
A Metropolis-Hastings (MH) algorithm within Gibbs was implemented to generate the 

MCMC chains used to estimate the posterior distribution of each parameter of interest. At 

each iteration t  of the algorithm, the parameters α  (or β ),π  and c  (ignoring the subscripts 

i and j for the sake of simplicity) are sampled according to the following steps. 

1) Letting kθ  the thk  parameter of interest and t
kθ  its current value at iteration t , generate a 

candidate 1t
kθ +ɶ  according to a uniform distribution  

 ( )1 ~ U min(0, / 2),max(1, / 2)t t t
k k k k kθ θ δ θ δ+ − +ɶ  (I.1) 

where kδ  is the range of variation allowed for the random walk in the uniform distribution 

around t
kθ . 

2) Compute  
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where 1t
kρ +  is the ratio of the densities of the conditional distribution of the candidate 1t

kθ +ɶ  

and of the current value t
kθ  (given the data x  and the other parameters [ ] \ kkθ θ θ=  being 

equal to their current values [ ]
c
kθ ) times the ratio of the densities of the proposal for the 

current and the candidate values. 

3) Generate ( )1 ~ 0,1t
ku U+ , a random uniform number on ( )0,1  

4) If 1 1t t
k ku ρ+ +≤ , then take 1 1t t

k kθ θ+ += ɶ , otherwise 1t t
k kθ θ+ = . 

The range of variation kδ  for the different proposal distributions were initially adjusted 

during several successive pilot runs (e.g. of 1000 iterations) until achieving an acceptance rate 

for each parameters ranging from 0.25 to 0.4. 



Now, we have to specify the density [ ]( ). | ,c
kp xθ  involved in the computation of 1t

kρ +  for 

each parameter in models 1 and 2. 

In model 1, we have  

i) ( ) ( ) ( )| , , | , | , ,p c x p c p x cβ π β π β π∝   (I.3) 

with ( )| , ~ , 1c N cβ π π π π−    and ( )| , , | ~ ,x c x B nβ π β α≡ ; 

ii)  ( ) ( ) ( ) ( ), , , ,p c x p c p c pπ β π β β π π≡ ∝| | | .  (I.4) 

iii)  ( ) ( ) ( ) ( ), , , ,p c x p c p c p cβ π β π β π≡ ∝| | | . (I.5) 

Notice that in the last two cases ii) and iii) the conditional densities no longer depend of the 

data.  

The same scheme applies to model 2 except that sampling in the conditional | , xα π  is 

carried out directly due to the conjugacy property of the beta-binomial model so that  

 ( )| , ~ , 1x Beta x n xα π τπ τ π+ − + −   . (I.6) 

 

Typical runs of these two MCMC algorithms consisted generally in few tens of pilot runs, 

followed by 10,000 burn-in iterations. The posterior distributions were then computed from 

5,000-10,000 post burn-in iterations with a thinning of 50 iterations (leading to 250,000-

500,000 post burn-in iterations). Convergence of the MCMC was checked using standard 

criteria. 


