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This online supporting information provides descriptions of (1) the review of the Bayesian 

melding approach (2) the parameter estimation of the BME method (3) the ozone data and its 

mean trend and covariance functions, (3) the calculation of error variance in model 

performance analysis, (4) the truncated Gaussian distribution used to model the soft data, (5) 

the results of the BME error variance estimates, (6) the statistical test for significance of 

reduction in mean square error for the cross-validation analysis, and (7) comparison of BME 

non attainment determination with EPA classification analysis. 

 

 

1. Review of the Bayesian melding approach   

Our notation for variables will consist in denoting a single random variable Z in capital 

letter, its realization z in lower case, and vectors or matrices in bold faces, e.g. Z=[Z1,Z2,…]
T
  

and z=[z1,z2,…]
T
. 

We summarize here the important Bayesian melding approach developed by Fuentes and 

Raftery [1] in a spatial estimation context. They combine observations and model predictions 

to estimate the unobserved true ozone concentration Z(s) at location s.  

Their “data” model for an observation )(ˆ sZ at point s is  

)(ˆ)()(ˆ sss EZZ +=  (S1) 

where the observation error ),0(~(.)ˆ 2

Ê
NE σ  is a white noise process independent from Z(s). 

Similarly the “data” model for a model prediction )(
~

BZ over some region B is  

[ ])(
~

)()(
~ 1

sss EZdBBZ
B

+= ∫
−

 (S2) 

where the point-prediction error )(
~

sE  is the sum of a spatial bias with parameters a and a 

white noise process ),0( 2
~
E

N σ  independent from Z(.) and (.)Ê .  

The “process” model for ozone concentration Z(s) is  

Z(s)=µ(s)+Z’(s) (S3) 

where the mean trend model µ(s) may be a function of parameters ββββ, and the zero-mean 

autocorrelated Gaussian process Z’(s) has covariance with parameters θθθθ that may be varying 

in space.  

Let the random variable Zk=Z(sk) correspond to ozone at some estimation point sk, and 

let the column vector of random variables TT
m

T
od ]

~
,ˆ[ ZZZ =  be the collection of random 

variables corresponding to the observations T
o ZZ ,...]ˆ,ˆ[ˆ

21=Z  at points ,...},{ 21 ooo sss =  and 

model predictions T
m ZZ ,...]

~
,

~
[

~
21=Z  at points ,...},{ 21 mmm sss = . We denote by zk a 

realization of Zk, and by zd an observed/model-predicted value for Zd. The model equations 

(S1-3) describe the statistical distribution of (Zk,Zd) in terms of the parameters 

),,,,( 2
~

2
ˆ aθβ

EE
σσ=φφφφ . The solution of the spatial estimation problem for some fixed 

parameters φφφφ is given by the conditional PDF for (Zk|Zd,φφφφ) which we write as 

f(zk|zd,φφφφ).  (S4) 
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If we assume that the random variables (Zk,Zd|φφφφ) are jointly normally distributed, then it 

follows that (Zk|Zd,φφφφ) is normal with mean 

)()()( dd
-1
ddkdd|k µµµµ−+= zCCskµµ φφφφ  (S5) 

and variance 

T
kd

-1
ddkd

2
k

2
d|k )( CCC−= σσ φφφφ  (S6) 

where µµµµd=E[Zd] is the expected value of Zd, σ2
k is the variance of Zk, Ckd=cov(Zk,Zd) is a row 

vector of covariances between Zk and each element in Zd, and Cdd=cov(Zd,Zd) is a square 

matrix of covariances between each pairs of elements in Zd. As shown in Fuentes and 

Raftery[1], Eqs. (S1-3) can easily be used to express µµµµd, σ2
k, Ckd and Cdd as a function of the 

parameters φφφφ.  

Eqs. (S4-6) basically correspond to the solution of the classical kriging method when φφφφ is 

known. Various strategies can be used to remove the dependency of Eqs. (S4-6) on φφφφ. The 

Bayesian approach taken by Fuentes and Raftery[1] consists in removing the 

conditionalization on φφφφ in Eq. (S4) by taking the marginal PDF of 

)|(),|()|,( ddkdk fzfzf zzz φφφφφφφφφφφφ =  with respect to zk, which leads to  

 

)|(),|()|( ddkdk fzfdzf zzz φφφφφφφφφφφφ∫=  (S7) 

 

Fuentes and Raftery[1] calculate this integral using a Gibbs sampling approach, which 

involves defining a prior PDF for φφφφ, , , , and taking the likelihood )|( φφφφdf z  as a multivariate 

normal PDF with mean and covariance derived from the model Eqs. (S1-3). The expected 

value and variance of (Zk|Zd)  can then at once be written as 

)|()(|| ddkdk fd zφφφφφφφφφφφφ µµ ∫=  (S8) 

and  

)|()(2
|

2
| ddkdk fd zφφφφφφφφφφφφ σσ ∫=  (S9) 

These equations show that, basically, the Bayesian approach corresponds to taking the 

average of the kriging mean µk|d(φφφφ) and variance σ2
k|d(φφφφ) weighted by f(φφφφ|zd), which 

expresses how likely each values of the parameters φφφφ    are given the observed data zd.  

A powerful feature of this Bayesian approach is that the kriging solution can be viewed 

as an approximate limiting case of the more general Bayesian case, in that the kriging case 

consists in using an empirical or a likelihood method to obtain an estimate φφφφ̂  of φφφφ, and then 

treating φφφφ̂  as the known value for φφφφ    by “plugging” it in Eqs. (S5-6), i.e. )ˆ(|| φφφφdkdk µµ ≈ and 

)ˆ(2
|

2
| φφφφdkdk σσ ≈ . As pointed by Fuentes and Raftery[1], this approximation is not robust for 

the Bayesian melding problem they consider, probably because in their problem both the 

observation and model-prediction error variances 2

Ê
σ  and 2

~
E

σ  are unknown parameters. 

However, that is not the case for our problem where we take 2

Ê
σ =0, which essentially means 

that )()(ˆ ss ZZ = , or stated in other words, that in a regulatory context, the observations must 

be used as a proxy for the true concentration of ozone. We conducted a simulation study that 
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revealed that in this case the kriging approximation )ˆ(|| φφφφdkdk µµ ≈ and )ˆ(2
|

2
| φφφφdkdk σσ ≈ is 

reasonable when taking φφφφ̂  as the Maximum a-posterior (MAP) estimate of φφφφ, i.e. by 

selecting the φφφφ that maximizes f(φφφφ|zd), and acceptable for other empirical estimates φφφφ̂  of φφφφ.  

The Bayesian melding approach described above can surely be used for our problem by 

simply setting 2

Ê
σ =0, considering the reduced vector of parameters ),,,( 2

~ aθβ
E

σ=φφφφ  (notice 

that 2

Ê
σ  was removed from φφφφ), and then either obtaining the full Bayesian estimator dk |µ  

and 2
|dkσ  (Eqs. S8-9), or its kriging approximation )ˆ(| φφφφdkµ and )ˆ(2

| φφφφdkσ where φφφφ̂  might be 

the MAP estimator, a Maximum Likelihood estimator, or even an empirical estimator. 

However, this approach relies on some strong assumptions which, we believe, may lead to 

two important limitations. 

The first limitation pertains to the assumption that the complex stochastic relationship 

between the process Z(s) and its model prediction )(
~

BZ  can be adequately represented by the 

linearized form expressed in Eq. (S2) with a Gaussian prediction error. The second limitation 

is the assumption that the covariance matrices Ckd and Cdd defined in Eqs. (S5-6) capture the 

full knowledge of the linearized relationship (S2).  

These limitations of Bayesian melding, and more generally the similar limitations of 

Bayesian hierarchical modeling, are the motivation for proposing the BME approach 

presented in this paper. The BME approach provides a sound mathematical framework for 

non-linear, non-Gaussian estimation that is not limited to the linear form of Eq. (S2) and 

may better capture the complex non-Gaussian stochastic relationship between Z(s) and 

)(
~

BZ .  

 

 

2. Parameter estimation for the BME method  

Let the S/TRF Z(p) represent ozone at space/time point p=(s,t), where s is the spatial 

location and t is the time. The BME method requires calculation of the G–KB based PDF 

)ˆ|,()ˆ,|()( oo ffddf zzzz θθθθββββθ,θ,θ,θ,ββββθθθθββββ ∫∫=G  (Eq. 4), where ),ˆ,( mokz zzz =  is a realization of 

the vector of random variables (Zk,Zo,Zm) representing the ozone S/TRF Z(p) at the 

estimation point pk, the observation points po, and model prediction grid points pm, 

respectively. The conditioning on oẑ  was noted in the integrand to reflect that the ozone 

concentration is known at the observation points po. ββββ are the parameters of the ozone mean 

trend model µ(p;ββββ)=E[Z(p)], while θ θ θ θ  are the parameters of the ozone covariance model 

cZ(p,p’;θθθθ)=cov(Z(p),Z(p’)). )ˆ,|( of zz θ,θ,θ,θ,ββββ  is the multivariate Gaussian PDF for z with mean 

and variance given by µ(p;ββββ) and cZ(p,p’;θθθθ), respectively. The PDF )ˆ|,( of zθθθθββββ  is 

proportional to the product of the likelihood ),|ˆ( θθθθββββof z  and some prior PDF ),( θθθθββββf  for ββββ 

and θθθθ. 

An approximation for Eq. 4 is provided by )ˆˆ,ˆ|()( off zzz ,,,,θθθθββββ≈G  (Eq. 5), where ββββ̂  and 

θθθθ̂  are estimates of ββββ and θθθθ, respectively. We discuss here three estimators that we 

considered to obtain estimates of ββββ and θθθθ, and our selection of one of these estimators.  

The three parameter estimators that we considered are described in table S1. They are the 

least square (LS), the maximum likelihood (ML), and the maximum a posteriori (MAP) 
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estimators. The LS estimator generally involves the least square fitting of parameterized 

models to relevant data, while the ML estimator seeks parameters that are most likely given 

the observed data, and the MAP estimator is an improvement upon the ML estimator if prior 

knowledge about the parameters is available.    

 

Table S1 

Definition of the least square (LS), maximum likelihood (ML) and maximum a 

posteriori (MAP) estimators of the parameters ββββ and θθθθ    of Eq. 5 

Parameter 

Estimator 

Description Resulting approx. error 

in simulated study 

Least Square 

(LS) 

Generalized least square fitting a 

polynomial mean trend model with 

parameters ββββ on the observed values oẑ ,  

Least square fitting of the covariance 

model with parameters θθθθ on experimental 

covariance values  

| kẑ -
)(ˆ LS

kz |<0.29ppb  

Maximum 

Likelihood (ML) 
)ˆ,ˆ( θθθθββββ  which maximizes the likelihood 

),|ˆ( θθθθββββof z  

| kẑ -
)(ˆ ML

kz |<0.038ppb  

Maximum a 

Posteriori (MAP) 
)ˆ,ˆ( θθθθββββ  which maximizes 

),|ˆ( θθθθββββof z ),( θθθθββββf  

| kẑ -
)(ˆ MAP

kz |<0.0078ppb 

 

When implementing the parameter estimators described in Table S1, we define the mean 

trend model as a polynomial function of the spatial and temporal coordinates. For example, a 

polynomial of order 1 corresponds to a linear drift with respect to space and time, and in that 

case ββββ consists in the intercept and linear coefficients of that linear space/time drift. The 

likelihood ),|ˆ( θθθθββββof z  is calculated as a multivariate Gaussian PDF with a mean vector and 

covariance matrix obtained from the mean trend model µ(p;ββββ) and covariance model 

cZ(p,p’;θθθθ) evaluated at the observation points po. The prior PDF ),( θθθθββββf  for ββββ and θθθθ should 

be selected based on prior knowledge of these parameters, though the selection of this prior 

is somewhat arbitrary in practice. 

The BME mean estimate kẑ  of ozone at an unmonitored point is given by the mean of 

the BME PDF )()()( 1
zzz GS ffdAzf mmk ∫−=K  (Eq. 3) where the G–KB based PDF )(zGf  

is calculated using Eq. 4. If however )(zGf  is approximated using )ˆˆ,ˆ|()( off zzz ,,,,θθθθββββ≈G  

(Eq. 5), where )ˆ,ˆ( θθθθββββ  is obtained using either the LS, ML or MAP parameter estimator, then 

we get approximate BME mean estimates referred to as 
)(ˆ LS

kz , 
)(ˆ ML

kz  or 
)(ˆ MAP

kz , respectively. 

We conducted a simulation study and found that the approximation is numerically almost 

exact when using the BME MAP estimate 
)(ˆ MAP

kz , and robust when using the LS estimate 

)(ˆ LS
kz  and the ML estimate 

)(ˆ ML
kz . 

For conciseness sake and without loss of generality we present here results obtained 

when the parameter estimation is reduced to that of estimating the covariance parameters 
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θθθθ    by assuming that the mean trend is known to be zero. In effect this corresponds to the 

estimation of mean trend removed ozone concentration, or in other words we redefine the 

S/TRF Z(p) as ozone concentration minus a known mean trend (this simulation is relevant 

for our study as we found no evidence that using a polynomial mean trend model  improves 

ozone prediction). We used the Choleski decomposition method to simulate realizations of 

observed mean trend removed ozone values oẑ  with a zero mean and an exponential 

covariance function ( )( ))/3exp()/3exp(),( 2
trZZ ararrc −−= στ , where the covariance 

parameters θθθθ= ),,( 2
trZ aaσ  were set to 2

Zσ =0.000159ppm
2
, ar=10km, and at=20hours, which 

is representative of the short length/time scale variability of ozone mean trend removed 

concentrations for our study area (as described in the next section). The mean trend removed 

ozone concentrations simulated at one monitoring station are shown with filled circles in Fig. 

S1. These simulated values exhibit a variability that is similar to that of the mean trend 

removed ozone concentrations in our study area (see for e.g. Fig. S2). 

 

Figure S1. Simulated mean trend removed ozone observations (filled circle). The BME 

mean trend removed concentration estimates 
)(ˆ LS

kz , 
)(ˆ ML

kz , 
)(ˆ MAP

kz  and kẑ  are shown as 

approximately straight lines connecting the filled circles, while the round contours delineate 

the corresponding one standard-deviation lower and upper bounds for each BME estimate. 

 

We then used the simulated oẑ  values to obtain the LS and ML estimates of the 

covariance parameters, while a prior of the covariance parameters needs to be specified in 

order to obtain the MAP estimates of the covariance parameters. For instance the LS and ML 

estimates for the temporal covariance range at are directly calculated from the simulated oẑ  

shown in Fig. S1 as )(ˆ LS
ta =14.2hours and )(ˆ ML

ta =28.0hours, respectively. However; we need 

a prior for at in order to calculate its MAP estimate. One possibility is to take a prior that is 

Gaussian distributed but truncated below zero, with mean equal to )(ˆ LS
ta , and a standard 
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deviation equal to 10hours. In that case we obtain )(ˆ MAP
ta =25.0hours., which indicates some 

Bayesian updating toward the ML estimate. However this example illustrates how arbitrary 

the choice of the prior can be in practice.  

We finally calculated the mean trend removed BME estimate kẑ , and its approximate 

estimates 
)(ˆ LS

kz , 
)(ˆ ML

kz  or 
)(ˆ MAP

kz , which are shown in Fig S1 together with the lower and 

upper bounds of their corresponding standard deviation. As seen from that figure, the 

approximate estimates 
)(ˆ LS

kz , 
)(ˆ ML

kz  and 
)(ˆ MAP

kz  are in such good agreement with kẑ  that it is 

not visually possible to distinguish them. Indeed, as indicated in Table S1, the absolute 

difference between kẑ  and 
)(ˆ LS

kz  is at most 0.29ppb over the time interval shown in Fig. S1. 

Likewise this difference is at most 0.038ppb for the ML estimator, while it is at most 

0.0078ppb for the MAP estimator. These approximation errors are very small compared to 

typical ozone concentrations (which mostly vary between about 10ppb to 100ppb in our 

study area), hence this simulated study provides quantitative support indicating that the 

approximation of Eq. 5 leads to an approximation of the BME estimate that is almost 

numerically exact when using the MAP estimate of the covariance parameters. Indeed Fig. 

S1 shows not only that kẑ  and 
)(ˆ MAP

kz  are almost exactly equal, but so are their standard 

deviation (i.e. their respective lower and upper bound interval are visually indistinguishable). 

This means that the estimation is robust to parameter uncertainty. This fact is actually 

illustrated by the fact that even though the LS and ML parameter estimates of at are 

somewhat different than that of the MAP estimator, their corresponding BME estimate of 

ozone are very similar to that obtained by accounting for parameter uncertainty. 

Since we found that 
)(ˆ LS

kz , 
)(ˆ ML

kz  and 
)(ˆ MAP

kz  are good approximations of kẑ , which 

indicates that Eq. 5 is a reasonable approximation of Eq. 4, then we are free to use any of 

these estimates. In this study we select the LS parameter estimator because it does not 

require the arbitrary selection of a prior for the parameters, and it is based on a least square 

fitting that provides an opportunity to check whether the estimated parameters values are 

physically meaningful. For example, the covariance parameters are obtained by fitting a 

covariance model to experimental covariance values (see next section), which can be guided 

by expert knowledge gained from other ozone studies.  

 

3. Description of the data and its mean trend and covariance functions 

Figure S2 provides an example of the temporal trend of both monitored and modeled 

ozone concentrations at one of the monitoring stations from the NC regulatory monitoring 

network. Figure S3 illustrates the results of our mean trend analysis for a single station. 
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Figure S2. Plot of observed (dashed line) and modeled (plain line) ozone as a function of 

time at the station bearing the highest ozone concentration observed throughout the study 

period.  

 

 

Figure S3.  Plot showing ozone observed values jẑ  as a function of time at the Davie 

County station in NC piedmont (dots connected by a line), and the corresponding mean trend 

model );( βpµ  (Eq. 11) (solid line). 
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Figure S4 shows the results of covariance analysis. Experimental covariance values cZ 

are shown with dotted lines as a function of spatial lag r for τ=0 in Fig.S4(a), and as a 

function of temporal lag τ for r =0 in Fig.S4(b).  

 

(a) 

 
(b) 

 

Figure S4. Experimental (dots) and modeled (solid line) covariance shown as a function of 

(a) the spatial lag r for τ=0hr. and (b) the temporal τ for r=0km. 

 

We then fit to these experimental covariance values the following space/time separable 

covariance model:   

 









+

−







 −
+

−
= )

2
cos(15.0)

3
exp(85.0)

3
exp(6.0)

3
exp(4.0),(

212
2
1

2
2

ttrr

ZZ
aaa

r

a

r
rc

τπτ
στ (S10) 

 

where the ozone concentration variance is 2
Zσ =0.000159ppm

2
, the Gaussian spatial range is 

ar1=10km, the exponential spatial range is ar2=125km, the temporal exponential range is 

at1=20hours, and the periodicity for the cosinusoidal temporal range is at2=24hours. Plain 

lines in Fig.S4 show the resulting fitted covariance model.  

 

Figure S5 shows the results of covariance analysis in a 3D plot. 
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 (a) (b) 

 
Figure S5.  Experimental (a) and modeled (b) space time covariance of the ozone field in 

North Carolina. The temporal lag (0 to 100hr) is shown on the left axis, the spatial lag (0 to 

150km) is shown on the right axis, and the space time covariance on the vertical axis. 

 

4. Error variance of model performance assessment 

Stars in Figure S6 represent the error variances })~(ˆ
2 izλ  (Eq. 8) calculated within each 

bin i, and plotted against the average modeled predictions })~(ˆ
1 izλ  (x-axis) for the 

corresponding bin, and the line connecting the stars is the interpolation model used to assign 

a soft distribution variance var[Z| z~ ] to each modeled data point z~ . Note that higher 

predicted ozone levels (above approximately 0.07ppm) have lower error variance, so that 

greater confidence can be assigned to these values.  

 

 
Figure S6. Photochemical model error variance as a function of modeled ozone values: the 

stars represent the error variances found within each class of ozone modeled values plotted 

against the mean of modeled ozone within that class; the line describes the interpolation 

between each point so that each photochemical model output is assigned an error variance. 

 

 

5. Truncated Gaussian distributions 

The choice of the parametric function φ(.) depends on the statistical distribution of 

prediction errors for the air quality model.  Without loss of generality, we will consider the 
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Gaussian distribution truncated below zero.  Examples of this distribution are shown in Fig. 

S7(a) and Fig. S7(b).  This distribution is completely defined by two parameters, which are 

its expected value µ1, and its standard deviation µ2, hence we denote it as φ(u ; µ1,µ2).  Note 

that since this parameterized PDF is truncated below zero, its mean µ1 is greater than its 

mode. 

 

 (a) (b) 

 
Figure S7: Gaussian distributions φ(u ; µ1,µ2) truncated below zero; for (a) µ1=0.026ppm 

and µ2=0.016ppm and (b) µ1=0.1ppm and µ2=0.02ppm 

 

4. BME error variance estimates  

Fig.S8 compares the BME error variance estimates corresponding to the main text Figure 

3 representing hourly mean estimates. In these figures, the error variance *
kσ 2

 is normalized 

by the covariance sill 2
Zσ  defined in Eq. S10, so that the normalized variance has a value 

between 0 and 1.  

 (a) 
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 (b) 

 

Figure S8. BME estimate of normalized error variance *
kσ 2

/ 2
Zσ  (unitless), obtained when 

(a) using ozone observations only and (b) using both ozone observations and model 

predictions, for hour 250 

 

 

6. Testing the statistical significance of a reduction in mean square error 

We may test whether any findings that our proposed approach did lead to a decrease in 

mean square error is statistically significant, i.e. whether any findings that MSEs-MSEh is 

found to be negative can be said to be a statistically significant result.  We apply the test for 

the difference of means d=MSEs-MSEh, where MSEs is the mean of squared prediction 

error ej,s
2
(rv)=( jVsj zrz ˆ)(*

, − )
2
 for the proposed approach accounting for the air quality model 

data treated as soft, and MSEh is the mean of squared prediction error 

ej,h
2
(rv)=( jVhj zrz ˆ)(*

, − )
2
 for the approach that does not account for the air quality model data.  

Under this test, the variance of the difference of means is 

 

vard =[variance( e1,s
2
(rv) )+variance( e1,h

2
(rv) )]/no, (S11) 

 

Under the null hypothesis we assume that the difference d in mean square error is normally 

distributed with mean zero and variance vard.  Since we test the alternative hypothesis that 

d<0, we use the one tail p-value formulae to calculate the probability of obtaining a specific 

MSEs-MSEh if the null hypothesis were true, 

 

p = ∫
−

∞−

MSEhMSEs

dudu )var,0;(φ , (S12) 

 

where φ(u ; 0,vard) is the Gaussian PDF with mean 0 and variance vard, and MSEs-MSEh is 

the difference in mean square error obtained in the cross validation analysis.  Traditionally a 

p-value less than 0.05 indicates that the null hypothesis may be rejected, leading to the 

conclusion that the decrease in mean square error obtained in the cross validation is 

statistically significant.  The p-value may be calculated for the ensemble of monitoring 
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stations, or it may be calculated for individual monitoring stations.  In the later case, we can 

calculate the percentage of stations where a statistically significant reduction in mean square 

error is found at different levels of significance (i.e. with p-values less than 0.05, 0.01, and 

0.1). 

We first performed a cross-validation analysis that showed that, to begin with, advancing 

the analysis from a purely spatial to a spatial-temporal analysis reduces the MSE by almost 

an order of magnitude, from MSE=2.1*10
-4

ppm
2
 to MSE=2.5*10

-5
ppm

2
. This is not 

surprising as observations are hourly, and ozone levels from one hour to the next are highly 

correlated.  

Table 1 in the main text shows cross-validation statistics for the comparison of the hard 

and soft vs. hard data only methods for five different cross-validation radii rv of excluded 

monitoring station data. The results show that the larger the cross-validation radius, the 

better the soft data methodology performs compared to using hard data only. Only a 1.5% 

reduction in error is found when a radius of 10km is used, however a 28% improvement is 

observed for a radius of 100km, i.e. in the situation where no monitoring stations exist 

within 100km of the point of interest. The overall mean square error reduction is not 

statistically significant for the 10km cross-validation radius, but is highly significant (p-value 

< 0.0001) for radii above 30km. At the 95% significance level, only 14% of validation points 

show a statistically significant improvement in mean square error reduction for the 10km 

radius, while that number reaches 90% for a 100km cross-validation radius.  

 

 

 

7. Implications for non-attainment status  

The method used to estimate ozone maps has implications for determining ozone 

attainment areas based on a design value (DV), such as the DVC or the DVF defined in Eq. 

(1).  For illustration purposes, we define a pseudo-standard where the DV consists of the 

second highest 8-hour average, and where the non-attainment area is the collection of points 

where the DV is above 0.08ppm.   

Usually non-attainment areas are defined as the set of points for which the estimated DV 

is greater than the standard value, which essentially corresponds to an area that is more likely 

than not to be in attainment. However, the methods presented in this work offer additional 

information on the level of confidence we can attribute to each estimated DV. Hence we may 

define the probability of violation (PV) of the standard at a point s as 

PV(s)=Prob[DV(s)>NA], (S13) 

where NA is the non-attainment standard value. Fig.S9 illustrates non-attainment areas 

corresponding to four levels of the PV for the pseudo standard defined above, from the 

darkest to the lightest shade of grey: PV>0.9 (highly likely in non-attainment), 0.5<PV<0.9; 

(likely in non-attainment), 0.1<PV<0.5 (near non-attainment), and PV<0.1 (highly likely in 

attainment). We are thus able to define areas that depict different confidence in attaining the 

standard, which may be useful for policy purposes in a regulatory context. 

Fig.S9 shows the non-attainment areas obtained with estimation scenario (a) using only 

ozone observations, and estimation scenario (b) using both observations and model-

predictions. The difference between Fig.S9(a) and (b) is quite striking, The estimation 

scenario (b) not only yields different sizes of areas estimated to be in non-attainment, but 

also allows a more precise delineation of non-attainment boundaries because it has 

substantially lower estimation variance (e.g. compare Fig.S8a with S8b). Yet, it is quite clear 
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that the two estimation scenarios show the same core as being in non-attainment, and only 

disagree on the extent of the area covered under different conditions of uncertainty. 

Therefore the two approaches are shown to be consistent, but estimation scenario (b) 

increases the precision of the estimate. The following analysis provides a comparative 

analysis with the EPA proposal for classification of non-attainment areas.  

To allow comparison with EPA results, Figure S10 reproduces estimates and 

classifications of non attainment areas proposed by the EPA for the year 2004 using the 

correct design value calculation, based on 2001-2003 data. The figure depicts the county and 

partial-county violation classifications (marked by an X, source: US EPA 2004a), and also 

shows the result of their spatial interpolation analysis using the ordinary Kriging 

methodology (grey area, source: US EPA 2004b). The appropriate comparison with our 

results is with the 50% confidence level boundaries, as mean estimates are used in the 

regulatory framework. The boundaries of the EPA’s spatial interpolation are similar to the 

50% confidence spatial-temporal analysis using hard data only shown in figure S9a, but 

generally broader with some narrower parts in the south western part of the map. We would 

expect our analysis to provide more precise estimates because of incorporation of the 

temporal component, however the results are not fully comparable because of our data 

limitation (the use of a single ozone episode as opposed to 3 years worth of episodes). We 

compare the EPA’s determination of nonattainment counties and partial counties to the 50% 

confidence boundary of the BME hard and soft methodology nonattainment estimate. 

Adapting EPA’s designation rule, we count an entire county as being in nonattainment if an 

area of that county is found to be in nonattainment by the continuous BME estimate. We find 

general agreement for 80% of the North Carolina counties for which we have data. Seven 

counties or partial counties designated by the EPA as nonattainment were not found to be in 

violation of the pseudo standard used for our analysis by the BME estimation method. Three 

of these had no monitoring stations, one had design value just below the standard, but they 

were determined to contribute to nearby violating monitoring stations by the EPA [2]. Seven 

counties were shown to violate our pseudo standard, but were not designated as 

nonattainment by the EPA. Only one of these had a monitoring station (which did not violate 

the real standard), the six others could not have a design value computed since they do not 

have monitoring stations[2]. One of these six counties (Anson) has an area that falls into the 

“highly likely in nonattainment” category in our analysis.     
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 (a) 

 

  (b) 

 

Figure S9. Non-attainment areas for the pseudo-standard of 2
nd

 highest ozone level being 

above 0.08ppm obtained using estimation scenario (a) using only ozone observations, and 

estimation scenario (b) using both observations and model-predictions. The probability of 

violation (PV) of this standard are, from the darkest to the lightest shade of grey, PV>0.9 

(highly likely in non-attainment), 0.5<Prob<0.9 (likely in non-attainment), 0.1<Prob<0.5 

(near non-attainment), and Prob<0.1 (most likely in attainment) 
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Figure S10. Reproduction of EPA maps of 2004 North Carolina 8-hour ozone nonattainment 

areas. The X marks indicate the counties classified in nonattainment by the EPA in 2004, 

smaller x marks representing partial counties classified in nonattainment [2]. The grey shade 

represents areas violating the standard estimated by the EPA by the Kriging methodology 

using 2001-2003 data [2].  
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