi) =
1

a(φ)
XT

αdiag{b′′(xT
αiβ

∗
α)}n

i=1Xα

and Kn =
n∑

i=1

Bi(xαi) =
1

a(φ)
XT

αdiag{b′′(θ(xi))}n
i=1Xα.

Theorem 1. Assume that maxi=1,...,n
|xi|√

n
→ 0 as n → ∞, Jn/n is bounded away from 0,

and Kn/n is bounded. Then,

√
n(β̂

∗
α − β∗α) = −(Jn/n)−1

{
n−1/2

n∑
i=1

δ(xαi) + n−1/2

n∑
i=1

D(yi|xαi)

}
+ oP (1). (2)

Furthermore, if Jn/n → J and Kn/n → K, then

√
n(β̂

∗
α − β∗α) = N

(
−J−1n−1/2

n∑
i=1

δ(xαi),J
−1KJ−1

)
+ oP (1). (3)
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The proof of Theorem 1 is given in the Appendix.

Let

∇`(β∗α) =
∂`(β∗α)

∂βα

= a(φ)−1XT
α{y− b′(Xαβ∗α)},

∇2`(β∗α) =
∂2`(β∗α)

∂βT
α∂βα

= −a(φ)−1XT
αVT

αVαXα,

where Vα = diag{b′′(xT
αiβ

∗
α)1/2, ..., b′′(xT

αnβ
∗
α)1/2}. Theorem 1 indicates that, although the

asymptotic expansion of the MLE still has the classical form

β̂
∗
α − β∗α = − [∇2`(β∗α)

]−1∇`(β∗α) + oP (1/
√

n)

=
(
XT

αVT
αVαXα

)−1
XT

α{y− b′(Xαβ∗α)}+ oP (1/
√

n), (4)

E∇`(β∗α) 6= 0 leads to the bias induced by δ(xαi).

2. The Set of Candidate Models

To study the asymptotic efficiency of variable (or tuning parameter) selection, we need

to employ the Taylor expansion for b(θ̂∗α(xi)) at θ = θ0(xi), where θ̂∗α(xi) = xT
αiβ̂

∗
α and θ0(·)

is the true canonical parameter. However, if α is not a correct model, then Theorem 1

shows that β̂
∗
α is not an asymptotically unbiased estimator of β∗α. As a result, the difference

between θ̂∗α(xi) and θ0(xi) is not vanishing and the Taylor expansion cannot be applied.

Therefore, in the rest of this note, we only focus on the set of candidate models given below.

C = {α : sup
1≤i≤n

|θ̂∗α(xi)− θ0(xi)| → 0 in probability, as n →∞}. (5)

For the model in C, the approximate bias is small so that θ̂∗α(xi) is within a neighborhood

of θ0(xi) and the Taylor expansion is applicable.

3. Asymptotic Representation of KL Loss

Based on a random sample of size n, the log-likelihood function can be expressed as

`(θ) =
n∑

i=1

log fi(yi; θ, φ) =
n∑

i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
,
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where θ = (θ1, · · · , θn)T . Let θ̂ = Xβ̂ be an estimator of θ0 = (θ01, ..., θ0n)T . It can be

either θ̂
∗
α = Xβ̂

∗
α, the maximum likelihood estimator under the model α, or θ̂λ = Xβ̂λ,

the penalized parameter estimator under the penalized model αλ. Then, twice the average

Kullback-Leibler loss can be written as

LKL(β̂) =
2

n

n∑
i=1

ρ(θ0(xi),x
T
i β̂) =

2

n
E0

{
`(θ0)− `(θ̂)

}
. (6)

Note that β̂ and hence θ̂ = Xβ̂ are treated as nonrandom in calculating the above expecta-

tion. Furthermore, the KL risk is defined as RKL(β̂) = E0[LKL(β̂)].

The following Lemma shows that, for α ∈ C, both `(θ̂
∗
α) and LKL(β̂) have asymptotic

approximations.

Lemma 1. For α ∈ C, `(θ̂
∗
α) can be asymptotically expanded as

˜̀(θ̂
∗
α) =

1

a(φ)

n∑
i=1

{
yi(θ̂

∗
αi − θ0i)−

[
b′(θ0i)(θ̂

∗
αi − θ0i) +

1

2
b′′(θ0i)(θ̂

∗
αi − θ0i)

2

]}
,

in the sense that for any bounded weights wi satisfying 0 < c1 < wi < c2,

∣∣∣`(θ̂∗α)− `(θ0)− ˜̀(θ̂
∗
α)

∣∣∣
∑n

i=1 wi(θ̂∗αi − θ0i)2
→ 0

in probability as n →∞, where c1 and c2 are some positive constants, b′(θ0i) = E0(yi), and

b′′(θ0i) = V ar0(yi)/a(φ) for i = 1 · · · , n. In addition, twice the average KL loss has the

expansion

LKL(β̂
∗
αi) =

1

na(φ)

{
n∑

i=1

b′′(θ0i)
−1(θ̂∗αi − θ0i)

2 + oP

(
n∑

i=1

b′′(θ0i)
−1(θ̂∗αi − θ0i)

2

)}
,

if we consider wi = b′′(θ0i)
−1.

The proof of Lemma 1 is outlined in the Appendix. Note that although Lemma 1 focuses on

the MLE θ̂
∗
α, it can be shown that the lemma also holds for any estimator θ̂ that satisfies

the condition in (5).
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To get further insights from the expansions of `(θ̂) and LKL(β̂), we introduce the following

notation. Denote

y†i = b′′(θ0i)
−1/2(yi − b′(θ0i)) + b′′(θ0i)

1/2θ0i and θ̂†i = b′′(θ0i)
1/2θ̂i,

(or in vector notation,

y† = V−1
0 (y− b′(θ0)) + V0θ0 and θ̂

†
= V0θ̂,

where b′(θ0) = (b′(θ01, · · · , b′(θ0n)T and V0 = diag{b′′(θ01)
1/2, ..., b′′(θ0n)1/2}). After algebraic

simplification by adding the constant term with respect to θ (i.e.,
∑n

i=1 b′′(θ0i)
−1(yi − b′(θ0i))

2),

we have

`(θ̂) = − 1

2a(φ)
‖ y† − θ̂

† ‖2 (1 + oP (1)) , (7)

which is asymptotically a quadratic function. In addition, using the fact that
∑n

i=1 b′′(θ0i)
−1(θ̂i−

θ0i)
2 =

∑n
i=1(θ̂

†
i − θ†0i)

2, we obtain

LKL(β̂) =
1

na(φ)
‖ θ̂

† − θ†0 ‖2 (1 + oP (1)) , (8)

where θ†0 = (θ†01, · · · , θ†0n)T = V0θ0. This indicates that the KL loss can be treated asymp-

totically as a squared loss.

Remark 1 (Normal linear regression). In normal linear regression with known variance, V0

is an identity matrix and θ0 = b′(θ0). Hence, y† becomes y. Accordingly, the maximization

of the log-likelihood function is the same as the minimization of the error sum of squares

‖ y−Xβ ‖2. Furthermore, twice the average KL loss reduces to (nσ2)−1 ‖ Xβ̂ − θ0 ‖2.

4. Asymptotic Loss Efficiency of GLIM

Following Lemma 1, we can express the likelihood function and the KL loss as their

corresponding quadratic functions asymptotically. This enables us to adopt the strategies

used to develop asymptotic loss efficiency for the least squares setting to GLIM. For the
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sake of simplicity, we only consider the leading terms of the right-hand side of equations

(7) and (8) in the rest of this section. Because we study the efficiency of selection, our

focus is choosing the model α, from all the candidate models, that minimizes the following

generalized information criterion,

GIC∗
κn

(α) =
1

n
D(y; θ̂

∗
α) +

1

n
κndα, (9)

where D(y; θ̂
∗
α) is the scaled deviance function.

To establish the asymptotic loss efficiency, we need to further restrict the candidate model

lying in the set of D ⊂ C such that

sup
α∈D

sup
1≤i≤n

|θ̂∗αi − θ0i| → 0,

in probability. In other words, we consider the models with MLEs being uniformly close to

the truth. Then, we adopt the loss efficiency from Li (1987) to define the asymptotic KL

loss efficiency for a classical selection criterion as follows:

LKL(β̂
∗
α̂)

infα∈D LKL(β̂
∗
α)
→ 1 in probability, as n →∞. (10)

To study efficiency, we next identify the systematic bias of the candidate model α via

the KL loss. Let X†
α = V0Xα. Then, minimizing ‖ y† −X†

αβ ‖2, we obtain the MLE of β

(in an asymptotical sense), β̂
∗
α = (X†T

α X†
α)−1X†T

α y†. Subsequently, the scaled KL loss is

a(φ)LKL(β̂
∗
α) =

1

n
‖ θ̂

†
α − θ†0 ‖2 =

1

n
‖ H†

αy
† −H†

αθ†0 ‖2 +
1

n
‖ H†

αθ†0 − θ†0 ‖2

=
ε†TH†

αε†

n
+ ∆†

α, (11)

where ε† = y† − θ†0 = V−1
0 (y − b′(θ0)) is the “standardized” error term whose components

have mean 0 and variance a(φ), H†
α = X†

α(X†T
α X†

α)−1X†T
α , and ∆†

α = 1
n
‖ H†

αθ†0− θ†0 ‖2. The

quantity ∆†
α is the distance between the true θ†0 and its projection on the space spanned by

X†
α, which corresponds to the systematic bias of model α. Moreover, taking the expectation
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from both sides of (11) and using the fact that E
(
ε†TH†

αε†
)

= trH†
αE

(
ε†ε†T

)
= dαa(φ), we

have

a(φ)RKL(β̂
∗
α) = ∆†

α +
a(φ)dα

n
. (12)

Finally, we adopt strategies from Li (1987) to show the asymptotic loss efficiency of the

classical AIC-type variable selection (i.e., the GIC∗
κn

with κn → 2 in (9)), which includes

AIC. To this end, we also consider the following technical conditions from Li (1987).

(A1) For any candidate model α ∈ A, the largest eigenvalue of 1
n
X†T

α X†
α is bounded uni-

formly by some finite number.

(A2) For i = 1, · · · , n, E|yi|4q < ∞ for some integer q.

(A3) For α ∈ D, the risk of the maximum likelihood estimator β̂
∗
α satisfies

∑
α∈D

[nR(β̂
∗
α)]−q → 0. (13)

Theorem 2. Assume conditions (A1)–(A3) hold. Then α̂, the model selected from D by

GIC∗κn
with κn → 2, is asymptotically loss efficient in the sense of (10).

The proof is given in the Appendix.

After obtaining the asymptotic efficiency of the classical AIC variable selection criterion,

we further study the asymptotic loss efficiency of the nonconcave penalized likelihood esti-

mator with the AIC tuning parameter selector. Specifically, we choose the tuning parameter

λ from the range [0, λmax] by minimizing

GICκn(λ) =
1

n
D(y; µ̂λ) +

1

n
κndαλ

, (14)

where µ̂λ = (g−1(xT
1 β̂λ), · · · , g−1(xT

n β̂λ))
T . Analogous to the classical variable selection, we

define the asymptotic KL loss efficiency for the tuning parameter selector as follows:

LKL(β̂λ̂)

infλ∈Λ LKL(β̂λ)
→ 1 in probability, as n →∞, (15)
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where λ̂ is the minimizer of (14) and Λ = {λ ∈ [0, λmax] : αλ ∈ D}.
To show efficiency, we need an additional condition given below to regularize the penalized

estimator.

(A4) Let [ = ([1, ..., [d)
T , where [j = p′λ(|β̂λj|)sgn(β̂λj) for all j such that |β̂λj| > 0, and

[j = 0 otherwise, and β̂λj is the j-th component of the penalized estimator β̂λ. In

addition, we assume that, in probability,

sup
λ∈Λ

‖ [ ‖2

R(β̂
∗
αλ

)
→ 0,

where β̂
∗
αλ

is the maximum likelihood estimator of β obtained from the model αλ.

In the following theorem, we show the asymptotic loss efficiency of the AIC-type tuning

parameter selector in GLIM.

Theorem 3. Assume conditions (A1)-(A4) hold. Then the penalized estimator β̂λ̂ with λ̂

selected by minimizing the GICκn criterion with κn → 2 is asymptotically loss efficient in

the sense of (15).

The proof is given in the Appendix.

Appendix: Technical Proofs

Proof of Theorem 1. Because b′′′(·) is assumed to be bounded and maxi |xi|/
√

n → 0, we

have that
n∑

i=1

vi,0(s/
√

n|xi)
P−→ 0, for each s.

In addition, vi(s/
√

n|xi) = 0. These together with the conditions that Jn/n is bounded away

from 0 and both Kn/n and Ln/n are bounded, allow us to directly apply Theorem 2.3 from

Hjort and Pollard (1993) and conclude (2). Then, Applying the Central Limit Theorem, (3)

follows immediately from (2).

Proof of Lemma 1. At each θ0i (i = 1, · · · , n), we have the expansion

b(θ̂∗αi) = b(θ0i) + b′(θ0i)(θ̂
∗
αi − θ0i) +

1

2
b′′(θ0i)(θ̂

∗
αi − θ0i)

2 +
1

6
b′′′(ζi)(θ̂

∗
αi − θ0i)

3,
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for some ζi such that |ζi − θ0i| < |θ̂∗αi − θ0i|. Note that ζi is in a neighborhood of θ0i which

is an interior point of Θ. Therefore |b′′′(ζi)| < K for some constant K > 0 by assumption.

Hence,
∣∣∣`(θ̂∗α)− `(θ0)− ˜̀(θ̂

∗
α)

∣∣∣
∑n

i=1 wi(θ̂∗αi − θ0i)2
=

∣∣∣∑n
i=1

1
6
b′′′(ζi)(θ̂

∗
αi − θ0i)

3
∣∣∣

∑n
i=1 wi(θ̂∗αi − θ0i)2

≤ K

6c1

sup
1≤i≤n

|θ̂∗αi − θ0i|.

Because sup1≤i≤n |θ̂∗αi − θ0i| → 0 in probability as n → ∞, the right-hand side of the above

equation goes to zero in probability as n →∞. This completes the proof.

Before proving Theorems 2 and 3, we introduce the following lemma so that we only

need to show a variable selection criterion is asymptotically (uniformly) equivalent to the

KL loss to establish the KL loss efficiency. It is applicable to both classical variable and

tuning parameter selections. For the sake of simplicity, we state the lemma given below via

λ and Λ, while it still holds if they are replaced by α and D, respectively. In addition, we

denote C as a generic constant number in the proofs of Theorems 2 and 3.

Lemma 2. Suppose L(λ) > 0 for all λ ∈ Λ. Assume C(λ) = L(λ) + r(λ), where

sup
λ∈Λ

∣∣∣∣
r(λ)

L(λ)

∣∣∣∣ → 0, in probability.

In addition, let λ̂ = arginfλ∈ΛC(λ), and assume L(λ̂) is bounded. Then, we have

L(λ̂)

infλ∈Λ L(λ)
→ 1, in probability.

Proof. With probability tending to 1,

L(λ̂) = C(λ̂)− r(λ̂)

L(λ̂)
L(λ̂) ≤ C(λ) +

∣∣∣∣∣
r(λ̂)

L(λ̂)

∣∣∣∣∣ L(λ̂), for any λ ∈ Λ.

Taking infλ∈Λ of the right-hand side of the above equation, we have

inf
λ∈Λ

L(λ) ≤ L(λ̂) ≤ inf
λ∈Λ

{
L(λ)

[
1 +

r(λ)

L(λ)

]}
+

r(λ̂)

L(λ̂)
L(λ̂)

≤ inf
λ∈Λ

L(λ)

[
1 + sup

λ∈Λ

∣∣∣∣
r(λ)

L(λ)

∣∣∣∣
]

+

∣∣∣∣∣
r(λ̂)

L(λ̂)

∣∣∣∣∣ L(λ̂).

From the assumption in the lemma, the right-hand side of the above equation goes to

infλ∈Λ L(λ) as n goes to ∞. This completes the proof.
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Proof of Theorem 2. To prove this theorem, we adapt the techniques used in Theorem 2.1

of Li (1987) by noting that the components of ε† = V−1
0 (y − b′(θ0)) are independent with

mean 0 and equal variances a(φ), although they are not identically distributed. Applying

Lemma 1, we obtain the following approximation of GIC∗
2(α):

GIC∗
2(α) = − 2

n
`(β̂

∗
α) +

2dα

n
≈ ‖ y† − θ̂

†
α ‖2

na(φ)
+

2dα

n

= LKL(β̂
∗
α) +

1

a(φ)

{
‖ ε† ‖2

n
+

2ε†T (I−H†
α)θ†0

n
+

2(a(φ)dα − ε†TH†
αε†)

n
+

(κn − 2)a(φ)dα

n

}
.(16)

Considering GIC∗
2(α), LKL(β̂

∗
α), and the second term in (16) as C(λ), L(λ), and r(λ) in

Lemma 2 respectively, we can then apply Lemma 2 to show that Theorem 2 holds if we

demonstrate that

sup
α∈D

∣∣∣ε†T (I−H†
α)θ†0

∣∣∣
nRKL(β̂

∗
α)

→ 0, (17)

sup
α∈D

∣∣a(φ)dα − ε†TH†
αε†

∣∣
nRKL(β̂

∗
α)

→ 0, (18)

sup
α∈D

∣∣∣∣∣
(κn − 2)dα

nRKL(β̂
∗
α)

∣∣∣∣∣ → 0, (19)

and

sup
α∈D

∣∣∣∣∣
LKL(β̂

∗
α)

RKL(β̂
∗
α)
− 1

∣∣∣∣∣ → 0. (20)

To prove (17), we employ Chebyshev’s inequality to obtain

P



sup

α∈D

∣∣∣ε†T (I−H†
α)θ†0

∣∣∣
nRKL(β̂

∗
α)

> δ



 ≤

∑
α∈D

E(ε†T (I−H†
α)θ†0)

2q

n2qδ2qRKL(β̂
∗
α)2q

.

Subsequently, applying Theorem 2 of Whittle (1960), the right-hand side of the above equa-

tion is no greater than

Cδ−2q
∑
α∈D

‖ (I−H†
α)θ†0 ‖2q

n2qRKL(β̂
∗
α)2q

≤ Cδ−2q
∑
α∈D

[
nRKL(β̂

∗
α)

]−q

,

which goes to zero by condition (A3). Analogously, using Theorem 2 of Whittle (1960) and

expansion (12), equation (18) can be shown by noting that

E(a(φ)dα − ε†TH†
αε†)2q ≤ Cdq

α ≤
CRKL(β̂

∗
α)q

nq
.

12



Next, equation (12) and the assumption that κn → 2 together lead to equation (19). Finally,

from the expansion of (11), equation (20) can be shown in the same manner as (18).

Before proving Theorem 3, we establish the following two lemmas. Lemma 3 evaluates

the difference between a penalized estimator and its corresponding least squares estimator,

while Lemma 4 demonstrates that their resulting losses are asymptotically equivalent.

Lemma 3. Let θ̂
†
λ = X†β̂λ and θ̂

†∗
αλ

= X†β̂
∗
αλ

. Under condition (A1),

‖ θ̂
†
λ − θ̂

†∗
αλ
‖2≤ nC ‖ [ ‖2,

where C is a constant number and [ is defined in condition (A4).

Proof. Without loss of generality, we assume that the first dαλ
components of β̂λ and β̂

∗
αλ

are nonzero, and denote them by β̂
(1)

λ and β̂
∗(1)

αλ
, respectively. Thus, θ̂

†
λ = X†β̂λ = X†

αλ
β̂

(1)

λ

and θ̂
†
αλ

= X†β̂
∗
αλ

= X†
αλ

β̂
∗(1)

αλ
. From the expansion of the log-likelihood function in (7), the

resulting penalized log-likelihood function Q(β) ∝ − 1
2n
‖ y† −X†β ‖2 −a(φ)

∑n
j=1 pλ(|βj|)

by ignoring a constant with respect to β. From the proofs of Theorems 1 and 2 in Fan and

Li (2001), with probability tending to 1, we have that β̂
(1)

λ is the solution of the following

equation,

1

n
X†T

αλ

(
y† −X†

αλ
β

(1)
λ

)
+ a(φ)[(1) = 0,

where [(1) is the subvector of [ that corresponds to β̂
(1)

λ . Accordingly,

β̂
(1)

λ =
(
X†T

αλ
X†

αλ

)−1
X†T

αλ
y† +

(
1

n
X†T

αλ
X†

αλ

)−1

a(φ)[(1) = β̂
∗(1)

αλ
+

(
1

n
X†T

αλ
X†

αλ

)−1

a(φ)[(1).

In addition, the eigenvalues of
(

1
n
X†T

αλ
X†

αλ

)−1
are bounded under condition (A1). Hence,

‖ θ̂
†
λ − θ̂

†∗
αλ
‖2=‖ X†

αλ
(β̂

(1)

λ − β̂
∗(1)

αλ
) ‖2= na(φ)2[(1)T

(
1

n
X†T

αλ
X†

αλ

)−1

[(1) ≤ nC ‖ [ ‖2 .

This completes the proof.

Lemma 4. If conditions (A1)—(A4) hold, then

sup
λ∈Λ

∣∣∣∣∣
L(β̂λ)

L(β̂
∗
αλ

)
− 1

∣∣∣∣∣ → 0

in probability, as n →∞.

13



Proof. After algebraic simplification, we have

L(β̂λ)− L(β̂
∗
αλ

) =
‖ θ̂

†∗
αλ
− θ̂

†
λ ‖2

na(φ)
+

2(θ†0 − θ̂
†∗
αλ

)T (θ̂
†∗
αλ
− θ̂

†
λ)

na(φ)
= I1 + I2.

Under conditions (A1)-(A3), we know that (20) holds. This, together with condition (A4)

and Lemma 3, implies

sup
λ∈Λ

∣∣∣∣∣
I1

L(β̂
∗
αλ

)

∣∣∣∣∣ = sup
λ∈Λ

{
‖ θ̂

†∗
αλ
− θ̂

†
λ ‖2

na(φ)R(β̂
∗
αλ

)
− ‖ θ̂

†∗
αλ
− θ̂

†
λ ‖2

na(φ)L(β̂
∗
αλ

)

[
L(β̂

∗
αλ

)

R(β̂
∗
αλ

)
− 1

]}
→ 0.

Applying the Cauchy-Schwarz inequality, we then obtain

I2 ≤
2 ‖ θ†0 − θ̂

†∗
αλ
‖ · ‖ θ̂

†∗
αλ
− θ̂

†
λ ‖

n
= 2

√
L(β̂

∗
αλ

) · 1√
n
‖ θ̂

†∗
αλ
− θ̂

†
λ ‖ .

As a result, supλ∈Λ

∣∣∣∣∣
I2

L(β̂
∗
αλ

)

∣∣∣∣∣ → 0, and Lemma 4 follows immediately.

Proof of Theorem 3. To show the asymptotic efficiency of the AIC-type selector, we first

examine the relative difference between GICκn(λ) and LKL(β̂λ) asymptotically. It is note-

worthy that, ignoring a constant,

GICκn(λ) ≈ ‖ y† −X†β̂λ ‖2

na(φ)
+

κndαλ

n

=
‖ y† − θ̂

†∗
αλ
‖2

na(φ)
+
‖ θ̂

†∗
αλ
− θ̂

†
λ ‖2

na(φ)
+

κndαλ

n

= LKL(β̂λ) +
[
LKL(β̂αλ

)− LKL(β̂λ)
]

+
1

a(φ)

{‖ ε† ‖2

n
+

1

n
‖ θ̂

†∗
αλ
− θ̂

†
λ ‖2

+
2

n
ε†T (I−H†

αλ
)θ†0 +

2

n

(
a(φ)dαλ

− ε†TH†
αλ

ε†
)

+
1

n
(κn − 2)a(φ)dαλ

}
.

Let J1 = LKL(β̂αλ
) − LKL(β̂λ), J2 =‖ θ̂

†∗
αλ
− θ̂

†
λ ‖2 /n, J3 = 2ε†T (I − H†

αλ
)θ†0/n, J4 =

2(a(φ)dαλ
− ε†TH†

αλ
ε†)/n, and J5 = (κn − 2)a(φ)dαλ

/n. By similar arguments used in the

proof of Theorem 2, we obtain that, in probability,

sup
λ∈Λ

∣∣∣∣∣
Jj

LKL(β̂
∗
αλ

)

∣∣∣∣∣ → 0, for j = 1, ..., 5.

Then by Lemma 4, the above equations also hold if β̂
∗
αλ

is replaced by β̂λ. These imply

that, ignoring a constant with respect to β̂λ, the difference between GICκn(λ) and LKL(β̂λ)

is negligible in comparison to LKL(β̂λ) when κn → 2. We next apply Lemma 2, which

completes the proof.
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