SUPPORTING INFORMATION

The Effect of Structure on Nitroxide EPR Spectral Linewidth

Scott R. Burks,^{†,¶} Mallory A. Makowsky,[‡] Zachary A. Yaffe,[‡] Chad Hoggle,[‡] Pei Tsai,^{†,‡}

Sukumaran Muralidharan,[†] Michael K. Bowman,[§] Joseph P.Y. Kao,^{†,¶}, and Gerald M. Rosen,^{*,†,‡}

- [†] Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD, 21201 and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201
- ¶ Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- ‡ Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- § Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487

Table of Contents	Page
Table 1. Crystal data and structure refinement for nitroxide 7	2
Table 2. Atomic coordinates and equivalent isotropic atomic	
displacement parameters for nitroxide 7	3
Table 3. Anisotropic atomic displacement parameters for nitroxide 7	3
Table 4. Hydrogen atom coordinates and isotropic atomic displacement	
parameters for nitroxide 7	4
Table 5. Site occupancy factors that deviate from unity for nitroxide 7	4
Table 6. Bond lengths, valence and torsion angles for nitroxide 7	5
Quantum chemical coordinates for nitroxide 5	6
Quantum chemical coordinates for nitroxide 6	7
Quantum chemical coordinates for nitroxide 7	8
Quantum chemical coordinates for nitroxide 8	9

 Table 1. Crystal data and structure refinement for nitroxide 7

Empirical formula		$C_{12}H_{20}NO_3$	
Formula weight		226.29	
Temperature		250(2) K	
Wavelength		0.71073 Å	
Crystal size		$0.53 \times 0.50 \times 0.40 \text{ mm}^3$	
Crystal habit		orange bulk	
Crystal system		Monoclinic	
Space group		$P2_1/c$	
Unit cell dimensions		a = 7.7657(7) Å	$\alpha = 90^{\circ}$
		b = 15.5387(14) Å	$\beta = 109.5925(10)^{\circ}$
		c = 11.2639(10) Å	$\gamma = 90^{\circ}$
Volume		$1280.5(2) \text{ Å}^3$	
Z		4	
Density, ρ_{calc}		1.174 g/cm^3	
Absorption coefficier	nt, μ	0.084 mm^{-1}	
F(000)		492 ē	
Diffractometer		Bruker Smart Apex II C	CCD area detector
Radiation source		fine-focus sealed tube, l	ΜοΚα
Detector distance		5.800 cm	
Detector resolution		11.2 pixels/mm	
Total frames		1830	
Frame size		512 pixels	
Frame width		-0.30°	
Exposure per frame		45 sec	
Total measurement ti	me	25.9 hours	
Data collection metho	od	ω scans	
θ range for data colle	ection	2.32 to 25.00°	
Index ranges		$-9 \le h \le 9, -18 \le k \le 18$	$-13 \le l \le 13$
Reflections collected		9232	, ,
Independent reflectio	ons	2268	
Observed reflection, 1	I>2σ(I)	1909	
Coverage of independ	dent reflections	100.0 %	
Variation in check ret	flections	0 %	
Absorption correction	n	Semi-empirical from eq	juivalents
1		SADABS (Sheldrick, 1	996)
Max. and min. transn	nission	0.967 and 0.914	,
Structure solution tec	chnique	direct	
Structure solution pro	ogram	SHELXS-97 (Sheldrick	t, 1990)
Refinement technique	e	Full-matrix least-square	es on F^2
Refinement program		SHELXL-97 (Sheldrick	x, 1997)
Function minimized		$\Sigma w (F_0^2 - F_c^2)^2$, ,
Data / restraints / para	ameters	2268 / 0 / 161	
Goodness-of-fit on F	2	1.000	
Δ / σ_{max}		0.000	
Final R indices:	$R_1, I > 2\sigma(I)$	0.0488	
	wR_{2} all data	0.0970	
	R.	0.0220	
	D	0.0220	
Waighting asham-	ĸ _{sig}	0.0210 $W = 1/[\pi^2(E^2) + (0.005P)]$	$(2^{2}+0.0525D)$ D = [mov(E ² -0)+2E ² /2]
weighting scheme	dhala	$w = 1/[0 (\Gamma_0) + (0.005P)]$	$f + 0.9333 r$, $r = [max(r_0, 0) + 2r_0]/3$
Largest unit. peak and	1 11016	0.439 and -0.157 e/A	

 $R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ wR2 = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma \ w(F_{o}^{2})^{2}]^{1/2}$

Atom	<i>x/a</i>	y/b	<i>z/c</i>	U_{eq}	
01	0.6610(2)	0.38706(11)	0.89383(14)	0.0741(5)	
N1	0.5555(2)	0.35818(10)	0.78880(14)	0.0468(4)	
C2	0.3837(2)	0.40869(12)	0.72710(19)	0.0484(5)	
C2A	0.4312(3)	0.49318(14)	0.6750(2)	0.0685(7)	
C2B	0.2963(3)	0.42736(15)	0.8258(2)	0.0652(6)	
C3	0.2518(2)	0.35544(12)	0.61889(18)	0.0475(5)	
C4	0.3469(2)	0.31039(12)	0.54149(18)	0.0441(4)	
C5	0.4927(3)	0.25126(12)	0.61718(18)	0.0488(5)	
C6	0.6412(2)	0.29927(13)	0.71939(18)	0.0486(5)	
C6A	0.7623(3)	0.35100(16)	0.6627(2)	0.0672(6)	
C6B	0.7577(3)	0.23421(15)	0.8149(2)	0.0681(6)	
C7	0.3122(3)	0.32013(12)	0.41688(18)	0.0479(5)	
C8	0.1776(2)	0.37773(12)	0.33009(17)	0.0434(4)	
O8	0.0882(2)	0.43324(10)	0.35579(13)	0.0633(4)	
09	0.1677(2)	0.35998(9)	0.21150(13)	0.0609(4)	
C9	0.0499(3)	0.41343(16)	0.11337(19)	0.0699(7)	

Table 2. Atomic coordinates and equivalent^{*} isotropic atomic displacement parameters ($Å^2$) for nitroxide **7**

 * U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3. Anisotropic atomic displacement parameters^{*} ($Å^2$) for nitroxide **7**

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	0.0580(9)	0.0932(12)	0.0558(9)	-0.0184(9)	-0.0012(7)	0.0092(9)
N1	0.0388(8)	0.0507(9)	0.0459(9)	-0.0006(7)	0.0076(7)	0.0034(7)
C2	0.0427(10)	0.0430(10)	0.0575(12)	0.0043(9)	0.0143(9)	0.0073(8)
C2A	0.0667(15)	0.0466(12)	0.0866(17)	0.0065(12)	0.0182(13)	-0.0006(11)
C2B	0.0612(13)	0.0678(15)	0.0663(14)	-0.0059(12)	0.0208(11)	0.0159(11)
C3	0.0350(9)	0.0480(11)	0.0561(12)	0.0046(9)	0.0107(8)	0.0020(8)
C4	0.0376(9)	0.0401(10)	0.0542(11)	-0.0031(8)	0.0147(8)	-0.0059(8)
C5	0.0474(10)	0.0449(10)	0.0554(12)	0.0016(9)	0.0190(9)	0.0029(9)
C6	0.0403(10)	0.0531(11)	0.0536(11)	0.0006(9)	0.0173(9)	0.0029(9)
C6A	0.0503(12)	0.0763(16)	0.0804(16)	-0.0046(13)	0.0289(12)	-0.0097(11)
C6B	0.0547(13)	0.0720(15)	0.0718(15)	0.0056(12)	0.0134(11)	0.0210(11)
C7	0.0431(10)	0.0450(10)	0.0543(12)	-0.0028(9)	0.0145(9)	0.0021(8)
C8	0.0386(10)	0.0420(10)	0.0463(11)	-0.0038(8)	0.0097(8)	-0.0028(8)
08	0.0658(9)	0.0604(9)	0.0605(9)	0.0002(7)	0.0168(7)	0.0180(8)
09	0.0636(9)	0.0651(9)	0.0474(8)	-0.0012(7)	0.0097(7)	0.0130(7)
C9	0.0735(15)	0.0787(16)	0.0447(12)	0.0041(11)	0.0029(11)	0.0196(13)

* The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U_{11} + ... + 2hka^{*b*}U_{12}$]

Atom	x/a	<i>y/b</i>	z/c	U_{iso}	
H2A1	0.5193	0.5250	0.7425	0.075(6)	
H2A2	0.3213	0.5274	0.6399	0.075(6)	
H2A3	0.4832	0.4807	0.6097	0.075(6)	
H2A4	0.3633	0.4970	0.5856	0.075(6)	
H2A5	0.5612	0.4946	0.6882	0.075(6)	
H2A6	0.3993	0.5413	0.7184	0.075(6)	
H2B1	0.2718	0.3736	0.8610	0.060(5)	
H2B2	0.1826	0.4582	0.7874	0.060(5)	
H2B3	0.3785	0.4622	0.8923	0.060(5)	
H2B4	0.2834	0.4891	0.8328	0.060(5)	
H2B5	0.3727	0.4045	0.9064	0.060(5)	
H2B6	0.1767	0.4005	0.8015	0.060(5)	
H3A	0.1901	0.3127	0.6545	0.058(4)	
H3B	0.1581	0.3937	0.5643	0.058(4)	
H5A	0.5474	0.2220	0.5615	0.055(4)	
H5B	0.4387	0.2073	0.6564	0.055(4)	
H6A1	0.6862	0.3869	0.5949	0.074(4)	
H6A2	0.8327	0.3118	0.6299	0.074(4)	
H6A3	0.8448	0.3870	0.7273	0.074(4)	
H6B1	0.8581	0.2639	0.8767	0.090(5)	
H6B2	0.8059	0.1916	0.7715	0.090(5)	
H6B3	0.6830	0.2060	0.8572	0.090(5)	
H7	0.3822	0.2861	0.3811	0.068(7)	
H9A	-0.0752	0.4074	0.1117	0.076(6)	
H9B	0.0580	0.3959	0.0327	0.076(6)	
H9C	0.0875	0.4730	0.1295	0.076(6)	
H9D	0.1221	0.4435	0.0709	0.076(6)	
H9E	-0.0111	0.4550	0.1499	0.076(6)	
H9F	-0.0407	0.3778	0.0531	0.076(6)	

Table 4. Hydrogen atom coordinates and isotropic atomic displacement parameters (\AA^2) for nitroxide 7

 Table 5. Site occupancy factors that deviate from unity for nitroxide 7

Atom	sof	Atom	sof	Atom	sof
H2A1	0.93(3)	H2A2	0.93(3)	H2A3	0.93(3)
H2A4	0.07(3)	H2A5	0.07(3)	H2A6	0.07(3)
H2B1	0.86(2)	H2B2	0.86(2)	H2B3	0.86(2)
H2B4	0.14(2)	H2B5	0.14(2)	H2B6	0.14(2)
H9A	0.75(3)	H9B	0.75(3)	H9C	0.75(3)
H9D	0.25(3)	H9E	0.25(3)	H9F	0.25(3)

01-N1	1.2736(19)	N1-C6	1.497(2)	N1-C2	1.502(2)
C2-C2B	1.512(3)	C2-C2A	1.533(3)	C2-C3	1.543(3)
C3-C4	1.492(3)	C4-C7	1.346(3)	C4-C5	1.485(3)
C5-C6	1.523(3)	C6-C6A	1.530(3)	C6-C6B	1.532(3)
C7-C8	1.471(3)	C8-O8	1.202(2)	C8-O9	1.341(2)
O9-C9	1.439(2)				
01-N1-C6	116.12(14)	01-N1-C2	116.14(15)	C6-N1-C2	124.00(15)
N1-C2-C2B	107.93(16)	N1-C2-C2A	109.53(16)	C2B-C2-C2A	110.00(18)
N1-C2-C3	109.67(15)	C2B-C2-C3	109.91(17)	C2A-C2-C3	109.78(17)
C4-C3-C2	112.66(15)	C7-C4-C5	121.04(17)	C7-C4-C3	126.24(17)
C5-C4-C3	112.72(16)	C4-C5-C6	111.66(16)	N1-C6-C5	109.74(14)
N1-C6-C6A	109.87(16)	C5-C6-C6A	110.93(17)	N1-C6-C6B	107.34(16)
C5-C6-C6B	109.08(17)	C6A-C6-C6B	109.81(17)	C4-C7-C8	127.63(18)
O8-C8-O9	122.87(17)	O8-C8-C7	128.00(18)	O9-C8-C7	109.12(16)
C8-O9-C9	117.14(16)				
01-N1-C2-C2B	-47.4(2)	C6-N1-C2-C2B	155.33(17)	01-N1-C2-C2A	72.4(2)
C6-N1-C2-C2A	-84.9(2)	O1-N1-C2-C3	-167.09(16)	C6-N1-C2-C3	35.6(2)
N1-C2-C3-C4	-42.5(2)	C2B-C2-C3-C4	-160.97(17)	C2A-C2-C3-C4	77.9(2)
C2-C3-C4-C7	-121.0(2)	C2-C3-C4-C5	58.3(2)	C7-C4-C5-C6	118.40(19)
C3-C4-C5-C6	-60.9(2)	01-N1-C6-C5	164.37(17)	C2-N1-C6-C5	-38.3(2)
O1-N1-C6-C6A	-73.4(2)	C2-N1-C6-C6A	83.9(2)	O1-N1-C6-C6B	45.9(2)
C2-N1-C6-C6B	-156.75(17)	C4-C5-C6-N1	47.6(2)	C4-C5-C6-C6A	-74.0(2)
C4-C5-C6-C6B	164.92(17)	C5-C4-C7-C8	-177.88(17)	C3-C4-C7-C8	1.4(3)
C4-C7-C8-O8	8.9(3)	C4-C7-C8-O9	-171.64(18)	O8-C8-O9-C9	2.9(3)
C7-C8-O9-C9	-176.56(17)				

Table 6. Bond lengths (Å), valence and torsion angles (°) for nitroxide ${\bf 7}$

nitroxide 5	Coordinates in Angstroms			
Atom	Х	Y	Z	
0	-0.05384	-0.31617	0.087824	
Ν	0.02212	0.087926	1.30304	
С	1.352987	0.010823	1.982535	
С	-1.22598	0.605345	1.945856	
С	-1.43167	2.071499	1.510083	
Н	-1.41982	2.130241	0.418717	
Н	-2.39556	2.445275	1.869941	
Н	-0.64925	2.73095	1.897381	
С	-2.40765	-0.24715	1.458464	
Н	-2.25757	-1.30048	1.712478	
Н	-3.32975	0.097826	1.936207	
Н	-2.51481	-0.17186	0.376331	
С	2.439798	0.358245	0.95359	
Н	2.279526	1.359081	0.542272	
Н	3.421815	0.333586	1.43585	
Н	2.428183	-0.35299	0.127656	
С	1.563217	-1.43171	2.489343	
Н	0.854604	-1.69936	3.278799	
Н	1.430978	-2.13036	1.659237	
Н	2.574795	-1.55218	2.889998	
С	-1.10155	0.482661	3.477098	
Н	-1.93818	0.985169	3.971125	
Н	-1.16643	-0.57689	3.761098	
С	1.396989	1.028669	3.138894	
Н	2.301139	0.888595	3.738454	
Н	1.456075	2.044568	2.724186	
С	0.194961	1.011106	4.069949	
0	0.266474	1.397	5.219966	

nitroxide	6 (Coordir	nates in	Ange	stroms	
Atom	Х		Y		Z	
0	-0.0	5328	-0.353	22	0.09417	7
Ν	0.026	6856	0.0826	46	1.29847	2
С	1.35 ⁻	1455	0.0022	94	1.98507	6
С	-1.2 ⁻	1281	0.6121	37	1.95201	3
С	-1.40)222	2.0935	01	1.56129	94
Н	-1.3	5805	2.191	44	0.47294	2
Н	-2.38	3052	2.4474	21	1.90267	'5
Н	-0.64	4643	2.7402	35	2.0103	9
С	-2.40	0627	-0.20	71	1.43661	4
Н	-2.2	2725	-1.270	89	1.6534	8
Н	-3.32	2219	0.1366	19	1.92712	23
Н	-2.5	1494	-0.094	45	0.35776	8
С	2.443	3515	0.3442	56	0.95883	57
Н	2.29	5233	1.3500	63	0.5553	51
Н	3.426	5681	0.3028	66	1.43813	51
Н	2.42	2046	-0.360	72	0.12763	9
С	1.564	4542	-1.43	87	2.49601	2
Н	0.842	2609	-1.715	61	3.26909	8
Н	1.454	4986	-2.137	19	1.66218	9
Н	2.570	0248	-1.551	57	2.91458	4
С	-1.08	3294	0.4179	99	3.4750	8
Н	-1.93	3545	0.8902	21	3.97322	2
Н	-1.1	5159	-0.654	61	3.68562	25
С	1.37	5393	1.0411	81	3.12080	8
Н	2.33	3123	0.9542	17	3.65189	6
Н	1.356	5498	2.0386	86	2.66955	4
С	0.199	9883	0.9678	06	4.11669	8
Н	0.468	3306	0.3054	92	4.9533	5
0	-0.10	0276	2.270	21	4.63056	52
Н	0.700	0845	2.6220	65	5.03704	7

nitroxide	7 Coor	Coordinates in Angstroms			
Atom	Х	Y	Z		
0	-0.02347	-0.43094	0.091969		
Ν	0.030316	0.036384	1.285756		
С	1.352772	0.030769	1.978097		
С	-1.21828	0.584405	1.894119		
С	-1.3967	2.053829	1.45177		
Н	-1.33949	2.11531	0.361695		
Н	-2.37575	2.427449	1.769267		
Н	-0.63513	2.714627	1.873858		
С	-2.40376	-0.24299	1.37332		
Н	-2.27314	-1.30214	1.611788		
Н	-3.32767	0.109015	1.842499		
Н	-2.49399	-0.14979	0.291117		
С	2.433553	0.43758	0.964915		
Н	2.241906	1.440914	0.572601		
Н	3.414964	0.435617	1.449169		
Н	2.44719	-0.258	0.12569		
С	1.628828	-1.39549	2.495047		
Н	0.918334	-1.69151	3.272284		
Н	1.54861	-2.10286	1.665758		
Н	2.637538	-1.46245	2.915535		
С	-1.15207	0.446452	3.431054		
Н	-1.99094	0.992079	3.868666		
Н	-1.32862	-0.60426	3.694986		
С	1.312741	1.055878	3.129822		
Н	2.259004	1.010713	3.677717		
Н	1.262008	2.059979	2.68785		
С	0.148447	0.875673	4.075824		
С	0.33862	1.078688	5.394786		
Н	1.327967	1.361793	5.742776		
С	-0.6173	0.995769	6.515906		
0	-0.32471	1.297108	7.657912		
0	-1.85217	0.540405	6.174089		
С	-2.78506	0.450142	7.263044		
Н	-3.70686	0.062849	6.829		
Н	-2.41079	-0.22546	8.035798		
Н	-2.95435	1.43279	7.710051		

nitroxide	8 Coo	rdinates in A	ngstroms
Atom	Х	Y	Z
0	-0.00145	0.080137	-0.0047
Ν	0.002214	0.030535	1.277361
С	1.321498	0.00066	1.974462
С	-1.30858	0.029574	1.992211
С	-1.80765	1.484238	2.134455
Н	-1.80661	1.965732	1.152993
Н	-2.82984	1.496658	2.526586
Н	-1.18425	2.076507	2.809467
С	-2.31327	-0.76603	1.143662
Н	-1.95408	-1.78411	0.968884
Н	-3.27222	-0.82013	1.668188
Н	-2.46177	-0.28926	0.174855
С	2.281052	0.946564	1.237033
Н	1.894223	1.969995	1.235191
Н	3.256841	0.944063	1.732462
Н	2.404682	0.629787	0.201426
С	1.870482	-1.43992	1.932739
Н	1.248425	-2.13055	2.509386
Н	1.901479	-1.78593	0.896426
Н	2.884923	-1.47563	2.34312
С	-1.15535	-0.66474	3.362549
Н	-2.07784	-0.52761	3.930069
Н	-1.08034	-1.74757	3.197255
С	1.123356	0.49354	3.422579
Н	2.076791	0.426237	3.955705
Н	0.868599	1.561257	3.384186
С	0.042092	-0.23821	4.184254
С	0.217699	-0.47828	5.499344
Н	1.136867	-0.14846	5.974502
С	-0.67691	-1.13881	6.464393
0	-0.42838	-1.22893	7.65179
0	-1.81882	-1.66561	5.938129
Н	-2.28743	-2.05652	6.694906