Supplementary material

1 RESTRICTION RULES FOR ARGS

In the following a formal description of the restriction esl (in-
troduced in Section 2.3 of the article) imposed to an ARG b
classification is given (in brackets we indicate which symtare

used in Figure 2 of the article and in Figure 12, resp., for the

seguences):

e A pair of sequences can only coalesce if
e both sequences belong to the same subtypex) or CRF
(, x),or
e the sequencesk( *)
e are the only sequences of their subtype left or

e belong to more than one subtype and are the parent of a

coalescent event.

Here, a sequence generated by a coalescent event is defined to
belong to the same subtype(s) or CRF, resp., as its children,

i.e.,

o the parent of two subtype A sequences belongs to subtype A, ®

e the parent of two CRF1 sequences belongs to CRF1,

e the parent of one subtype A and one subtype B sequence

belongs to subtype A and subtype B.

A sequence generated by a recombination event belongs to the

subtype(s) its segments belong to.

a recombination event. Only the last sequence leftx) is al-

lowed to recombine. (Multiple) breakpoints have to be chose
such that the parental subtypes get separated and recombina
tion events have to take place until all parental subtypes ar

separated.

2 MCMC DETAILS AND MOVE TYPES

The Markov chain Monte Carlo algorithm for ARGs fulfillingeh

restrictions imposed by a given classification is describeduding
proposal mechanism used.
Let G andH be ARGs. Then the change froghto H is accepted
if
__ P(DIH)P(H|O)Q(H,G)
P(DIG)P(GO)Q(G, H)
wherew is sampled from a uniform distribution d6, 1]. Q(G, H)

denotes the proposal probability specifying the probshiiti gener-
ate H in the next step givery is the current ARG.

Note that, if
Q(H,G)=CP(GO), Q(G,H)=CP(H|®) (1)
with C' > 0,

Hence, if a proposal ARG is sampled with respect to a coritio

The sequences of a CRF must all coalesce before they undergo

and the MCMC algorithm converges fast into areas of ARGs with

high likelihood. The last three of them fulfill (2). Exceptettirst

move (which is a global rescaling operation), all perforiwalaear-

rangements, i.e., among all subgraphs fulfilling specifiotogical
aand typological properties one subgraph is chosen randandyis
rearranged.

In the description of the moves, we will use the following
notation:

e Given an ARGG, its nodes are denoted by = N¢. Let
Tip(G) be the tip nodes off and In{G) = Ng \ Tip(G)
the internal nodes of7. Denoting the subtypes of the clas-
sification by S = {Si,...,5m,} and its CRFs byC' =
{C1,...,Cn,}, we define Type N — SUC U {Imp}

Si,
Imp,

where Imp is a symbol standing for “impure”.

The child(ren) and parent(s), resp., of a nade N is denoted

by C(n) € p(IN) andP(n) € p(N), resp., withp(N) de-
noting the power set alV. If n has only one child or parent,
resp.,C(n) or P(n), resp., are also interpreted as elements of
N. If n has two children or parents, resp., they are denoted by
Ci(n) andCz(n) or P1(n) andPz(n), resp. In case has only

one child, it has to have a spouse, which is denoted fy).
Furthermore, we define

if n belongs only to subtyp#s;
if n belongs to CRFE;
else

P(n), if d=1and#P(n)=1
P(n) = { PP (n)), ifd>1and#P(P* (n)) =1

undefined else

for d € N. Moreover, the age (i.e. time of generationyoE N
is denoted byl'(n).
e The container of: € N is defined by

{n},
{n,S(n)},

(“B” stands for “Box”). We denote the set of all containers of
G by B = Bg, i.e.,

if n € Tip(G) or #C(n) = 2

B(n) = { if S(n) is defined

B:={B(n): n€ N}.

In detail, the five moves are:

1. Scaling move: For all non-tip nodes T'(n) is multiplied by

c~U(1 =6, t55])with0 < 6 < 1.

2. Branch-Swapping move: This move is similar to the Wilson-
Balding move described in Drummoretl al. (2002). Among
the set

{ne N: #C(n) =2}

one (target) node: is chosen randomly. Then, one (destina-
tion) noden, is chosen randomly among the set

coalescent distributiom,only depends on the probability of the data

with respect to the genealogy.

In total, we apply five different types of proposal mecharism

(moves), chosen such that the whole space of legal (i.dlifudfthe
classification-given restrictions) ARGs can be entirelytriagersed

{n € N: #P(n) =1, Type(n) = Type(n:),
T(n) <T(n:) <T(P(n)},

Finally, n, is moved with one of its children such that be-
comes the parent of; and the child of the former parent of
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Figure 1. The branch-swapping move

nq, and the other child ofi; becomes the child of the former
parent ofn, (see Figure 1).

. Node age move: Lédt, ..., b, be the non-tip containers or-
dered by age, i.e.T(bi) < T(b;) for i« < j. For this
move, a non-root containéy € B is chosen randomly among
b1,...,bn—1. Then one of the three following moves are car-
ried out with equal probability: The age of the container is
drawn from a conditional coalescent distribution (with egiv
population parameters) conditioned on that
a. the order of the containers does not change

b. T(b1) < ... < T(bit1) < T(b;)) < T(big2) < ... <
T'(bn) (this move is forbidden ib;11 contains the parent(s)
of b;)
T'(br) (this move is forbidden if = 1 or b,y contains a
child of b;)
The move under b) is also called an “up move”, the one under
c) a “down move”.

. Coalescent move: A (target) nodeis chosen at random from

{neN: #C(n) =2, #P(n) = 1}.

The so-called neighborhood of rearrangement consistseof th
target node, its children, parent, and parent’s other chiitds
move makes changes of two kinds: it may reassign the three
children among target and parent, and it modifies the branch
lengths within the neighborhood. The new branch lengthg mus
remain within the constraints imposed by the times of theghr
children and of the parent’s ancestor (if existing); theses
define the boundaries of the neighborhood. Conceptuaky, th
portion of the genealogy involving these nodes is erased and
must now be redrawn. This move is based on the rearrangement
move introduced by Kuhneat al. (1995) (Large parts of this
description were taken from Kuhnet al. (1995)). Technical
details about this move for ARGs without recombination ésen
are described in Kuhnett al. (1995), our extension to ARGs
with recombination events is not shown due to the length of ou
deduction.

/ —

dest

5. Recombination move: This is the most complicated move and

is introduced in order to reorder nodes involved in recorabin
tion events. Among

{neN: #P(n) =2}

a (target) node; is chosen randomly. Let the sef; }icn,
and R be defined by

Ro = {m},

Ri := {neN: 3ng€Ri—1: #P(no) =2,n € Pno)},
ieN,

R = (JR
iEN

and

H:={neN: Ino € R: #P(no) =1,P(no) =n}

(cf. Figure 2a). All nodes belonging t& and H (exceptn:)
are removed from the ARG and
Vh € H Vng € C(h), no € R: P(no) — P%(no),
d=min{i >2: P'(no) ¢ H}
(cf. Figure 2b). Realize thad = 2 if no unknown subtype

occurs and at least two subtypes have to be present in order to
make this move work. Now, denote by

({Slv"'>sn}_>{Si17"'>sin1}7{s]'17“ ]ng})
arecombination event which separates the subt{/ﬁe,s ,Sn}
into the subtype$S;, , . . ., Si,,, }and{S;,, ..., Sj., } (called
R-event) and by

s—T

the event of a node belonging to subtypdeing connected

to the rest of the ARG by a coalescent event (called C-event).
Let M be the set of finite sequences of R- and C-events such
that, if carried out chronologically on,, lead to a legal ARG.

As next step of the moven, € M is chosen randomly and

ne iS reconnected according ta, where the age of the newly
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Figure 2. The “recombination move”. a) Nodes belongingRaare colored in green, the ones belonging#an red. Numbers denote to which subtypes the
nodes belong to. b) All nodes belongingfioand H except the target node have been removed and thenamitdren of H have been connected to the next
valid ancestor. ¢) The removed part of the ARG has been regfece

generated nodes is chosen randomly from a simply sampleable After having carried out these moves, we have to reconnect

distribution (not the conditional coalescent distribnjicE. g.,

{07172} - {071}7{2}7 {071} - {0}7{1}7

0—-1T7, 1—-T

2—T,

would lead to an ARG like shown in Figure 2c. Then a fixed
number of extended “node age moves” is applied to the newly
generated nodes, where “extended" means that, addityonall
to the move described under 3., a movement of nodeH of
beyond their parent and children is allowed under suitable
circumstances (cf. Figure 3). In more detail, we relax the-co
ditions (b) and (c) under 3. by allowing “up moves” also if
bi+1 is non-root and the parent &f and “down moves” if
#C(bi—1) = 2. Such moves are carried such that the ARGs
yielded by a “recombination move” are samples with respect
to a conditional coalescent distribution.

the nodes accordingly to the ARG like follows:
e “down move”: Samplej ~ U(1,2), and setP(ng) «—
P(nt), ’P(nt) < Ng, P(C](nd)) “— Nt

e “up move™ Letn. := {n € C(n:) : #C(n) # 1} and

setP(ne) <« P(na), P(ng) < n¢, P(ne) < nq.

The ARG obtained by this procedure is the result of the
“recombination move”. Notice that this move would only not
violate (1) if P(Tm,) = P(Tm,) for mi,m> € M, where
T, is the set of ARGs which could be generated according to
m. But since allm involve the same number of coalescent and
recombination events and we do not sample ARGSs, but seek
a maximum, this seems to be an acceptable compromise be-
tween exactness on the one hand and complexity and speed on
the other hand. In case we intend to sample ARGs in the future,
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Figure 3. The modified “up move” and “down move”. Left to right shows aftieh move”, right to left an “up move”.

we will have to allow for moves betweéh,,, andT,, for dif-

For the mutation process, a General Time Reversible (GTR)emo

ferentm; andms instead of only carrying out extended “node (Lanaveet al., 1984) with mutation rate varying among the sites

age moves”.

3 ALGORITHM
3.1 jpHMM

Applying jpHMM only to one sequence of each CRF (and assign-

ing the calculated segmentation to all sequences belorgitigis
CRF) could seem questionable if jpHMM vyielded strongly ofiss

ilar results for different sequences ands; of the same CRF. But

such diverging results of jpHMM would also indicate that tigole
classification is rather poor since one should obvioushasstgns,

is used. The variation is modeled by a gamma distributiomgya
1994) and the parameters of the GTR model were estimated with
Findmodel (www.hiv.lanl.gov/content/sequence/findmbdénd-
model.html).

3.3 Scoring

Instead of Equation (1) one could also interpret the liladith of the
ARG

dmax P(D|G;)P(G4|©, 1, R)

,,,,,

ands; to the same CRF. Hence, the behavior of ARGUS to recon-

struct a genealogy of low likelihood in this case (due togssig
an inappropriate segmentation to eithgror s;) will correct for the
restricted application of jpHMM.

3.2 Coalescent model

In coalescent theory, time is traversed backwards staatitige tips,
generating genealogical events (i.e. coalescent evedtsemom-
bination events) according to their rate, until only one enéglleft
(called the root node). The rate of coalescendgis—1)/©, where
k is the number of active lineages, and the rate of recomioimadi

rs, wheres is the length of the genome region in which a valid

recombination event might occur, summed over all lineagakd
means not to be discarded because it does not contribute sath-
ple, cf. Section 3.2 of the article). The prior probabilifytee ARG

Gis
P(G|O,r) = (%)Nc MR exp {Z - (7’%(’%* D rsi> tl}

i

whereN¢ is the number of coalescent events avig the number of

recombination events if¥, k; the number of active lineages between

thesth and(: + 1)th genealogical event; the sum of valid sites in
that interval,t; the length of the time interval between tfth and
(i 4+ 1)th genealogical event (see Kuhretal., 2000).

as a score for the classification. Nevertheless, usttg|©, r, R)
to score a classification makes only sense if the tip sequéatze
is sampled randomly. Obviously, this is absolutely not tasecfor
our applications. Hence, we negleB{G|O, r, R) and only con-
siderP(D|G) (Users who find a way to estimatéor their data can
incorporate this knowledge manually). Anyways, normatlg tif-
ference betweet(D|G)P(G|©, r, R) for different classifications
is strongly dominated by?(D|G).

3.4 Influence of parameters

In this section we shortly discuss the influence of recomimnand
mutation rate parameterand© on the accuracy of the classifica-
tion procedure.

r: Since the number and type of recombination events is d@ietm
by the classification, the influence efis very small (recall that
P(D|G)P(G|O,r, R) is strongly dominated by’(D|G)). Never-
theless, one has to keep in mind that a very small recombmati
rate would probably imply that only classifications compbsaly
of pure subtypes would be reasonable and that ARGUS is not de-
signed for this use case (see Section 4 in the article).

O: Simulation and scoring runs for C1.1 and C2.1 indicate At
GUS can be expected to run reliably f®rdown to 0.05 (with the
other parameters chosen as in the article). Since HIV is étieeo

Since we assume that mutations at different sites are imdepe most strongly organisms, using a much hig8ethan in our setting
dent,P(D|G) can be easily calculated sitewise (Felsenstein, 1981)does not seem practical relevant.
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Figure 4. Modified versions of classifications C1.1 and C2.1 (diffgrin the number of sequences per subtype/CRF) were usediataion (5 ARGs per
classification, 5 mutation simulations per ARG) and the ltegisequence data set were scored for the same classifiqd) scoring runs per sequence data
set). The average running time for scoring is given.

3.5 Running time 3.6 Extension to unknown subtypes

The running time for a iteration step of the MCMC algorithm is In the genome of several CRFs, segments are commonly otassifi
dominated by the calculation &f(D|G). Moreover, the computing  to belong to an unknown subtype. In order to address claasdit
time of P(D|@G) scales linear in problems involving unknown subtypes, we extend the regiric
rules: We additionally interprete a sequence generatedrbgan-
bination event and belonging only to one, unknown subtypthas
] only sequence of its subtype left (cf. rules for coalescerhts in

e the number of input sequences. Section 2.3 of the article. This case is illustrated in Fégbir

jpHMM is not able to detect segments belonging to an unknown

Hence, the running time per iteration step is approximalielyar ~ Subtype and, to our knowledge, up to now no tool is availabte f
in the length of the input sequence data and the number of inprUtomatically segmenting sequences into known and unkisoin
sequences. types. Hence, segments belonging to an unknown subtypedbee

The total running time of ARGUS is roughly linear in the numbe added manually in the classification after the applicatigpleMM.
of MCMC steps carried out, with MCMC steps reordering recom-
bination events being considerably more expensive thaer ogpes 4 SEPARATING AND NOISE DISTANCE
of steps (this partly explains the difference in runningdibetween [ et
C1.1 and C2.1 in the presentation below). The total number of N! ={n € N: Type(n) = S}
MCMC steps is very difficult to estimate since it is influendad

o the length of the input sequence data,

many (partly random) factors. fori e {1,...,m,} and
In order to give an idea of the dependence of the running time o T
against the size of the input classification, we run ARGUSwit i = argmax,c nr ().

input classifications of various sizes. More precisely, e the
classifications C1.1 and C2.1, but with 1 to 10 sequencesyter s
type resp. CRF instead of 3 (i.e. same number for all subtgpds
CRFs in a classification). We use each of these modified €lzssi
tions for simulation and then score the resulting sequeata set mp
for the same classification. The resulting average runrimgs for _ . Foofyy N _ !
scoring are plotted in Figure 3.5. doc ; ; 2 T(nmrea(n,my)) = T(ng) = T(my)

Moreover, formy, na € N, n1 # na, letnmrcq (n1, n2) be the most
recent common ancestor noderof andns. Then the separating
distanced,., is defined by
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Figure 5. Alegal ARG corresponding to a classification having an umkmo
subtype (blue). For details, see Section 3.3 of the articte3a6 and Figure
2 of the article. Figure 6. First test of test setting T2. On the top, the original clésation is

given. Single-color boxes symbolize triples of sequenedsriging to a pure
subtype (same colors indicate same subtype). The multibobes symbol-
ize sequences belonging to a CRF, showing its segmentatibich has to
be provided in order to generate an ARG according to theifitzt®n and

simulate the mutation process). In the lower part, the deskassifications
are given. Single- and multicolor boxes symbolize the sasferthe orig-

inal classifications except that the segmentations of thEsCRe not given
(the segmentations used by ARGUS are determined by jpHMiM)ehd,
the different diagonal patterns symbolize the differentF6€Rthe colors in-
dicating the subtypes the CRF can be composed of (jpHMM awaes all
subtypes available for determination of the segmentatf@@RF).

and the noise distaneg,is. by

dnoise = i T(nl).
=1

5 SIMULATION STUDIES
5.1 T1 - Without recombination
As an initial test and to verify that the method can correptyform

the easier task of constructing a phylogenetic tree (withezombi- original NN o EEEE [ s
nations), 40 representative HIV-1 Gr. M sequences (7 frobtyge 3> > > > >

A, 7B,11C,3D,3F 3G, 2H, 2K, 2J) are chosen (using FigTree, B O S O el 0
see http://tree.bio.ed.ac.uk/softwareffigtree/). Th&GAIS is ap- N D el O e 2
plied to score the trivial classification (i.e., all sequestelong to

one 'subtype’). The most likely ARG achieved by the MCMC al- st _— T . ——
gorithm is compared to the phylogenetic tree in Figure 7 ¢fuBie . O ey O .
et al. (2006). As desired, in our tree all sequences belongingeo th I rTAay., BN ] . os
same subsubtype or subtype, resp., first coalesce with liee - O s ] e Os

guences of the subsubtype or subtype, resp., before coajesith
sequences from another subsubtype or subtype, resp. Thaieg
sequences of the subtype cluster like follows:

Figure 7. Second test of test setting T2. The same symbolism as ind=igur
6 is used.

((((A,G)(H, J))((B, D)(F, K))),C)
In Schultzet al. (2006) the tree has the form When the original classification scores higher than thedeassi-
fications, this indicates that ARGUS works for the analyzettirsy.
In the first part, we test 9 classifications of 15 sequenceshen

second part 6 classifications of 15 sequences (Figures 6)and 7
The ARGs are simulated by sampling them with respect to

((((A, G), J), (C, H)), (B, D)(F, K))).

We consider this sufficiently similar given that the branehdths

before the split into subtypes J, C, and H are very short.

5.2 T2 - With recombination

We choose two original classifications and for each origotadsi-
fication a number of alternative classifications for tesi{{Rgures
6, 7). We perform the following steps for each original (Jrue
classification in our test setting:

1. Simulate an ARG according to the original classification

the coalescent distribution, conditioned on the ARG fuffgl the
restrictions imposed by the original classification. Nettbat se-

guence data stemming from such ARGs in general does not pose

the typical application situation for ARGUS: Normally a st#fica-
tion algorithm is applied to (sub-)species well separatetbbnder

effects (Rambautt al., 2004). Nevertheless, the chosen testing

method allows for highlighting the boundaries of applidiapiof
ARGUS.
In the first test, the original classification has three putypes

2. Simulate the mutation process on the ARG (from the rootang two CRFs with three sequences each. The first CRF is squidi

downwards), thereby obtain simulated tip sequences

tantly segmented into three parts belonging to the first wixtypes

3. Score both the original as well as one or more plausibleand the second CRF is equidistantly segmented into ten foants

alternative classifications using the simulated tip segegn

all three subtypes. The first tested classification (denbye@1.1)




matches the original classification. The other eight (Jattassifica-
tions (denoted by C1.2-C1.9) are slight modifications ofdtiginal
one:

CRF but to the first and second subtype, resp.,

tutes a fourth subtype,

in C1.5 and CL1.6, resp., the last triple belongs to the firdt an
second subtype, resp.,

in C1.8 all triples belong to distinct subtypes,
in C1.9 the third triple constitutes a third CRF.

Notice that one could make the task more difficult for ARGUS by
also testing classifications only differing from C1.1 by aretwo
sequences (and not a triple), but we suppose that in redthapr
plications the input sequences are in general groupablerespect
to similarity.

In the second test all triples belong to different subtypBse
original classification again constitutes the first testsifécation
(denoted by C2.1). The other five classifications (C2.26@iffer
from the original one by one triple being assigned to a CRF.

Especially for the first test, the choice of tested clasdifica

in C1.2 and C1.3, resp., the fourth triple does not belong to ah

in C1.4 the fourth triple does not belong to a CRF but consti-

in C1.7 the second and third triple belong to the same subtype

For both tests of T2 we simulate 9 ARGs and for each ARG we
simulate 5 sets of tip sequences, yielding 90 individuaisteEhe
results are shown in Figures 8 and 9.

ARGUS computed a higher score for the original classificatio

an for the alternative classifications in all cases extepfollow-

ing ones. For the first test, ARGUS fails for 2 out of 9 simutate

ARGs to always (i.e. for all simulated tip sequences seesthe

original classification highest: For one tip sequences &#teo5th

ARG, C.1.7 scores higher than C.1.1 and for one tip sequesetes

of the 7th ARG jpHMM fails to find any breakpoint in one of the

CRFsof C1.1.

For the second part, ARGUS fails for 1 out of 9 simulated ARGs
to always score the original classification highest: C.2&es high-
est for one tip sequences set of the 5th ARG. jpHMM always finds
breakpoints in both CRFs of C2.1.
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Figure 8. Results for the test setting described in Figure 6. On thicetaxis, (log P(D|Gr) — log P(D|Go)) - 1073 is given, withG the most likely
ARG for the test (false) classifications C1.2-C.1.9 &hd the most likely reconstructed ARG for the original classifion C1.1. On the horizontal axis, the
number of the set of simulated tip sequences is given. Alhiggodn a vertical represent tests conducted for the samedipesices data (For clarity, points
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(i.e. at least one alleged CRF were diagnosed to belong toeaspibtype), the test results are omitted. In case that jpHidbIgnated at least one CRF of the
original classification C1.1 to belong to a pure subtypetest results for this tip sequences data set are omitted apdieal dotted line is drawn instead.
Depending on the stability of the results, 10-30 differential ARGs were used for the MCMC algorithm, but always taene number for tests belonging to
the same simulated ARG.
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Figure 9. Results for the test setting described in Figure 7. We usetb0different initial ARGs for the MCMC algorithm. For dé&a see Figure 8.
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Figure 11. Colored version of Figure 1 in the article. Example of a dfass
cation of 9 sequences into 3 subtypes (A, B, C) and 2 CRFs (CERE2).

At the bottom the recombinants have been segmented and gneests
assigned a subtype by jpHMM.
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Figure 10. The most likely ARG found by the MCMC algorithm applied to €.&ee Figure 3 of the article) using real HIV-1 Gr. M sequendée vertical
distance of the internal nodes to the tip nodes is drawn ptiopally to their time of generation. The genome of one CREBquence is shown magnified.
For details about the symbolism used in the ARG, see Figufeaf®article.
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Figure 12. Colored version of Figure 2 in the article. A legal ARG copesding to the classification given in Figure 11. At the bottdhe nine input (tip)
sequences with their classification are shown. The tip semseare defined to be generated at time zero. Looking frotarhdb top (i.e. into the past), two
nodes coalescing to one (parental) node, represent theaiiiese two nodes finding their most recent common ancesteode splitting into two parental
nodes represents a recombination event. Single-colorsheixaw the subtype of the node. Horizontally segmented bshxes for a recombinant sequence
the parental subtypes of each segment. Diagonally shadexs lshow the different subtypes the node belongs to. Whits paboxes indicate positions not
contributing to the tip sequences and, hence, of which weodd&eaep track. For recombination events, they also illtistlae positions of the recombination
breakpoints. For further details, see Section 2.3 of thelart




. 02
B (D ] I D GG
2x 2x g 2x 2% 2x
A H 02
I [ [ ] s e ;o co2
2x 2x 2 2x 2x

Figure 13. Colored version of Figure 8 in the article. Classificatiosediin
Section 3.2 of the article for deciding whether subtype G RFQ2 (=02) is
a pure subtype or a recombinant form, resp. The gray segmené ilower
segmentation of CRFO02, indicates a part of the genome desigrio stem
from an unknown subtype. Above the classifications, the segation of the
alleged CRFs is shown magnified.
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