Isolation of somatic Na^+ currents by selective inactivation of axonal channels with a voltage prepulse

- Supplemental material -

Lorin S. Milescu^{1,2}, Bruce P. Bean¹, and Jeffrey C. Smith²

¹Department of Neurobiology, Harvard Medical School, Boston, MA.

²Cellular and Systems Neurobiology Section, NINDS, NIH, Bethesda, MD.

Parameter	Units	Value	
		Current	Voltage
		clamp	clamp
$C_{ m m}$	pF	15	
C_{x}	pF	1.5	
$V_{ m Na}$	mV	62	29
$V_{ m K}$	mV	-80	
$V_{ m Lk}$	mV	-50	
$G_{ m Na,m}$	nS/pF	8	
$G_{ m Na,x}$	nS/pF	100	
$G_{ m K,m}$	nS/pF	1	0
$G_{ m K,x}$	nS/pF	1	0
$G_{ m Lk,m}$	nS/pF	0.002	
$G_{ m Lk,x}$	nS/pF	0.002	
$G_{ m mx}$	nS	15	

Supplemental Table 1. Compartmental model parameters. The conductance values for Na_v and K_v channels and for the leak are given as densities. Whenever used in the model, they are multiplied by the values of C_m or C_x .

Parameter	Value		
Na _v channel			
$a_{ m m,0}$	5.254		
$\alpha_{\mathrm{m,1}}$	0.01474		
$eta_{ ext{m,0}}$	0.3454		
$oldsymbol{eta_{m,1}}$	-0.08526		
%	85.07		
n	0.005784		
δ	5.895		
δ	-0.01043		
γ'_0	25.45		
γ'_1	0.005784		
δ'_0	26.06		
δ^{\prime}_{1}	-0.01043		
$\alpha_{\mathrm{h},0}$	0.01068		
$\alpha_{\mathrm{h},1}$	-0.04270		
$oldsymbol{eta_{ m h,0}}$	0.05954		
$oldsymbol{eta_{\!h,1}}$	0.02803		
$\alpha_{ m ho,0}$	0.004182		
$\alpha_{\text{ho},1}$	-0.04270		
$oldsymbol{eta_{ m ho,0}}$	1.805		
$\beta_{ m ho,1}$	0.02803		
a	0.71098		
b	8.1799		
K _v channel			
$\alpha_{n,0}$	0.25		
$\alpha_{n,1}$	0.1		
$oldsymbol{eta}_{ ext{n,0}}$	5×10 ⁻⁵		
$oldsymbol{eta}_{ ext{n,1}}$	-0.1		

Supplemental Table 2. Ion channel kinetic parameters. The k_0 parameters (e.g., $\alpha_{m,0}$) are in ms⁻¹, the k_1 parameters (e.g., $\alpha_{m,1}$) are in mV⁻¹, and the a and b parameters are adimensional.

Supplemental Figure 1. Compartmental model dynamics.

A, The compartmental model was tuned to spike spontaneously at ≈ 2 Hz, similar to raphé neurons. B & C, A detailed view of one action potential. The axonal voltage V_x rises faster than the somatic voltage V_m , due to the greater density of axonal Na_v channels $(G_{\text{Na},x})$. The difference between V_x and V_m causes depolarizing axial current I_{mx} to flow into the soma, together with somatic Na⁺ current $I_{\text{Na},m}$. As a result, the action potential rises more abruptly than in the somaonly case (gray traces). The insets in (B) and (C) correspond to a simulation where $G_{\text{Na},x} \approx G_{\text{Na},m}$, and the voltage sensitivity of axonal Na_v channels was 10 mV more negative.