Isolation of somatic Na^+ currents by selective inactivation of axonal channels with a voltage prepulse ## - Supplemental material - Lorin S. Milescu^{1,2}, Bruce P. Bean¹, and Jeffrey C. Smith² ¹Department of Neurobiology, Harvard Medical School, Boston, MA. ²Cellular and Systems Neurobiology Section, NINDS, NIH, Bethesda, MD. | Parameter | Units | Value | | |------------------|-------|---------|---------| | | | Current | Voltage | | | | clamp | clamp | | $C_{ m m}$ | pF | 15 | | | C_{x} | pF | 1.5 | | | $V_{ m Na}$ | mV | 62 | 29 | | $V_{ m K}$ | mV | -80 | | | $V_{ m Lk}$ | mV | -50 | | | $G_{ m Na,m}$ | nS/pF | 8 | | | $G_{ m Na,x}$ | nS/pF | 100 | | | $G_{ m K,m}$ | nS/pF | 1 | 0 | | $G_{ m K,x}$ | nS/pF | 1 | 0 | | $G_{ m Lk,m}$ | nS/pF | 0.002 | | | $G_{ m Lk,x}$ | nS/pF | 0.002 | | | $G_{ m mx}$ | nS | 15 | | **Supplemental Table 1. Compartmental model parameters.** The conductance values for Na_v and K_v channels and for the leak are given as densities. Whenever used in the model, they are multiplied by the values of C_m or C_x . | Parameter | Value | | | |------------------------------|--------------------|--|--| | Na _v channel | | | | | $a_{ m m,0}$ | 5.254 | | | | $\alpha_{\mathrm{m,1}}$ | 0.01474 | | | | $eta_{ ext{m,0}}$ | 0.3454 | | | | $oldsymbol{eta_{m,1}}$ | -0.08526 | | | | % | 85.07 | | | | n | 0.005784 | | | | δ | 5.895 | | | | δ | -0.01043 | | | | γ'_0 | 25.45 | | | | γ'_1 | 0.005784 | | | | δ'_0 | 26.06 | | | | δ^{\prime}_{1} | -0.01043 | | | | $\alpha_{\mathrm{h},0}$ | 0.01068 | | | | $\alpha_{\mathrm{h},1}$ | -0.04270 | | | | $oldsymbol{eta_{ m h,0}}$ | 0.05954 | | | | $oldsymbol{eta_{\!h,1}}$ | 0.02803 | | | | $\alpha_{ m ho,0}$ | 0.004182 | | | | $\alpha_{\text{ho},1}$ | -0.04270 | | | | $oldsymbol{eta_{ m ho,0}}$ | 1.805 | | | | $\beta_{ m ho,1}$ | 0.02803 | | | | a | 0.71098 | | | | b | 8.1799 | | | | K _v channel | | | | | $\alpha_{n,0}$ | 0.25 | | | | $\alpha_{n,1}$ | 0.1 | | | | $oldsymbol{eta}_{ ext{n,0}}$ | 5×10 ⁻⁵ | | | | $oldsymbol{eta}_{ ext{n,1}}$ | -0.1 | | | **Supplemental Table 2. Ion channel kinetic parameters.** The k_0 parameters (e.g., $\alpha_{m,0}$) are in ms⁻¹, the k_1 parameters (e.g., $\alpha_{m,1}$) are in mV⁻¹, and the a and b parameters are adimensional. ## Supplemental Figure 1. Compartmental model dynamics. A, The compartmental model was tuned to spike spontaneously at ≈ 2 Hz, similar to raphé neurons. B & C, A detailed view of one action potential. The axonal voltage V_x rises faster than the somatic voltage V_m , due to the greater density of axonal Na_v channels $(G_{\text{Na},x})$. The difference between V_x and V_m causes depolarizing axial current I_{mx} to flow into the soma, together with somatic Na⁺ current $I_{\text{Na},m}$. As a result, the action potential rises more abruptly than in the somaonly case (gray traces). The insets in (B) and (C) correspond to a simulation where $G_{\text{Na},x} \approx G_{\text{Na},m}$, and the voltage sensitivity of axonal Na_v channels was 10 mV more negative.