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1. Limitations of the effective medium model. The Maxwell-Garnett model is based on the 

assumption that an external electric field penetrates conductive inclusions and is uniform within the 

entire inclusion body. When the inclusion size is greater than either the electromagnetic (EM) field skin 

depth or the wavelength, however, the corresponding approximations fail, overestimating internal fields. 

Moreover, previous work1 showed that, as a general rule of thumb, the size of any particular spherical 

scatterer should be smaller than 1/10-th of the wavelength – these conditions are fulfilled for cases 

shown in Table S1 even for the beads made up almost entirely of the nanoparticles discussed. The 

threshold size of the inclusions can be estimated by setting its diameter equal to the EM field skin depth 

for lossy dielectrics: 
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where ε’ and ε” are, respectively, real and complex parts of material dielectric constants, μ is magnetic 

permeability, ε0 and μ0 are vacuum permittivity and permeability. 

Table S1 compares corresponding diameters of inclusions with calculated EM field skin depth 

for nanoparticle materials at two common laser wavelengths. The results show that the skin depth is 

much larger than the typical size of inclusions (several to tens of nanometers), thus supporting the 

applicability of the mixing model. 

 
Table S1. EM properties of magnetite (Fe3O4) and quantum dots (core – CdSe, shell – CdS/ZnS) 
 

Material Diameter Typical εi (j2
 = - 1) Skin depth 

Excitation wavelength = 410 nm 
Magnetite 8-10 nm 5.64 + j 1.63 0.19 μm 
Quantum dots 4-20 nm 7.64 + j 0.18 2.0 μm 

Excitation wavelength = 532 nm 
Magnetite 8-10 nm 6.23 + j 0.47 0.9 μm 
Quantum dots 4-20 nm 7.44 + j 0.07 7.1 μm 

 

Another possible limitation associated with this model arises from the evanescent character of 

the fields used. The penetration depth of the evanescent EM field (i.e. E field amplitude decay length) in 

water resulting from the total internal reflection at the silica-water interface is: 
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where ߣ is the incident beam wavelength in vacuum, ߠ௜௡௖ is the beam incidence angle in silica, 

nsilica = 1.45 and nwater=1.33 are refractive indices of silica support and water. The penetration depths for 

λ=532 nm are shown in Table S2 for several incident angles. Since the penetration depth of 150-300 nm 

is at least an order of magnitude greater than the typical size of the inclusions (which are less than 20 

nm), the assumption of uniformity of the external field is reasonable. Note, that the penetration depth 

defined in terms of the characteristic intensity (∝|E|2) decay length is half of the value for the field 

amplitude decay length: ߜ௣ ൌ ଵ
ଶ
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Table S2. Penetration depths of evanescent EM fields in water at ૃ ൌ ૞૜૛ ܕܖ 

 

 ௜௡௖ 70° 75° 80° 85°ߠ

,௘௩ߜ ݊݉ 286 193 163 150 

 

 

2. Spectra of component materials. To derive the effective medium properties, it is first 

necessary to determine the complex dielectric constants of each of its constituent components 

separately. The major material component of the microspheres, where nanoparticles are embedded, is 

usually a polymer, such as polystyrene, whose optical indices are readily available in the literature.2-3 

Refractive indices of nanoparticles, especially the dissipative part responsible for light absorption, will 

be affected by specifics of their size and composition and will deviate significantly from known 

tabulated values of the bulk materials.4 Simulations in this paper were based on our own experimental 

measurements of the extinction coefficient (imaginary part, k, of the refractive index n+jk) of magnetite 

nanoparticles (Fe3O4) and quantum dots (core – CdSe, shell – CdS/ZnS), while the real parts of the 

refractive indices (n) were taken from the literature.5 We used UV-Vis spectroscopy to measure the 

molar extinction coefficients of the toluene solutions of nanoparticles and converted these values to 

extinction coefficients of interest, assuming, that the density of the nanoparticles is the same as the 

density of their bulk analogs: ρ(CdSe)=5.816 g/cm3 and ρ(Fe3O4)=5.175 g/cm3.6 The values of molar 

extinction coefficients were then linearly extrapolated towards the actual molar densities of Fe3O4 and 

CdSe to obtain the extinction coefficient values of solid materials (Figure S1). These values were then 

used as inputs for the Maxwell Garnett effective medium approximation.  

The experimental values of extinction coefficients point to several important observations: 

(i) having a large volume fraction of magnetite, although desirable for achieving high pulling forces, 

may be detrimental to optical detection of the bead position due to significant signal screening that 

occurs because the extinction coefficient for magnetite is an order of magnitude greater than that for 
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quantum dots, and (ii) incident illumination in green and red parts of the spectrum is preferable, due to 

the relative transparency of the magnetite nanoparticles in this range of wavelengths. 

 

.  

Figure S1. Extinction coefficient of magnetite Fe3O4 (A) and CdSe (B): measured spectrum (solid, red 
in color version) of nanoparticles compared to literature data (dotted) for bulk from references [7] (A) 
and [6] (B). 

 

3. Separation of optical power absorbed in magnetite and quantum dots. The Maxwell-

Garnett formula: 

 

 (S3) 

describes an effective dielectric constant of composite material having small spherical inclusions doped 

into a dielectric background. It is based on the assumption that the polarization pi of any particular 

sphere depends on its polarizability ߙ௜ and Lorentzian field ࡱ௅ (local field that excites the ith inclusion)1: 

௜࢖  ൌ  ௅  (S4)ࡱ௜ߙ

 The polarizability for a sphere with a dielectric permittivity  inside a base medium having 

permittivity  is well-known:8 
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where Vi is the volume of the ith inclusion. The magnitude of the Lorentzian field depends on the 

external field ࡱ௘ and the total dielectric moment induced in the medium1: 
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where the factor of 1/3 is the depolarization factor of the sphere, ni is the concentration of spherical 

scatterers of ith  type and P is total polarization. Equations S4 and S6 can be combined to yield an 

expression for the Lorentzian field: 
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Finally, the effective medium parameters are evaluated based on the fact that the effective 

electric flux density is: 
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Combining Equations S4, S6 and S8 gives: 
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which yields Maxwell-Garnett formula (Equation S3), when combined with Equation S5. The local 

electric field, therefore, becomes: 
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Once this field is found (which is a direct result of the MAS solution), it can be used to 

determine the power loss in the inclusion. This field generates electric current in the inclusion, resulting 

in absorption of optical power. Therefore, the power absorbed by the inclusions of a certain type inside 

a unit volume is the sum of the powers absorbed in each of the spherical inclusions of this type inside 

the unit volume: 
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where fi is volumetric fraction of inclusion of type ‘i’. Equation S11 is derived under the same 

assumptions as the Maxwell-Garnett formula and can, therefore, be used to determine the fraction of 

power absorbed by each of the components in the mixture. This conclusion is important in our case, 

because even though the initial evanescent electric field is absorbed by both quantum dots and 

magnetite inside the sphere, only the fraction of power absorbed by quantum dots is emitted back as a 
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fluorescent signal. Thus, the emitted power is weighted by both the volumetric fraction of quantum dots 

and their conductivity, when compared to the entire absorbed power. 

 

4. Simulation of fluorescence. The fluorescence of quantum dots represents spontaneous, rather 

than induced radiation. This issue needs to be addressed when dealing with the phase distribution of 

bead volumetric currents. For nanocrystals in a real bead, the phase of the emitted signal is correlated 

with neither the field exciting it nor the fluorescence of the neighboring nanocrystals. In order to 

understand the influence of the phase distribution of a set of multiple sources on the total power they 

emit, we considered a set of 472 electric dipoles, distributed uniformly within a sphere of radius 1.2 μm. 

Initial magnitudes of the dipole moments were chosen randomly: A୧ୀଵ…ସ଻ଶ=C · ൫a୶୧, a୷୧, a୸୧൯ · eି୸౟/ୢ, 

where C is a scaling constant, a୶୧, a୷୧ and a୸୧ are random numbers uniformly distributed in the range [-

0.5, 0.5] and, finally, the exponential term is included to describe the observed decay of dipole 

amplitudes with height z (d being the characteristic decay length). With the amplitudes and directions of 

the sources initially randomized and further fixed, we conducted a series of 1000 simulated 

measurements of total emitted power, where only the phase of each of the dipoles was being 

randomized. For the kth realization, the complex amplitude of ith source was set to: 

௜ܣ  ൌ ܥ · ൫ܽ௫௜ · ݁௝ఝೣ,೔,ೖ, ܽ௬௜ · ݁௝ఝ೤,೔,ೖ, ܽ௭௜ · ݁௝ఝ೥,೔,ೖ൯ · ݁ି௭೔/ௗ (S12) 

where ߮௫,௜,௞, ߮௬,௜,௞ and ߮௭,௜,௞ are uniformly distributed random numbers in the range [-ߨ,  Figure S2 .[ߨ

shows a histogram of the total power emitted by this system at 1000 different realizations of the phase 

distribution among 472 dipoles.  

Depending on a specific phase distribution, the total emitted power is different and fluctuates 

within approximately 2% of the mean value 1.02 with standard deviation of 0.01. When all dipoles are 

in phase, the total power is 2% less than the mean value. In reality, the signal observed from an 

individual bead corresponds to an average value from a large number of realizations occurring within a 

certain time window (corresponding to exposure time of the camera or detector). To simulate the real 
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experimental conditions, one would have to solve the EM scattering problem multiple times to yield a 

statistical average of the radiated power; however, this procedure is not time and resource efficient. 

Instead, we used only a single phase realization to calculate the power radiated by the bead, since we are 

actually interested in the dependence of the total emitted power on bead composition and location. 

Namely, since the power fluctuations due to different phase realization for any particular set of 

parameters (bead diameter, composition, and position) are tightly distributed around the mean, the initial 

phase value of the field exciting the quantum dots has been preserved (although the source dipoles are 

not necessarily in phase under these chosen conditions). 

 

 
Figure S2. Distribution of the power emitted by a set of 472 randomly oriented dipoles. Each 
realization is based on randomizing phases of these dipoles. Power scale is normalized to the total 
emitted power when all dipoles are in phase. Solid line (red in color version) is a Gaussian fit to the 
data (mean is 1.02 and standard deviation is 0.01). 

 

 

5. Boundary condition matching of MAS solution. The accuracy of the MAS solution in our 

simulations can be inferred from the mismatch of the boundary conditions (Figure S3). At the 

absorption stage, the boundary conditions are well satisfied, with mismatch being about 1% for 

tangential components of electric fields at the boundaries of both the bead and the silica substrate 

(Figure S3A and S3B). For the fluorescence stage, the relative mismatch is higher than for absorption, 
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because the amplitude of the field is lower by an order of magnitude, but the mismatch is mostly 

contained within 5-10 % (Figure S3C and S3D). 

 

 
 

Figure S3. Boundary conditions mismatch for the simulation of the electric field distribution for a 1 μm 
diameter bead with high volumetric fractions of composite materials (20% Fe3O4, 40% CdSe quantum 
dots), positioned 60 nm away from the silica-water interface, illuminated by a 532 nm TE-polarized 
beam incident at an angle of 75°. Blue and red (in color version) smooth curves represent fields 
evaluated inside and outside of the corresponding boundary and virtually completely overlap. Black 
curves represent the mismatch (difference) between the two fields. (A) mismatch on the surface of the 
sphere for the absorption stage; (B) mismatch on the silica surface for the absorption stage; (C) 
mismatch on a sphere at the fluorescence stage; (D) mismatch on the silica at the fluorescence stage. 

 

6. Field and power distributions for TM polarization of the incident beam. 

 

    
 

Figure S4. Electric field, phase, and power distribution for a 1μm diameter bead containing 20% Fe3O4 
and 5% (A-D) or 40% (E-F) CdSe QDs positioned 60 nm away from the silica-water interface, 
illuminated by a TM polarized 532 nm beam incident at 75°. All coordinates are in units of bead radius, 
the color scale in A, C, D, and E is logarithmic, and |E inc| =1 for the incident field. (A) absolute E field 
distribution in the yz plane; (B) Ex phase distribution in the yz plane; (C) absolute field distribution in 
the xz plane; (D) distribution of power scattered through silica in the xy plane; (E) absolute E field 
distribution in the yz plane on a log scale; (F) Ex phase distribution in the yz plane. 
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Figure S5. Power deposited in the bead (o) and scattered through silica (×) during the absorption stage 
(TM polarization, λ=532 nm) (A). Total fluorescent power leaving the bead (o) and detectable 
fluorescent power (×) (λ=597 nm) as functions of bead magnetite concentration (B). (QD volume 
fraction is constant at 5%, θ=75°, bead diameter is 1.0 μm). Solid and dotted lines correspond to beads 
positioned 30 nm and 90 nm away from silica. The powers are normalized by the total power available 
from the incident beam in a silica substrate (for the circular cross-sectional area with a radius equal to 
the bead radius). 

 

 
 
Figure S6.  Power deposited in the sphere (A) and scattered through silica (B) at the absorption stage; 
power emitted from the sphere (C) and transmitted through silica (D) at the fluorescence stage. All 
power is plotted as a function of magnetite and QD volume fractions. (TM polarization, θ=75°, bead 
diameter is 1.0 μm, distance from silica is 60 nm, incident λ=532 nm, fluorescence λ=597 nm). 

 

References 

 (1) Sihvola, A. Subsurface Sens. Tech. Appl. 2000, 1, 393. 
 (2) Ma, X. Y.; Lu, J. Q.; Brock, R. S.; Jacobs, K. M.; Yang, P.; Hu, X. H. Physics Med. and 
Biol. 2003, 48, 4165. 
 (3) Nikolov, I. D.; Ivanov, C. D. Appl. Optics 2000, 39, 2067. 
 (4) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2003, 15, 2854. 
 (5) Palik, E. D. J. Opt. Soc. Am. A 1984, 1, 1297. 
 (6) Roberts, W. L.; Campbell, T. J.; Rapp, G. R. Encyclopedia of minerals; 2nd ed.; Van 
Nostrand Reinhold: New York, 1990. 
 (7) Huffman, D. R.; Stapp, J. L. Interstellar Dust and Related Topics. International 
Astronomical Union Symposium no. 52, State University of New York at Albany, Albany, N.Y., U.S.A. 
Eds: Greenberg, J. M.; van de Hulst, H. C. Dordrecht, Boston, Reidel 1973, 297. 
 (8) Jackson, J. D. Classical electrodynamics; 3rd ed.; Wiley: New York, 1999. 

A B

A B C D 


