Backbone Dynamics and Global Effects

of an Activating Mutation

in Minimized Mtu RecA Inteins

Zhenming Du¹, Yangzhong Liu², David Ban¹, Maria M. Lopez⁴, Marlene Belfort³

and Chunyu Wang¹*

¹Department of Biology,⁴Center for Biotechnology and Interdisciplinary Studies, Rensselaer

Polytechnic Institute, Troy, NY 12180

²Department of Chemistry, University of Science and Technology of China, Hefei, Anhui,

P.R.China 230026

³Wadsworth Center, New York State Department of Health, Center for Medical Sciences,

150 New Scotland Avenue, Albany, NY 12208

Supplementary Data

Contents:

- 1. Supplementary methods and materials;
- 2. AUC (Figure S1); Protection factors for HD exchange (Figure S1);
- 3. Protection factors for HD exchange (Figure S2);
- 4. Relaxation rates (Figure S3);
- 5. Comparison of residual dipolar coupling observed and calculated using PALES program for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM (Figure S4);
- 6. HD exchange results for ∆∆Ihh-V67CM and ∆∆Ihh-L67CM at 298 K (Table S1);

7. Chemical shifts of backbone and sidechain amide group for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM (Table S2);

8. Statistics for relaxation parameters (Table S3);

9. ¹⁵N relaxation data and residual dipolar coupling (RDC) data for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM at 298 K, pH=7.0. (Table S4);

- 10. Statistics for Modelfree analysis (Table S5);
- 11. Model-free results for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM. (Table S6);
- 12. Reference for supporting materials.

1. Supplementary methods and materials

Analytical Ultracentrifugation (AUC)

Equilibrium sedimentation experiments were performed using a Beckman XL-I analytical ultracentrifuge with an AN-50Ti rotor operating at 298 K. Different protein concentrations, ranging from 8 to 31 μ M, in the NMR sample buffer described above, were loaded into six-sector cells and spun at three different speeds (20,000, 25,000 and 35,000 rpm). The absorbance at 280 nm, A, was recorded as a function of the radial position, r. Equilibrium was attained when scans separated by six hours were identical. The data were globally fitted using nonlinear regression software NLReg (http://www.nlreg.com/) according to a model in which a single idealspecies is present in solution:

$$A(r) = I + A_o(r_o) \cdot \exp\left[\frac{\omega^2}{2RT}M(1 - \nu\rho)(r^2 - r_o^2)\right](1)$$

where A(r) is the absorbance of the protein at a radius r, $A_0(r_0)$ is the absorbance at a radius r_0 , I is the baseline offset constant, ω is the angular velocity, R is the universal gas constant equal to 8.134×10^7 erg mol⁻¹K⁻¹, T is the temperature in Kelvin, M is the molecular mass, v is the partial specific volume of the protein (0.7524 cm³/g for $\Delta\Delta$ Ihh-V67CM and 0.7527 cm³/g for $\Delta\Delta$ Ihh-L67CM, calculated from their amino acid composition ¹ and ρ is the density of the solution (1.00 g/cm³). The goodness of the fit was assessed by the magnitude and distribution of the residuals.

Details for Modelfree analysis

¹⁵N NMR relaxation was analyzed using contributions from dipole–dipole (DD) and chemical shift anisotropy (CSA) relaxation mechanisms:

$$R_1 = (d^2/4)[6J(\omega_H + \omega_N) + J(\omega_H - \omega_N) + 3J(\omega_N)] + c^2 J(\omega_N)$$
(2)

$$R_{2} = (d^{2}/8)[6J(\omega_{H} + \omega_{N}) + 6J(\omega_{H}) + J(\omega_{H} - \omega_{N}) + 3J(\omega_{N}) + 4J(0)] + (c^{2}/6)[3J(\omega_{N}) + 4J(0)]^{2}$$

$$NOE = 1 + (d^{2}/4R_{1})(\gamma_{H}/\gamma_{N})[6J(\omega_{H} + \omega_{N}) - J(\omega_{H} - \omega_{N})]$$
(4)

where $d = \mu_0 h \gamma_H \gamma_N \langle r_{NH}^{-3} \rangle / 8\pi^2$, $c = \omega_N \Delta \sigma / \sqrt{3}$, μ_0 is the permeability of free space, h is Planck's constant, γ_H and γ_N are the magnetogyric ratios of ¹H and ¹⁵N, respectively, r_{NH} is the mean nitrogen–hydrogen bond length (taken here to be 1.02 Å), and $\Delta \sigma = \sigma_{II} - \sigma_{\perp}$ is the CSA, taken here to be –172 ppm. This combination of r_{NH} and CSA typically leads to an average order parameter of 0.85 for rigid secondary structure elements. ² (ω) denotes the spectral density function of each NH bond at various frequencies; ω_H and ω_N are the Larmor frequencies of ¹H and ¹⁵N, respectively.

We have chosen X-ray structure of $\Delta\Delta$ Ihh-L67CM (pdb code: 2IN8) to fit our experimental NMR relaxation data. From that structure, we can see it is a globular protein of ellipsoidal shape with dimensions of 37 Å × 49 Å × 64 Å. The hydrogen atoms were added to the structure file using program InsightII (Accelrys Inc., San Diego, CA) and all of the coordinates of water molecules are removed thereafter. The inertia tensor for $\Delta\Delta$ Ihh-L67CM has principal moments with the ratio 1.48:1.15:1.00 (program PDBINERTIA, A. G. Palmer, Columbia University), leading to the expectation of a diffusion tensor with a small degree of axially symmetric anisotropy. Therefore, to discern effects of global rotation from those of residue-specific motions, an analysis of rotational diffusion was carried out. QUADRIC (A. G. Palmer, Columbia University) was used to carry out an initial estimate of the overall tumbling (τ_m) of minimized *Mtu* RecA intein and determine the diffusion tensors for spherical, axially symmetric, and fully anisotropic motional models using R₂/R₁ ratios and

PDB coordinates prepared above. In the analysis of $\Delta\Delta$ Ihh-V67CM, residues for which NOE at 600 MHz (¹H frequency) < 0.65 (A65, E99, T100, L404, and V408) were eliminated from consideration for the initial estimate of the diffusion tensor, due to the possibility of significant internal motion.

The criterion³

$$\frac{\langle T_2 \rangle - T_{2,i}}{\langle T_2 \rangle} - \frac{\langle T_1 \rangle - T_{1,i}}{\langle T_1 \rangle} < 1.5 \times SD$$
(5)

was applied to all residues. $\langle T_1 \rangle$ and $\langle T_2 \rangle$ are the average T_1 or T_2 values for all residues in the protein that are considered and $T_{1,i}$ and $T_{2,i}$ are the T_1 and T_2 values of individual residues in the protein that are subject to test. SD is the standard deviation of the collection of all the values in the left that are considered. Residues with high R₂ values (R₂ $\geq \langle R_2 \rangle + \sigma R_2$) were also excluded, unless their corresponding R₁ values were low $(R_1 \leq \langle R_1 \rangle - \sigma R_1)^4$, where $\langle R_i \rangle$ and σR_i are the average and standard deviation of the relaxation rate, respectively. This further eliminated G5, R7, G25, R26, V46, E426, T430, and V438, because of probable chemical exchange contributions. The T_1^{600}/T_2^{600} ratios of the remaining 107 residues were used to calculate local correlation times and estimate isotropic, axially symmetric, and fully anisotropic diffusion tensors by the quadratic representation approach of Brüschweiler.⁵ Similarly, in the analysis of $\Delta\Delta$ Ihh-L67CM, residues E99, T100, L404, and V408 were eliminated because NOE⁶⁰⁰< 0.65. Residues G25, V46, E426, L428, T430, and N440 were eliminated because of the criterion in Eq. 5. The choice between isotropic, axial, and fully anisotropic diffusion tensors calculated from the T_1/T_2 data and the quality of the model was characterized by the goodness of the fit based on the minimum of χ^2 and F-test. The axial diffusion tensors fit the 600 MHz AAIhh-V67CM data shows improvement over the best isotropic correlation time of 7.77 ± 0.01 ns. The 600 MHz data diffusion tensor was oblate ($\tau_m = 7.76 \pm 0.01$ ns, $D_{ll}/D_{\perp} = 0.89 \pm 0.02$; F=8.8 (axial symmetric over isotropic) vs F=2.68 for α=0.05). The axial tensor was also compared to the fully anisotropic result ($\tau_m = 7.75 \pm 0.01$ ns, $2D_{zz}/(D_{xx} + D_{yy}) = 1.09 \pm 0.01$, $D_{xx}/D_{yy} = 0.91 \pm 0.01$). The fully anisotropic tensor was neither prolate-like nor oblate like ($2D_{zz}/(D_{xx} + D_{yy}) > 1$ but $D_{xx}/D_{yy} \approx \neq 1$) and no significant improvement was observed over the axial diffusion tensors fit (F=1.0 vs F=3.1 choosing at confidence level of α=0.05). Since the best statistical results from the diffusion tensor analysis were obtained by fitting the data with the axially symmetric model, we chose this model as the initial input to the program MofelFree to fit the global tumbling of both ΔΔIhh-V67CM and ΔΔIhh-L67CM and explore the their backbone dynamics of ΔΔIhh-V67CM. The same parameters for initial estimate of the rotational diffusion tensor were used for the model-free analysis of ΔΔIhh-L67CM, because it likely has the same structure as ΔΔIhh-V67CM. The final diffusion tensor was determined by a global fit of diffusion tensor and internal motional parameters.

The amplitudes and time scales of the intramolecular internal motions of the protein were determined from the relaxation data according to the model-free formalism pioneered by Lipari and Szabo⁶⁻⁷ and extended by Clore et al. ⁸, by using the program Modelfree (version 4.15, A. G. Palmer, Columbia University) in combination with FastModelfree. ⁹ PDB coordinates of $\Delta\Delta$ Ihh-L67CM (2IN8)¹¹ were accessed from <u>www.pdb.org</u>. The hydrogen atoms were added to the structure file using program InsightII (Accelrys Inc., San Diego, CA) and all of the coordinates of water molecules are removed thereafter. The coordinate system of the PDB entry was moved to the center of mass of the molecule using PDBINERTIA (A. G. Palmer, Columbia University). QUADRIC (A. G. Palmer, Columbia University) was used

to carry out an initial estimate of the overall tumbling (τ_m) of *Mtu* RecA and determine the diffusion tensors for spherical, axially symmetric, and fully anisotropic motional models using R₂/R₁ ratios and PDB coordinates prepared above. Residues with NOE values of <0.65 were eliminated as well as residues with high R₂ values (R₂ $\geq \langle R_2 \rangle + \sigma R_2$), unless their corresponding R₁ values were low (R1 $\leq \langle R1 \rangle - \sigma R1$). ⁴The axis of the PDB coordinate system was rotated so that they were aligned with the principal axis of the diffusion tensor after QUADRIC analysis and the F test was used to check the statistical improvement of the fitting to each model. In model-free analysis, the spectral density function, *J(\alpha)*, chosen to reflect an axially symmetric diffusion tensor, is modeled as ¹¹⁻¹²

$$J(\omega) = \frac{2}{5} S_f^2 \sum_{j=1}^3 A_j \left[\frac{S_s^2 \tau_j}{1 + (\omega \tau_j)^2} + \frac{(1 - S_s^2) \tau_j}{1 + (\omega \tau_j)^2} \right]$$
(6)

where $S^2 (=S_f^2 S_s^2)$ is the square of the generalized order parameter characterizing the amplitude of internal motions, and S_f^2 and S_s^2 are the squares of the order parameters for the internal motions on the fast ($\tau_e <\sim 200 \text{ps}$) and slow ($\tau_e >\sim 200 \text{ps}$) time scales, respectively. $\tau_j = \tau_j \tau_e/(\tau_j + \tau_e)$, τ_e is the effective correlation time for internal motions, $\tau_1^{-1} = 6D_{\perp}$, $\tau_2^{-1} = 5D_{\perp} + D_{\parallel}$, $\tau_3^{-1} = 2D_{\perp} + 4D_{\parallel}$, D_{\perp} and D_{\parallel} are the components of an axially symmetric diffusion tensor. A₁ = $(3 \cos^2 \theta - 1)^2/4$, A₂ = $3 \sin^2 \theta \cos^2 \theta$, and A₃ = (3/4) $\sin^4 \theta$, where θ is the angle between the N–H vector and the unique axis of the principal component of the diffusion tensor.

 τ_e is the effective correlation time for internal motions.

The selection of the models for model-free analysis was carried out using a procedure previously proposed by Mandel et al. ¹³ The five models used to fit our experimental relaxation data were

Model 1:
$$S^{2}(\tau_{e}=0, R_{ex}=0, S_{f}^{2}=1)$$

Model 2: $S^{2}, \tau_{e} (R_{ex}=0, S_{f}^{2}=1)$
Model 3: $S^{2}, R_{ex}(\tau_{e}=0, S_{f}^{2}=1)$
Model 4: $S^{2}, \tau_{e}, R_{ex} (S_{f}^{2}=1)$
Model 5: $S^{2}, \tau_{e}, S_{f}^{2}(R_{ex}=0)$.

The model-free analysis results for both $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM are summarized and compared in Table S3. The detailed results are listed in the supplementary material Table S6. The results are plotted against residue number in Figure 4 for both $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM. The majority of the residues (~67%) can be fitted to model 1, indicating that internal motions for these residues are so rapid ($\tau_e=0$) that their only effect is to reduce the order parameter from 1 to S². A significant number of residues were fitted to model 2, which means that for these residues, fast internal motions τ_e on the sub-nanosecond time scale contributes significantly to the observed relaxation. Several residues were fitted to model 3 (G5, R18, E20, R26, F49, E426, T430, A433, and V438 in ΔΔIhh-V67CM; G5, H30, V46, E424, L428, T430, and N440 in ΔΔIhh-L67CM) for which a slow (microsecond-tomillisecond) component of motion Rex resulting in exchange broadening was needed. Six residues (K27, I29, R92, R419, E424, and L428) in $\Delta\Delta$ Ihh-V67CM while none in $\Delta\Delta$ Ihh-L67CM were fitted to model 4, suggesting that for these residues both τ_e and R_{ex} contributed significantly to the relaxation. Finally, model 5 were used to fit two residues in $\Delta\Delta$ Ihh-V67CM (G64 and A65) and four residues (R54, G65, T100, and A418) in ∆∆Ihh-L67CM, where there are two-time scale internal motions that contributes to the relaxation. On both cases, three residues were not fitted to any model (H30, V98, and R405 in $\Delta\Delta$ Ihh-V67CM; V23, T77, and Y79 in $\Delta\Delta$ Ihh-L67CM).

2. Figure S1

Figure S1. Equilibrium sedimentation analysis of $\Delta\Delta$ Ihh-V67CM (A) and $\Delta\Delta$ Ihh-L67CM (B) proteins at 298 K. Representative traces at 20,000 rpm, 25,000 rpm (red) and 35,000 rpm. Solid lines represent the global fit according to equation (1) in Material and Methods. The molecular weight obtained for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM from the fits were 16.2± 0.1 kDa and 16.0±0.1 kDa, respectively, while the theoretical molecular weights are 15487.4Da and 15473.4 Da, respectively (assuming 100% ¹⁵N labeling).

3. Figure S2

Figure S2: Comparison of the protection factor between $\Delta\Delta$ Ihh-V67CM (red) and $\Delta\Delta$ Ihh-L67CM (blue) plotted against residue number. The protection factor enhancement is obtained through equation $\Delta P = P_{\Delta\Delta$ Ihh-L67CM • P_{\Delta\DeltaIhh-V67CM and are colored in green.

Figure S3. Comparison of R_1 , R_2 , R_2/R_1 , and NOE measured at 600 MHz and 298 K between $\Delta\Delta$ Ihh-V67CM (red) and $\Delta\Delta$ Ihh-L67CM (blue).

Figure S4: Comparison of residual dipolar coupling observed and calculated using PALES program for (a) $\Delta\Delta$ Ihh-V67CM and (b) $\Delta\Delta$ Ihh-L67CM.

6. Table S1. HD exchange results for ΔΔIhh-V67CM and ΔΔIhh-L67CM at 298 K.

H-D exchange rates and protection factors. Fast exchange represents peaks that were isolated but were not observed in the first HSQC spectrum after exchange in D_2O started.

		$\Delta\Delta$ Ihh-		$\Delta\Delta$ Ihh-		D:ff		
		V67CM		L67CM		DIII		
Res	2°	k _{ex} (min⁻¹)	Р	k _{ex} (min ⁻¹)	Р	Pdiff		
C1	β		F	ast exchange	•	uiii		
L2	β	(8.1±6.4)E-03	6.3±0.3	(1.3±0.4)E-02	6.1±0.1	-0.2		
A3	β	Fast excha	inge	(8.2±2.4)E-02	3.5±0.1			
E4	β	Fast excha	inge	(8.7±2.6)E-02	3.2±0.1			
G5		(7.3±1.1)E-02	3.9±0.1	Fast e	exchange			
T6	β	(3.5±0.5)E-04	6.2±0.1	(1.6±1.3)E-05	1.3			
R7	β	(1.0±0.1)E-03	5.9±0.1	(2.1±0.1)E-04	6.6±0.1	0.7		
18	β	<5.0E-06	>7.4	<5.00E-06	>7.4			
F9	β		F	ast exchange	•			
D10	β	(1.2±0.3)E-04	6.3±0.1	<5.00E-06	>7.7	>1.4		
P11				Proline	•			
V12		(3.4±0.4)E-04	5.1±0.1	(1.4±0.1)E-04	5.5±0.1	0.4		
T13			F	ast exchange	•			
G14		(1.5±1.5)E-03	5.9±0.4	(2.5±1.2)E-02	4.7±0.2	-1.2		
T15	β	Óverlar)	Fast e	exchange			
T16	ß		F	-ast exchange				
H17	ß	(3.9±0.5)E-04	6.6±0.1	(1.6±0.1)E-04	7.0±0.1	0.4		
R18	ß		F	ast exchange				
l19	ß	(1.3±0.3)E-04	6.0±0.1	<5.0E-06	>7.4	>1.4		
E20	α	(7.4±1.4)E-03	4.0±0.1	(3.7±0.3)E-03	4.3±0.1	0.3		
D21	α	(6.2±0.1)E-03	4.4±0.1	(4.7±0.2)E-03	4.5±0.1	0.1		
V22	α	(6.3±0.2)E-04	4.9±0.1	(3.7±0.4)E-04	5.2±0.1	0.3		
V23	α	Óverlar)	(2.9±0.1)E-04	5.3±0.1			
G24	α		F	ast exchange				
G25	α		F	ast exchange				
R26			F	ast exchange				
K27		(7.4±0.9)E-02	3.9±0.1	(3.7±2.2)E-02	4.2±0.3	0.3		
P28			•	Proline				
129	β	(3.5±0.1)E-03	4.1±0.1	(2.6±0.1)E-03	4.2±0.1	0.1		
H30	β	(8.8±0.2)E-04	5.8±0.1	(9.8±0.3)E-04	5.8±0.1			
V31	β	(2.5±0.3)E-05	7.0±0.1	<5.0E-06	>7.7	>0.7		
V32	β	(4.4±0.2)E-05	6.1±0.1	(2.7±0.8)E-05	6.4±0.1	0.3		
A33	β	(5.7±0.6)E-05	6.7±0.1	<5.0E-06	>7.8	>1.1		
A34	β	(5.7±0.3)E-04	5.9±0.1	(2.5±0.1)E-04	6.2±0.1	0.3		
A35	β		•	Overlap				
K36			F	ast exchange				
D37			F	ast exchange				
G38			F	ast exchange				
T39	β	(2.2±2.4)E-03	5.4±0.5	(6.2±1.5)E-02	3.9±0.1	-1.5		
L40	β		F	ast exchange				
H41	β	(2.7±0.1)E-03	5.4±0.1	(2.6±0.1)E-03	5.4±0.1	0		
A42	β		F	ast exchange				
R43	β	(1.1±0.2)E-04	6.7±0.1	<5.0E-06	>8.0	>1.3		
P44	β	. ,	•	Proline				

V45	β	<5.00E-06	7.0±0.1	(7.9±1.1)E-05	5.8±0.1	-1.2		
V46	β	(1.7±0.1)E-04	5.6±0.1	(1.4±0.2)E-04	5.6±0.1	0.0		
S47	β	(1.5±0.1)E-04	6.7±0.1	(5.3±0.5)E-05	7.1±0.1	0.4		
W48	β		F	ast exchange				
F49	β	(1.2±0.2)E-04	6.2±0.1	(1.8±1.3)E-05	7.0±0.3	0.8		
D50	β	Fast excha	nge	Overlap				
Q51	β	(2.2±2.4)E-03	5.2±0.5	(1.7±0.6)E-02	4.3±0.1	-0.9		
G52	β		F	ast exchange				
T53	β		F	ast exchange				
R54	β	(1.7±0.1)E-03	5.7±0.1	(9.8±0.3)E-04	5.9±0.1	0.2		
D55	β		F	ast exchange				
V56	β	<5.0E-06	7.0±0.1	<5.0E-06	>7.0	>0		
157	β	Overlap)	<5.0E-06	>7.0			
G58	β	(5.1±1.5)E-05	6.9±0.1	<5.0E-06	>8.0	>1.0		
L59	β	Fast excha	nge	Ov	/erlap			
R60	β	(5.0±0.9)E-05	6.8±0.1	<5.0E-06	>7.8	>1		
l61	β	(1.4±0.4)E-02	4.0±0.1	(3.5±1.7)E-02	3.6±0.2	-0.4		
A62	β		F	ast exchange				
G63			Chemica	I change broaden	ing			
G64			F	ast exchange				
A65	β		F	ast exchange				
166	β	(7.8±2.3)E-04	5.0±0.1	Fast exchange				
V/L67	β	(9.1±2.9)E-05	5.7±0.1	<5.0E-06	>7.1	>1.4		
W68	β	(2.9±0.1)E-04	5.6±0.1	(5.7±0.8)E-05	6.2±0.1	0.6		
A69	β	(5.1±1.5)E-05	/erlap					
T70	β	(5.8±1.4)E-05	(5.8±1.4)E-05 6.8±0.1 <5.0E-06 >7.9±					
P71				Proline				
D72			F	ast exchange				
H73	β	(1.8±0.3)E-04	6.6±0.1	(5.0±0.6)E-05	7.1±0.1	0.5		
K74	β		F	ast exchange				
V75	β	<5.0E-06	7.3±0.1	(1.3±1.0)E-05	6.9±0.3	-0.4		
L76	β	(2.8±0.8)E-05	6.5±0.1	(1.1±0.8)E-05	6.9±0.3	0.4		
T77	β	(5.2±1.6)E-05	6.6±0.1	<5.0E-06	>7.6	>1.0		
E78	β		F	ast exchange				
Y79			F	ast exchange				
G80	β		F	ast exchange				
W81	β			Overlap				
R82	β	(1.0±0.2)E-04	6.6±0.1	<5.0E-06	>7.9	>1.3		
A83	β		F	ast exchange				
A84	β	(1.1±0.2)E-04	6.6±0.1	<5.0E-06	>7.9	>1.3		
G85		(1.9±0.1)E-04	6.6±0.1	(4.8±1.0)E-05	7.2±0.1	0.6		
E86		(1.3±0.1)E-02	4.2±0.1	(8.2±0.2)E-03	4.4±0.1	0.2		
L87		(1.5±0.3)E-04	5.7±0.1	<5.0E-06	>7.2	>1.5		
R88		(6.0±0.2)E-04	5.7±0.1	(3.1±0.1E-04	6.0±0.1	0.3		
K89			F	ast exchange				
G90			· · · ·	Overlap				
D91	β	(2.4±0.7)E-04	6.1±0.1	(1.0±0.8)E-05	7.5±0.4	1.38		
R92	β		F	ast exchange				
V93	β		· · · · ·	Overlap	1			
A94	β	(4.5±1.0)E-05	6.8±0.1	<5.0E-06	>7.8	>1.0		
V95	β		· · · · ·	Overlap	1			
R96	β	(6.7±0.3)E-04	5.7±0.1	(3.5±0.3)E-04	6.0±0.1	0.3		
D97	β	(1.5±0.9)E-02	4.4±0.2	(2.5±0.2)E-02	4.1±0.1	-0.2		

V98			Fast exchange					
E99		Fast exchange						
T100			Fast exchange					
G101			F	ast exchange				
E403	β	(1. 3±0.5)E-03	5.2±0.1	(4.4±0.9E-02	3.6±0.1	-1.5		
L404	β		F	ast exchange				
R405	β	(2.0±0.2)E-03	5.2±0.1	0	/erlap			
Y406	β	Overlap)	(5.2±2.4)E-04	5.9±0.2			
S407	β	(8.3±1.8)E-05	7.1±0.1	(8.7±6.2)E-06	8.1±0.3	1.0		
V408	β		F	ast exchange				
1409	β	Fast excha	nge	(9.7±9.7)E-06	6.8±0.4			
R410	β	(7.8±4.2)E-03 4.6±0.2		(2.90±3.4)E-02	4.0±0.5	-0.6		
E411	β	Overlap		(6.5±0.5)E-03	4.5±0.1			
V412	β		F	ast exchange				
L413	β	(2.8±0.5)E-05	6.4±0.1	<5.0E-06	>7.2	>.0.8		
P414				Proline				
T415			F	ast exchange				
R416	β	(2.7±0.1)E-03	(2.7±0.1)E-03 5.5±0.1 (9.7±0.5)E-04 5.9±0.1					
R417	β		Fast exchange					
A418	β	(3.3±0.6)E-05	7.3±0.1	<5.0E-06	>8.1	>0.8		
R419	β	, .	F	ast exchange				
T420	β	(1.4±0.3)E-04 6.6±0.1		<5.0E-06	>8.1	>1.5		
F421	β	Overlap		<5.0E-06	>7.9			
G422	β	(4.8±0.7)E-05	7.3±0.1	(5.0±2.4)E-05	7.3±0.2	0		
L423	β		F	ast exchange				
E424	β	(4.2±1.2)E-05	6.3±.1	<5.0E-06	>7.2	>0.9		
V425	β	(8.6±4.3)E-04	4.8±0.2	Fast e	exchange			
E426	β	(8.8±0.1)E-04	5.0±0.1	(8.4±0.3)E-04	5.1±0.1	0.1		
E427		Fast excha	nge	0	/erlap			
L428		(4.1±2.2)E-04	5.3±0.2	Fast e	exchange			
H429	β		Chemica	al change broaden	ing			
T430	β	(3.7±0.5)E-04	6.4±0.1	(1.0±0.4)E-04	7.0±0.2	0.6		
L431	β	(1.1±0.2)E-04	6.2±0.1	(1.2±1.0)E-05	7.2±0.3	1.0		
V432	β	(4.5±0.7)E-05	6.0±0.1	(1.1±1.4)E-05	6.7±0.5	0.7		
A433	β	(3.3±0.8)E-05	7.0±0.1	<5.0E-06	>7.8	>0.8		
E434		(1.4±0.6)E-02	4.0±0.2	(3.5±0.1)E-03	4.6±0.1	0.6		
G435	β		F	ast exchange				
V436	β	(1.6±0.3)E-04	5.9±0.1	(2.6±0.7)E-05	6.7±0.1	0.8		
V437	β	(1.9±0.5)E-05	6.5±0.1	<5.0E-06	>7.1	>0.6		
V438	β	(1.5±0.5)E-05	6.6±0.1	<5.0E-06	>7.1	>0.5		
H439	β	(1.4±0.1)E-04	6.7±0.1	0	/erlap			
N440	β		F	ast exchange				

7. Table S2. Chemical shifts of backbone and sidechain amide group for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM (Table S1);

Res.	Atom Type	$\Delta\Delta$ Ihh-V67CM	$\Delta\Delta$ Ihh-L67CM
Cys 1	HN	Х	Х
	¹⁵ N	Х	Х
Leu 2	HN	8.99	9.08
	¹⁵ N	122.93	122.57
Ala 3	HN	8.20	8.21
	¹⁵ N	120.95	121.27
Glu 4	HN	8.77	8.77
	¹⁵ N	121.27	121.26
Gly 5	HN	11.31	11.32
	¹⁵ N	120.12	120.06
Thr 6	HN	7.89	7.94
	¹⁵ N	116.93	117.12
Arg 7	HN	9.63	9.57
	¹⁵ N	130.46	130.22
Ile 8	HN	9.55	9.60
	¹⁵ N	123.15	123.84
Phe 9	HN	8.26	8.19
	¹⁵ N	129.25	129.24
Asp 10	HN	8.31	8.29
	¹⁵ N	128.20	128.17
Pro 11	HN	Х	Х
	¹⁵ N	Х	Х
Val 12	HN	8.98	8.96
	¹⁵ N	124.20	124.14
Thr 13	HN	7.16	7.13
	¹⁵ N	107.23	107.14
Gly 14	HN	8.40	8.39
	¹⁵ N	113.00	112.90
Thr 15	HN	7.67	7.66
	¹⁵ N	117.23	117.10
Thr 16	HN	8.52	8.52
	¹⁵ N	120.43	120.30
His 17	HN	9.03	9.01
	¹⁵ N	126.87	126.89
Arg 18	HN	9.39	9.38
	¹⁵ N	120.88	120.92
Ile 19	HN	9.08	9.02
	¹⁵ N	125.49	125.32

All chemical shifts were acquired at 298 K in 50 mM sodium phosphate buffer with 100 mM NaCl, pH=7.0. Chemical shifts that are not acquired are marked with "X".

Glu 20	HN	10.85	10.88
	¹⁵ N	123.73	123.84
Asp 21	HN	7.31	7.31
	¹⁵ N	124.53	124.47
Val 22	HN	7.47	7.44
	¹⁵ N	122.03	121.86
Val 23	HN	8.35	8.35
	¹⁵ N	116.68	116.73
Gly 24	HN	8.33	8.33
	¹⁵ N	108.24	108.17
Gly 25	HN	7.36	7.34
	¹⁵ N	103.80	103.76
Arg 26	HN	7.28	7.29
	¹⁵ N	122.15	122.13
Lys 27	HN	8.05	8.04
	¹⁵ N	115.88	115.80
Pro 28	HN	Х	Х
	¹⁵ N	Х	Х
Ile 29	HN	7.54	7.56
	¹⁵ N	116.71	116.63
His 30	HN	8.28	8.28
	¹⁵ N	118.39	117.97
Val 31	HN	8.61	8.63
	¹⁵ N	107.33	107.44
Val 32	HN	8.88	8.83
	¹⁵ N	120.02	119.98
Ala 33	HN	9.30	9.26
	¹⁵ N	129.10	129.01
Ala 34	HN	8.12	8.15
	¹⁵ N	121.30	121.27
Ala 35	HN	9.11	9.11
	¹⁵ N	125.98	125.93
Lys 36	HN	9.00	8.99
	¹⁵ N	121.19	121.16
Asp 37	HN	7.78	7.77
	¹⁵ N	115.85	115.88
Gly 38	HN	8.16	8.15
	¹⁵ N	107.75	107.71
Thr 39	HN	7.70	7.70
	¹⁵ N	110.45	110.42
Leu 40	HN	8.26	8.24
	¹⁵ N	120.88	120.86
His 41	HN	9.26	9.26

	¹⁵ N	120.29	120.16
Ala 42	HN	9.19	9.12
	¹⁵ N	125.37	125.21
Arg 43	HN	9.02	9.01
	¹⁵ N	124.69	124.40
Pro 44	HN	Х	Х
	¹⁵ N	Х	Х
Val 45	HN	7.86	7.78
	¹⁵ N	119.25	119.10
Val 46	HN	8.24	8.21
	¹⁵ N	114.74	114.68
Ser 47	HN	6.48	6.48
	¹⁵ N	113.42	113.39
Trp 48	HN	7.65	7.64
	¹⁵ N	120.81	120.89
	Hε	9.25	9.25
	$^{15}N_{\epsilon}$	128.75	128.67
Phe 49	HN	8.90	8.90
	¹⁵ N	120.48	120.40
Asp 50	HN	9.10	9.09
	¹⁵ N	127.61	127.48
Gln 51	HN	8.01	8.03
	¹⁵ N	123.41	123.54
	H _{ε1}	7.08	7.04
	H _{ε2}	6.45	6.42
	¹⁵ N _ε	110.52	110.32
Gly 52	HN	8.06	8.04
	¹⁵ N	108.53	108.53
Thr 53	HN	8.65	8.62
	¹⁵ N	119.30	119.10
Arg 54	HN	8.87	8.88
	¹⁵ N	126.12	126.07
Asp 55	HN	8.03	8.02
	¹⁵ N	119.74	119.74
Val 56	HN	9.49	9.49
	¹⁵ N	114.61	114.58
Ile 57	HN	8.98	8.95
a 1 c 2	¹⁵ N	114.80	115.07
Gly 58	HN 15	6.71	6.75
•	¹³ N	107.67	107.52
Leu 59	HN	8.72	8.85
	¹³ N	123.52	124.22
Arg 60	HN	8.62	8.65

	¹⁵ N	123.88	124.21
Ile 61	HN	9.13	8.93
	¹⁵ N	128.53	128.29
Ala 62	HN	8.62	8.53
	¹⁵ N	128.60	128.05
Gly 63	HN	Х	Х
	¹⁵ N	Х	Х
Gly 64	HN	8.21	8.21
	¹⁵ N	107.92	107.99
Ala 65	HN	7.98	8.00
	¹⁵ N	125.50	125.80
Ile 66	HN	8.09	8.00
	¹⁵ N	118.66	118.15
Val /Leu 67	HN	8.14	8.24
	¹⁵ N	125.29	127.80
Trp 68	HN	9.72	9.99
	¹⁵ N	129.00	129.40
	Hε	10.40	10.38
	$^{15}N_{\epsilon}$	131.63	131.48
Ala 69	HN	8.92	8.83
	¹⁵ N	124.45	124.37
Thr 70	HN	8.74	8.74
	¹⁵ N	112.26	111.60
Pro 71	HN	Х	Х
	¹⁵ N	Х	Х
Asp 72	HN	8.74	8.73
	¹⁵ N	112.26	112.39
His 73	HN	8.34	8.34
	¹⁵ N	125.14	125.23
Lys 74	HN	8.42	8.41
	¹⁵ N	127.66	127.60
Val 75	HN	9.46	9.46
	¹³ N	125.63	125.73
Leu 76	HN	8.20	8.31
	¹³ N	129.93	129.88
Thr 77	HN 15 -	7.40	7.40
a t -	¹³ N	116.34	116.25
Glu 78	HN 15 -	8.18	8.24
	¹³ N	120.13	120.07
Tyr 79	HN 15 -	7.73	7.75
	¹³ N	117.29	117.32
Gly 80	HN	7.36	7.36

	¹⁵ N	106.92	106.96
Trp 81	HN	9.13	9.07
	¹⁵ N	125.82	125.75
	Hε	10.49	10.45
	$^{15}N_{\epsilon}$	130.50	130.31
Arg 82	HN	9.41	9.45
	¹⁵ N	124.63	124.68
Ala 83	HN	8.84	8.81
	¹⁵ N	126.02	125.97
Ala 84	HN	9.34	9.35
	¹⁵ N	125.84	125.85
Gly 85	HN	9.75	9.73
	¹⁵ N	102.34	102.28
Glu 86	HN	8.15	8.16
	¹⁵ N	117.62	117.65
Leu 87	HN	7.21	7.21
	¹⁵ N	119.83	119.80
Arg 88	HN	9.11	9.13
	¹⁵ N	120.80	120.92
Lys 89	HN	8.45	8.43
	¹⁵ N	119.88	119.88
Gly 90	HN	8.86	8.91
	¹⁵ N	115.05	115.15
Asp 91	HN	8.18	8.20
	¹⁵ N	121.76	121.74
Arg 92	HN	8.82	8.78
	¹⁵ N	118.10	117.88
Val 93	HN	8.86	8.86
	¹⁵ N	115.39	115.14
Ala 94	HN	8.54	8.59
	¹⁵ N	126.20	126.31
Val 95	HN	8.87	8.88
	¹³ N	115.63	115.24
Arg 96	HN	8.15	8.08
	¹³ N	119.79	119.44
Asp 97	HN	8.89	8.90
	¹³ N	131.32	131.24
Val 98	HN 15	8.46	8.43
C1	¹⁵ N	126.17	126.18
Glu 99	HN 15	8.22	8.19
	¹³ N	118.98	118.94
Thr 100	HN	8.05	8.03
	¹³ N	106.43	106.36

Gly 101	HN	8.20	8.19
	¹⁵ N	111.27	111.26
Glu 403	HN	7.54	7.53
	¹⁵ N	118.54	118.50
Leu 404	HN	8.39	8.38
	¹⁵ N	121.66	121.82
Arg 405	HN	9.09	9.08
	¹⁵ N	126.87	127.17
Tyr 406	HN	8.35	8.33
	¹⁵ N	116.45	116.25
Ser 407	HN	9.28	9.28
	¹⁵ N	118.45	118.30
Val 408	HN	8.35	8.31
	¹⁵ N	122.19	122.30
Ile 409	HN	8.76	8.72
	¹⁵ N	123.42	123.54
Arg 410	HN	9.53	9.45
	¹⁵ N	130.35	130.33
Glu 411	HN	7.66	7.61
	¹⁵ N	117.05	116.80
Val 412	HN	8.72	8.74
	¹⁵ N	125.74	125.76
Leu 413	HN	9.77	9.85
	¹⁵ N	132.54	132.73
Pro 414	HN	Х	Х
	¹⁵ N	Х	Х
Thr 415	HN	7.75	7.73
	¹⁵ N	112.94	112.70
Arg 416	HN	9.16	9.15
	¹⁵ N	123.40	123.27
Arg 417	HN	8.40	8.39
	¹⁵ N	119.22	119.24
Ala 418	HN	8.75	8.75
	¹⁵ N	125.06	125.01
Arg 419	HN	8.74	8.74
	¹⁵ N	120.97	120.91
Thr 420	HN	7.76	7.76
	¹⁵ N	111.55	111.53
Phe 421	HN	8.98	9.00
	¹⁵ N	114.80	114.50
Gly 422	HN	9.53	9.50
	¹⁵ N	107.77	107.62
Leu 423	HN	8.43	8.46

	15 N	118.87	118.87
Glu 424	HN	7.09	7.13
	¹⁵ N	118.58	118.62
Val 425	HN	8.86	8.81
	¹⁵ N	129.45	129.26
Glu 426	HN	8.15	8.08
	¹⁵ N	128.75	128.57
Glu 427	HN	8.54	8.50
	¹⁵ N	121.11	121.03
Leu 428	HN	9.42	9.45
	¹⁵ N	120.83	120.98
His 429	HN	7.10	7.06
	¹⁵ N	107.70	107.57
Thr 430	HN	6.93	6.95
	¹⁵ N	105.49	105.75
Leu 431	HN	9.13	9.12
	¹⁵ N	111.69	111.71
Val 432	HN	7.58	7.51
	¹⁵ N	119.63	119.67
Ala 433	HN	9.73	9.73
	¹⁵ N	135.06	134.74
Glu 434	HN	8.99	9.12
	¹⁵ N	118.07	118.80
Gly 435	HN	7.23	7.29
	¹⁵ N	100.07	100.09
Val 436	HN	8.06	8.11
	¹⁵ N	122.51	122.46
Val 437	HN	8.28	8.32
	¹⁵ N	126.47	126.48
Val 438	HN	9.37	9.40
	¹⁵ N	118.76	118.74
His 439	HN	8.66	8.57
	¹⁵ N	120.69	121.30
Asn 440	HN	7.82	7.93
	¹⁵ N	126.26	126.83
	$H_{\delta 1}$	7.34	7.39
	$H_{\delta 2}$	8.18	8.19
	$^{15}N_{\delta}$	114.20	114.17

8. Table S3. 10% trimmed mean values of ^{15}N relaxation parameters acquired for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM at 600 Mz an 298 K.

600 MHz	$\Delta\Delta$ Ihh-V67CM (120 entries)	$\Delta\Delta$ Ihh-L67CM (120 entries)
$R_1(s^{-1})$	1.57±0.03	1.57±0.03
$R_2(s^{-1})$	10.82±0.21	10.70±0.33
NOE	0.73±0.03	0.75±0.03
R_{2}/R_{1}	6.92±0.18	6.83±0.27

9. ¹⁵N relaxation data and residual dipolar coupling (RDC) data for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM at 298 K, pH=7.0. (Table S4);

¹⁵N relaxation data were acquired at 600 MHz (¹H frequency), 14.1 Telsa. Residual dipolar coupling (RDC) data were acquired at 800 MHz (¹H frequency), 18.8 Telsa. RDC data were acquired using 7% polyacrylamide gels with a stretch ratio d_o/d_N of 1.29. The RDC was measured using IPAP-HSQC pulse sequence at 298 K.

					NOF				RDC
Res.	$\mathbf{R}_{1}(\mathbf{S}^{-})$	$\Delta R_1(S^{-})$	$R_2(S^-)$	$\Delta R_2(S^{-})$	NUE	ΔΝΟΕ	R ₂ / R ₁	$\Delta R_2 / R_1$	(HZ)
1					10				
2	1.467	0.057	11.145	0.243	0.742	0.040	7.596	0.339	13.804
3	1.553	0.020	11.565	0.192	0.790	0.009	7.445	0.157	
4	1.591	0.031	11.252	0.240	0.759	0.033	7.074	0.206	
5	1.522	0.029	12.137	0.079	0.699	0.080	7.977	0.160	12.405
6	1.605	0.024	11.260	0.089	0.763	0.034	7.015	0.119	-8.939
7	1.576	0.032	12.140	0.673	0.729	0.045	7.704	0.455	10.581
8	1.552	0.035	10.405	0.101	0.733	0.052	6.705	0.165	-1.459
9	1.554	0.065	11.282	0.479	0.745	0.050	7.259	0.433	1.033
10	1.673	0.023	10.442	0.136	0.728	0.033	6.241	0.119	-15.750
11									
12	1.661	0.029	11.033	0.226	0.734	0.018	6.643	0.179	1.521
13	1.585	0.026	10.769	0.205	0.767	0.060	6.793	0.169	-4.196
14	1.658	0.015	11.065	0.255	0.741	0.016	6.672	0.164	-18.000
15									
16	1.584	0.031	10.630	0.174	0.745	0.015	6.710	0.172	-18.425
17	1.604	0.085	9.880	0.189	0.742	0.047	6.158	0.346	
18	1.483	0.022	11.034	0.134	0.705	0.039	7.439	0.144	
19	1.591	0.018	11.367	0.317	0.745	0.003	7.147	0.216	8.209
20	1.584	0.017	11.824	0.232	0.758	0.024	7.465	0.166	6.020
21	1.623	0.025	11.777	0.238	0.734	0.026	7.257	0.186	3.405
22	1.571	0.037	11.644	0.230	0.754	0.033	7.414	0.229	11.736
23									
24	1.611	0.027	11.089	0.315	0.693	0.039	6.885	0.228	4.987
25	1.584	0.034	12,197	0.595	0.770	0.013	7.702	0.409	5.048
26	1 598	0.015	12 003	0.221	0 771	0.037	7 511	0 156	15 142
27	1 515	0.017	11 717	0.113	0.765	0.002	7 732	0.112	15 628
28	1.010	0.017	/ . /	0.110	0.700	0.002	1.102	0.112	10.020
20			I						

Table S4a : $\Delta\Delta$ Ihh-V67CM:

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	ΔR ₂ / R ₁	RDC (Hz)
29	1.310	0.021	9.690	0.122	0.682	0.013	7.395	0.151	2.068
30	1.676	0.023	11.790	0.137	0.752	0.014	7.035	0.125	
31	1.607	0.021	10.559	0.146	0.718	0.014	6.569	0.124	-5.898
32	1.600	0.028	11.348	0.291	0.741	0.069	7.092	0.221	9.243
33	1.583	0.022	10.675	0.136	0.712	0.036	6.744	0.127	12.527
34	1.534	0.046	11.156	0.301	0.718	0.026	7.275	0.294	
35									
36	1.478	0.036	11.328	0.393	0.684	0.052	7.664	0.324	
37	1.541	0.024	10.749	0.123	0.754	0.032	6.976	0.135	9.486
38	1.603	0.018	10.731	0.187	0.764	0.005	6.695	0.137	-0.851
39	1.607	0.023	9.626	0.227	0.715	0.022	5.989	0.165	-13.196
40	1.536	0.024	10.830	0.190	0.747	0.021	7.052	0.164	-2.676
41	1.504	0.025	10.467	0.114	0.748	0.054	6.958	0.140	3.831
42	1.467	0.037	9.884	0.322	0.731	0.018	6.739	0.277	12.831
43	1.597	0.020	10.955	0.255	0.727	0.019	6.861	0.182	
44									
45	1.646	0.017	10.699	0.206	0.777	0.068	6.502	0.142	-17.452
46	1.608	0.058	12.397	0.282	0.731	0.033	7.708	0.329	5.473
47	1.529	0.017	10.928	0.109	0.732	0.021	7.147	0.107	0.304
48	1.517	0.023	10.770	0.168	0.756	0.040	7.100	0.153	0.608
49	1.499	0.015	10.986	0.174	0.727	0.049	7.329	0.136	0.668
50	1.538	0.034	10.318	0.277	0.744	0.048	6.711	0.232	
51	1.533	0.024	9.660	0.212	0.702	0.043	6.303	0.171	-10.581
52	1.536	0.013	10.173	0.143	0.729	0.034	6.621	0.108	-1.521
53	1.508	0.039	10.870	0.145	0.712	0.003	7.209	0.212	-0.426
54	1.632	0.025	9.789	0.204	0.740	0.037	6.000	0.155	-14.048
55	1.577	0.015	10.162	0.085	0.690	0.020	6.445	0.081	-17.756
56	1.619	0.027	10.744	0.130	0.711	0.032	6.638	0.137	-0.913
57									
58	1.527	0.010	10.938	0.088	0.734	0.021	7.165	0.075	15.689
59	1.494	0.017	10.645	0.108	0.740	0.031	7.127	0.108	9.790
60	1.549	0.013	11.079	0.192	0.748	0.033	7.154	0.138	6.628
61	1.600	0.026	10.475	0.196	0.750	0.064	6.546	0.161	0.912
62	1.724	0.024	10.350	0.325	0.717	0.052	6.003	0.205	-13.864
63									
64	1.653	0.030	9.185	0.120	0.672	0.004	5.557	0.125	

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	ΔR ₂ / R ₁	RDC (Hz)
65	1.536	0.016	8.713	0.081	0.642	0.022	5.672	0.078	2.676
66	1.475	0.012	10.022	0.092	0.720	0.037	6.797	0.084	1.216
67	1.599	0.016	10.691	0.316	0.804	0.063	6.688	0.209	6.872
68	1.528	0.092	10.508	0.616	0.710	0.010	6.878	0.578	5.595
69	1.534	0.022	10.811	0.088	0.729	0.028	7.047	0.117	13.378
70	1.577	0.025	11.230	0.210	0.729	0.019	7.122	0.175	15.932
71									
72	1.629	0.027	11.045	0.169	0.718	0.026	6.778	0.154	1.338
73	1.683	0.024	11.397	0.302	0.737	0.035	6.772	0.204	2.311
74	1.557	0.025	10.059	0.284	0.755	0.026	6.462	0.209	8.331
75	1.523	0.018	10.473	0.226	0.725	0.034	6.876	0.169	1.764
76	1.657	0.024	11.586	0.364	0.807	0.026	6.990	0.241	-9.669
77	1.648	0.018	10.544	0.089	0.716	0.046	6.397	0.087	-16.480
78	1.631	0.022	10.679	0.098	0.696	0.060	6.547	0.107	
79	1.584	0.022	10.532	0.157	0.704	0.028	6.647	0.135	
80	1.510	0.017	9.472	0.207	0.680	0.014	6.275	0.154	-16.723
81									
82	1.590	0.022	10.075	0.146	0.719	0.056	6.335	0.127	-16.298
83	1.531	0.021	9.618	0.142	0.736	0.051	6.281	0.127	-11.129
84	1.590	0.044	11.241	0.233	0.728	0.017	7.068	0.245	13.196
85	1.586	0.019	10.892	0.287	0.744	0.002	6.867	0.198	4.013
86	1.590	0.025	11.856	0.096	0.744	0.022	7.458	0.131	15.567
87	1.621	0.027	11.618	0.234	0.738	0.025	7.166	0.188	4.621
88	1.597	0.052	10.630	0.204	0.728	0.045	6.658	0.253	5.047
89	1.511	0.024	10.925	0.191	0.748	0.017	7.233	0.171	9.365
90									
91	1.659	0.021	11.497	0.137	0.761	0.011	6.932	0.120	4.074
92	1.517	0.017	9.914	0.079	0.670	0.013	6.536	0.089	-11.615
93									
94	1.621	0.021	10.834	0.107	0.744	0.028	6.685	0.109	-4.743
95									
96	1.594	0.039	11.059	0.229	0.767	0.047	6.936	0.223	
97	1.675	0.041	10.698	0.279	0.700	0.021	6.387	0.229	-2.797
98	1.495	0.019	9.949	0.143	0.700	0.015	6.654	0.128	13.865
99	1.489	0.019	9.801	0.087	0.637	0.009	6.582	0.101	7.358
100	1.425	0.018	10.686	0.638	0.631	0.016	7.500	0.457	11.067

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	ΔR ₂ / R ₁	RDC (Hz)
101	1.629	0.018	10.704	0.248	0.725	0.048	6.572	0.168	9.061
403	1.559	0.022	10.286	0.141	0.688	0.025	6.599	0.131	-7.844
404	1.494	0.013	9.604	0.099	0.638	0.026	6.429	0.088	
405	1.579	0.016	10.335	0.134	0.708	0.021	6.544	0.107	
406									
407	1.524	0.011	10.132	0.185	0.672	0.074	6.650	0.131	-6.020
408	1.448	0.010	9.533	0.207	0.587	0.041	6.584	0.150	
409	1.644	0.026	10.201	0.150	0.716	0.045	6.205	0.135	-10.824
410	1.562	0.037	11.222	0.321	0.698	0.011	7.183	0.267	7.966
411									
412	1.483	0.017	10.242	0.075	0.751	0.041	6.905	0.092	13.986
413	1.528	0.030	10.560	0.190	0.726	0.051	6.910	0.183	15.082
414									
415	1.447	0.019	9.601	0.148	0.718	0.045	6.637	0.136	-0.365
416	1.629	0.032	11.225	0.670	0.722	0.027	6.890	0.433	8.270
417	1.525	0.015	10.592	0.144	0.734	0.031	6.946	0.116	
418	1.596	0.026	9.763	0.086	0.734	0.052	6.117	0.111	-16.723
419	1.540	0.019	10.243	0.102	0.716	0.012	6.650	0.104	
420	1.588	0.027	10.597	0.077	0.733	0.017	6.674	0.123	-5.412
421									
422	1.517	0.023	10.800	0.195	0.780	0.051	7.118	0.167	6.324
423	1.481	0.018	10.848	0.134	0.713	0.031	7.324	0.126	
424	1.456	0.015	10.556	0.166	0.687	0.019	7.249	0.137	-2.250
425	1.526	0.024	10.915	0.364	0.712	0.047	7.152	0.264	1.520
426	1.643	0.021	12.013	0.320	0.780	0.036	7.313	0.216	-12.831
427	1.513	0.023	10.805	0.070	0.724	0.044	7.143	0.119	-4.987
428	1.452	0.040	20.016	0.543	0.725	0.022	13.785	0.535	0.30
429									
430	1.832	0.243	26.335	1.930	0.763	0.039	14.375	2.178	11.128
431	1.597	0.028	11.077	0.101	0.787	0.044	6.938	0.135	11.858
432	1.495	0.016	10.873	0.163	0.782	0.025	7.273	0.134	13.318
433	1.558	0.017	11.920	0.519	0.731	0.043	7.650	0.344	3.041
434	1.611	0.024	11.538	0.153	0.763	0.039	7.162	0.142	5.169
435	1.519	0.027	11.596	0.710	0.706	0.028	7.636	0.487	11.493
436	1.610	0.016	11.042	0.149	0.758	0.025	6.859	0.115	2.371
437	1.581	0.011	10.624	0.217	0.767	0.023	6.721	0.146	6.933

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	ΔR₂/ R₁	RDC (Hz)
438	1.591	0.014	12.010	0.180	0.748	0.034	7.551	0.130	5.777
439	1.672	0.038	11.586	0.128	0.790	0.079	6.928	0.173	15.811
440	1.591	0.029	11.704	0.225	0.718	0.022	7.358	0.195	-0.121

Table S4b : ∆∆Ihh-L67CM:

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R ₂ / R ₁	$\Delta R_2 / R_1$	RDC (Hz)
1				/					
2	1.527	0.019	11.126	0.304	0.711	0.024	7.287	0.220	11.069
3	1.636	0.047	11.445	0.149	0.763	0.022	6.995	0.220	
4	1.599	0.036	10.776	0.044	0.769	0.017	6.741	0.152	-12.833
5	1.515	0.028	11.628	0.129	0.780	0.060	7.673	0.164	10.826
6	1.663	0.031	11.028	0.107	0.774	0.031	6.630	0.139	-5.899
7	1.576	0.036	10.766	0.156	0.810	0.061	6.832	0.183	8.393
8	1.532	0.026	10.785	0.453	0.739	0.018	7.042	0.319	-0.365
9	1.585	0.031	10.049	0.263	0.726	0.054	6.340	0.207	0.851
10	1.672	0.035	10.475	0.252	0.754	0.034	6.266	0.200	-11.738
11									
12	1.621	0.029	11.005	0.229	0.751	0.018	6.790	0.187	0.426
13	1.573	0.045	11.054	1.540	0.808	0.041	7.028	0.999	-2.919
14	1.688	0.054	10.681	0.460	0.736	0.010	6.329	0.339	-13.319
15	1.460	0.021	9.922	0.093	0.770	0.035	6.796	0.116	-2.494
16	1.563	0.022	10.415	0.267	0.741	0.034	6.664	0.196	-12.954
17	1.569	0.029	10.339	0.264	0.763	0.029	6.588	0.207	-7.298
18	1.493	0.028	10.588	0.142	0.729	0.036	7.092	0.161	
19	1.582	0.043	11.494	0.398	0.770	0.030	7.263	0.321	5.839
20	1.630	0.049	11.497	0.408	0.781	0.032	7.055	0.328	5.230
21	1.645	0.025	11.731	0.127	0.755	0.024	7.130	0.135	2.189
22	1.532	0.040	11.432	0.029	0.779	0.010	7.465	0.198	10.643
23	1.562	0.040	11.158	0.042	0.725	0.005	7.144	0.184	8.150
24	1.611	0.036	11.396	0.636	0.740	0.022	7.073	0.425	3.953
25	1.553	0.027	11.154	1.139	0.744	0.023	7.073	0.425	3.284
26	1.649	0.018	11.839	0.107	0.756	0.009	7.181	0.103	12.407
27	1.584	0.038	11.559	0.229	0.761	0.038	7.299	0.226	12.772
29	1.280	0.021	9.253	0.123	0.656	0.022	7.230	0.155	2.433
30	1.639	0.019	11.731	0.177	0.787	0.029	7.156	0.137	-4.014

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	ΔR ₂ /R ₁	RDC (Hz)
31	1.601	0.017	10.403	0.186	0.772	0.004	6.497	0.135	9.548
32	1.584	0.040	11.216	0.139	0.707	0.067	7.083	0.199	9.366
33	1.580	0.031	11.125	0.940	0.739	0.041	7.042	0.610	
34	1.501	0.022	10.738	0.115	0.772	0.014	7.152	0.128	
35									
36	1.492	0.101	11.143	0.238	0.690	0.035	7.469	0.528	
37	1.514	0.046	10.511	0.129	0.752	0.033	6.944	0.226	6.264
38	1.565	0.043	10.525	0.755	0.728	0.005	6.726	0.516	-0.547
39	1.565	0.026	9.846	0.379	0.747	0.026	6.293	0.264	-9.305
40	1.536	0.026	10.443	0.180	0.733	0.020	6.800	0.165	-3.710
41	1.471	0.024	10.470	0.135	0.748	0.034	7.116	0.147	4.136
42	1.450	0.066	9.283	0.235	0.778	0.017	6.401	0.334	6.447
43	1.556	0.018	11.305	0.494	0.749	0.026	7.264	0.328	6.386
44									
45	1.606	0.022	10.749	0.139	0.820	0.010	6.692	0.125	-12.224
46	1.609	0.020	12.593	0.325	0.761	0.036	7.827	0.223	2.372
47	1.574	0.030	10.785	0.036	0.765	0.012	6.854	0.132	0.669
48	1.489	0.026	10.631	0.119	0.743	0.041	7.141	0.148	0.851
49	1.525	0.012	11.009	0.172	0.761	0.043	7.222	0.126	
50									
51	1.532	0.034	9.933	0.326	0.747	0.063	6.483	0.257	-6.690
52	1.583	0.043	9.991	0.126	0.716	0.039	6.311	0.187	0.061
53	1.547	0.073	10.536	0.218	0.744	0.036	6.810	0.350	
54	1.631	0.040	9.321	0.376	0.730	0.014	5.714	0.269	-12.164
55	1.532	0.030	9.885	0.080	0.725	0.003	6.451	0.137	-12.893
56	1.621	0.030	10.563	0.203	0.763	0.035	6.515	0.174	-0.547
57	1.575	0.032	10.680	0.173	0.714	0.060	6.780	0.176	
58	1.561	0.015	10.292	0.517	0.790	0.015	6.594	0.337	12.589
59									10.157
60	1.545	0.020	10.698	0.097	0.752	0.007	6.923	0.109	6.325
61	1.605	0.032	10.889	0.473	0.759	0.018	6.786	0.324	-0.426
62	1.724	0.038	10.685	1.284	0.717	0.026	6.199	0.757	-12.042
63									
64	1.667	0.048	9.759	1.174	0.668	0.026	5.855	0.724	-5.595
65	1.560	0.032	8.369	0.167	0.659	0.008	5.365	0.153	2.189
66	1.479	0.018	9.906	0.067	0.693	0.019	6.697	0.091	-1.034
67	1.563	0.033	10.291	0.632	0.743	0.032	6.583	0.428	4.744

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	ΔR ₂ / R ₁	RDC (Hz)
68	1.540	0.033	10.955	1.727	0.770	0.059	7.116	1.131	4.014
69									-4.865
70	1.602	0.024	10.807	0.467	0.759	0.003	6.748	0.308	12.407
71									
72	1.638	0.034	10.995	0.557	0.771	0.034	6.713	0.368	-0.669
73	1.637	0.042	11.235	0.174	0.767	0.029	6.865	0.204	2.737
74	1.541	0.037	11.237	0.950	0.770	0.045	7.294	0.641	5.717
75	1.580	0.022	10.443	0.145	0.749	0.024	6.611	0.130	1.703
76	1.682	0.019	10.928	0.394	0.762	0.024	6.496	0.245	-7.785
77	1.641	0.015	10.441	0.086	0.769	0.014	6.363	0.079	-12.529
78	1.672	0.033	10.692	0.274	0.715	0.021	6.395	0.207	2.250
79	1.622	0.028	10.287	0.077	0.699	0.036	6.341	0.120	1.338
80	1.511	0.026	9.427	0.733	0.722	0.025	6.238	0.497	-12.893
81									
82	1.624	0.025	9.911	0.242	0.739	0.030	6.102	0.176	-12.529
83	1.554	0.028	10.033	0.403	0.771	0.018	6.455	0.284	-7.724
84	1.621	0.045	10.692	0.188	0.739	0.018	6.597	0.216	9.792
85	1.615	0.023	11.396	0.072	0.783	0.047	7.055	0.109	3.467
86	1.595	0.020	11.446	0.033	0.799	0.023	7.176	0.092	11.616
87	1.563	0.030	11.295	0.261	0.779	0.014	7.227	0.217	3.223
88	1.532	0.031	10.403	0.110	0.751	0.020	6.791	0.154	4.014
89	1.565	0.047	10.615	0.096	0.757	0.007	6.783	0.214	7.541
90									
91	1.654	0.037	11.297	0.069	0.771	0.011	6.832	0.160	2.433
92	1.526	0.020	9.920	0.087	0.715	0.022	6.502	0.104	-9.792
93									
94	1.656	0.027	11.237	0.422	0.762	0.029	6.787	0.278	-8.393
95									
96	1.553	0.038	10.934	0.290	0.796	0.044	7.040	0.254	3.102
97	1.649	0.036	9.711	0.440	0.738	0.043	5.888	0.296	-2.068
98	1.462	0.021	9.669	0.163	0.690	0.013	6.615	0.146	11.555
99	1.489	0.041	9.678	0.097	0.631	0.006	6.498	0.189	
100	1.427	0.035	9.126	0.535	0.645	0.005	6.395	0.406	8.879
101	1.620	0.027	10.706	0.647	0.744	0.012	6.609	0.414	8.210
403	1.586	0.023	10.317	0.106	0.701	0.006	6.504	0.117	-5.595
404	1.494	0.030	9.805	0.234	0.636	0.017	6.565	0.205	3.710
405									

Res.	$R_1(s^{-1})$	$\Delta R_1(S^{-1})$	$R_2(S^{-1})$	$\Delta R_2(S^{-1})$	NOE	ΔΝΟΕ	R₂/ R₁	$\Delta R_2 / R_1$	RDC (Hz)
406	1.459	0.032	9.912	0.157	0.673	0.032	6.793	0.182	-0.365
407	1.499	0.016	10.192	0.089	0.696	0.046	6.800	0.093	-5.109
408	1.471	0.024	9.249	0.142	0.584	0.032	6.288	0.142	-10.339
409	1.636	0.036	10.499	0.162	0.716	0.030	6.419	0.171	-12.833
410	1.581	0.015	11.261	0.764	0.755	0.015	7.124	0.488	5.717
411	1.530	0.032	10.757	0.081	0.711	0.002	7.029	0.157	12.042
412	1.473	0.019	9.497	0.453	0.749	0.017	6.449	0.318	10.765
413	1.557	0.043	11.208	1.296	0.740	0.024	7.197	0.855	11.130
414									
415	1.461	0.032	9.420	0.100	0.725	0.014	6.446	0.158	-1.885
416	1.622	0.036	10.974	0.094	0.781	0.008	6.766	0.159	8.150
417	1.516	0.024	10.058	0.155	0.715	0.002	6.636	0.147	1.034
418	1.597	0.037	9.765	0.087	0.746	0.005	6.114	0.150	-14.292
419	1.566	0.028	10.327	0.261	0.696	0.023	6.596	0.205	-2.554
420	1.599	0.018	10.420	0.148	0.755	0.025	6.518	0.119	-3.163
421	1.526	0.026	10.682	0.142	0.715	0.006	7.000	0.150	
422	1.557	0.019	10.551	0.112	0.772	0.010	6.775	0.109	3.406
423	1.499	0.019	10.735	0.189	0.732	0.035	7.161	0.155	0.304
424	1.468	0.020	10.738	0.088	0.704	0.054	7.316	0.115	-1.825
425	1.572	0.048	11.698	0.455	0.697	0.053	7.439	0.367	-0.061
426	1.668	0.035	13.922	1.701	0.799	0.032	8.349	1.035	-10.52
427									
428	1.585	0.044	21.728	0.669	0.693	0.067	13.707	0.567	-4.44
429									
430	1.583	0.209	27.638	2.646	0.820	0.015	17.457	2.846	10.157
431	1.602	0.034	10.856	0.152	0.771	0.019	6.776	0.171	11.069
432	1.484	0.036	10.789	0.055	0.755	0.028	7.273	0.178	8.940
433	1.592	0.028	11.275	1.794	0.798	0.050	7.080	1.133	-1.277
434	1.585	0.027	11.498	0.349	0.839	0.015	7.254	0.252	2.007
435	1.524	0.051	11.375	1.689	0.788	0.026	7.465	1.136	8.819
436	1.624	0.019	11.257	0.314	0.759	0.024	6.932	0.209	0.547
437	1.589	0.026	10.719	0.134	0.825	0.020	6.745	0.139	5.352
438	1.666	0.024	11.818	0.310	0.790	0.022	7.094	0.212	4.561
439									
440	1.630	0.022	12.895	0.450	0.783	0.020	7.910	0.296	-1.216

	$\Delta\Delta$ Ihh-V67CM	ΔΔIhh-L67CM
Total analyzed	120 residues	120 residues
$\begin{array}{c} \text{Model 1: } S^2 \ (\tau_e\!\!=\!\!0, \\ R_{ex}\!\!=\!\!0, \ S_f^2\!\!=\!\!1) \end{array}$	81 residues	81 residues
Model 2: S^2 , τ_e ($R_{ex}=0$, $S_f^2=1$)	19 residues	25 residues
Model 3: S^2 , $R_{ex}(\tau_e=0, S_f^2=1)$	9 residues G5, R18, E20, R26, F49, E426, T430, A433, and V438	7 residues G5, H30, V46, E424, L428, T430, and N440
Model 4: S^2 , τ_e , R_{ex} ($S_f^2 = 1$)	6 residues K27, I29, R92, R419, E424, and L428	0 residues
Model 5: S^2 , τ_e , S_f^2 ($R_{ex}=0$)	2 residues G64 and A65	4 residues R54, G65, T100, and A418
Unassigned	3 residues: H30, V98, R405	3 residues: V23, T77, Y79
$ au_{ m m}$	7.70 ns	7.77 ns
$D_{\rm H}/D_{\perp}$	0.86	0.96
S ² (Ave)	0.89±0.01	0.89±0.01

10. Table S5. Model-free analysis results for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM using relaxation data acquired at 600 MHz NMR.

11. Model-free results for $\Delta\Delta$ Ihh-V67CM and $\Delta\Delta$ Ihh-L67CM. (Table S6);

Secondary structure elements are given in the column marked "2°". Model "0" indicates that no model was deemed appropriate for the data. Residues that not analyzed include residues that were not assigned due to severe exchange broadening ("X"), praline residues ("P"), and spectral overlap ("OL"). All relaxation data were acquired at 298 K, pH 7.0.

	/						
res	2°	Model	S ²	S ² err	S _{2f}	т _e (ps)	$R_{ex}(s^{-1})$
1	β	Х					
2	β	1	0.91	0.02			
3	β	1	0.93	0.01			
4	β	1	0.93	0.01			
5		3	0.89	0.02			1.36±0.22
6	β	1	0.94	0.01			
7	β	1	0.93	0.02			
8	β	1	0.88	0.01			
9	β	1	0.92	0.03			
10	β	1	0.92	0.01			
11		Р					
12		2	0.93	0.01		108±139	
13		1	0.91	0.01			
14		1	0.93	0.01			
15	β	OL					
16	β	1	0.91	0.01			
17	β	1	0.86	0.02			
18	β	3	0.85	0.01			1.05±0.21
19	β	2	0.92	0.01		65±12	
20	α	3	0.91	0.01			1.07±0.25
21	α	1	0.96	0.01			
22	α	1	0.94	0.01			
23	α	OL					
24	α	1	0.93	0.01			
25	α	1	0.94	0.02			
26		3	0.94	0.01			0.65±0.24
27		4	0.88	0.01		29±5	1.12±0.17
28		Р					
29	ß	4	0.74	0.01		30±5	0.64±0.19
30	ß	0	_				
31	ß	1	0.91	0.01			
32	ß	1	0.93	0.01			
33	ß	2	0.88	0.01		103±41	
34	ß	1	0.91	0.02			
35	ß	OL.	0.01	0.02			
36	P	1	0.88	0.02			
37		1	0.89	0.01			
38		2	0.91	0.01		45+8	
39	ß	1	0.88	0.01		.0_0	
40	ß	1	0.90	0.01			
41	ß	1	0.87	0.01			
42	ß	2	0.83	0.02		34+14	
43	ß	1	0.92	0.01		0.2.11	
10						1	

Table S6a; ∆∆Ihh-V67CM

res	2°	Model	S ²	S ² err	S _{2f}	T _e (ps)	R _{ex} (s ⁻¹)
44	ß	P			- 21	.6(1)	
45	ß	1	0.92	0.01			
46	ß	1	1.00	0.01			
40	ß	1	0.90	0.01			
47	R R	1	0.00	0.01			
40	p p	2	0.09	0.01			0.50+0.21
49	p o	3	0.87	0.01			0.30±0.21
50	p o	1	0.88	0.02		67.20	
51	p o	2	0.83	0.02		67±29	
52	β	2	0.86	0.01		56±22	
53	β	2	0.89	0.01		65±10	
54	β	1	0.89	0.01			
55	β	1	0.88	0.01			
56	β	1	0.92	0.01			
57	β	OL					
58	β	1	0.90	0.00			
59	β	1	0.88	0.01			
60	β	1	0.91	0.01			
61	β	1	0.90	0.01			
62	β	1	0.95	0.01			
63		Х					
64		5	0.76	0.01	0.90±0.01	1165±114	
65	ß	5	0.68	0.01	0.85±0.01	1249±265	
66	ß	1	0.85	0.01			
67	ß	1	0.93	0.01			
68	ß	2	0.87	0.03		56+357	
69	ß	1	0.89	0.00		001001	
70	ß	2	0.00	0.01		66+33	
70	<u>Р</u>	P	0.01	0.01		00±00	
72		1	0.93	0.01			
72	ß	1	0.95	0.01			
73	P R	1	0.90	0.01			
74	p o	1	0.09	0.01			
73	p o	1	0.88	0.01			
70	p o	1	0.95	0.01			
70	β	1	0.92	0.01			
78	β	1	0.92	0.01			
79		1	0.90	0.01			
80	β	2	0.82	0.01		51±10	
81	β	OL					
82	β	1	0.88	0.01			
83	β	1	0.85	0.01			
84	β	2	0.92	0.02		82±129	
85		2	0.90	0.01		52±9	
86		1	0.97	0.01			
87		1	0.95	0.01			
88		1	0.90	0.02			
89		1	0.89	0.01			
90		OL					
91	β	1	0.96	0.01			
92	β	4	0.81	0.01		52±9	0.57±0.14
93	β	OL				-	
94	β	1	0.92	0.01			
95	β	OL	-	-			

res	2°	Model	S ²	S ² err	S _{2f}	т _e (ps)	R _{ex} (s⁻¹)
96	β	1	0.92	0.01			
97	β	2	0.92	0.02		117±157	
98		0					
99		2	0.82	0.01		66±7	
100		2	0.80	0.01		57±10	
101		1	0.93	0.01			
403	β	1	0.88	0.01			
404	β	2	0.81	0.01		74±13	
405	β	0					
406	β	OL					
407	β	1	0.88	0.01			
408	β	1	0.82	0.01			
409	β	1	0.90	0.01			
410	β	2	0.90	0.02		86±54	
411	β	OL					
412	β	1	0.85	0.01			
413	β	1	0.88	0.01			
414		Р					
415		1	0.82	0.01			
416	β	1	0.94	0.02			
417	β	1	0.88	0.01			
418	β	1	0.86	0.01			
419	β	4	0.83	0.01		40±9	0.78±0.16
420	β	2	0.89	0.01		58±20	
421	β	OL					
422	β	1	0.89	0.01			
423	β	1	0.88	0.01			
424	β	4	0.81	0.01		43±11	1.00±0.21
425	β	1	0.89	0.01			
426	β	3	0.92	0.01			1.45±0.33
427		1	0.90	0.01			
428		4	0.80	0.03		29±12	10.72±0.62
429	β	Х					
430	β	3	1.00	0.08			14.25±2.20
431	β	1	0.92	0.01			
432	β	1	0.88	0.01			
433	β	3	0.89	0.01			1.42±0.51
434		1	0.95	0.01			
435	β	1	0.89	0.02			
436	β	1	0.93	0.01			
437	β	1	0.92	0.01			
438	β	3	0.92	0.01			0.94±0.19
439	β	1	0.96	0.01			
440	β	1	0.95	0.01			

Table S6b: ∆∆Ihh-L67CM

res	2°	Model	S ²	S ² err	S _{2f}	т _e (ps)	R _{ex} (s ⁻¹)
1	β	Х					
2	β	1	0.90	0.01			
3	β	1	0.95	0.01			
4	β	1	0.90	0.00			
5		3	0.88	0.02			1.06±0.25

res	2°	Model	S ²	S ² err	S _{2f}	T _e (ps)	R _{ex} (s ⁻¹)
6	ß	1	0.93	0.01	21		
7	ß	1	0.90	0.01			
8	ß	1	0.89	0.01			
9	ß	1	0.89	0.01			
10	ß	1	0.93	0.02			
11	<u>۲</u>	P	0.00	0.02			
12		. 1	0.93	0.01			
13		1	0.91	0.03			
10		2	0.94	0.03		698+364	
15	ß	1	0.84	0.00		000±004	
16	р В	1	0.89	0.01			
10	ß	1	0.89	0.01			
18	р ß	1	0.00	0.01			
10	р ß	1	0.00	0.07			
20	p a	1	0.95	0.02			
20	a	1	0.95	0.02			
21	a	1	0.97	0.01			
22	a	0	0.95	0.00			
23	a	1	0.04	0.02			
24	a	1	0.94	0.02			
25	u	1	0.91	0.02			
20		1	0.96	0.01			
21			0.95	0.01			
20	0	P 1	0.76	0.01			
29	р	1	0.76	0.01			0.69.0.22
30	р	<u> </u>	0.94	0.01		24.6	0.00±0.23
31	р	2	0.90	0.01		34±0	
32	<u>р</u>	1	0.94	0.01			
33	<u>р</u>	1	0.92	0.02			
34	p 0		0.89	0.01			
35	β		0.00	0.00			
36		1	0.92	0.02			
37		1	0.88	0.01		FF 40	
38	0	2	0.89	0.02		55±16	
39	<u></u> В	1	0.89	0.01			
40	β	1	0.88	0.01			
41	<u></u> В	1	0.87	0.01			
42	β	1	0.79	0.02			
43	β	1	0.90	0.01	ļ		
44	β	P					
45	β	1	0.92	0.01			
46	β	3	0.93	0.01			1.47±0.35
47	β	1	0.90	0.00			
48	β	1	0.88	0.01			
49	β	1	0.89	0.01			
50	β	OL			ļ		
51	β	1	0.87	0.02			
52	β	1	0.85	0.01			
53	β	1	0.88	0.02			
54	β	5	0.75	0.05	0.88±0.03	1697±1550	
55	β	2	0.84	0.01		38±3	
56	β	1	0.91	0.01			
57	β	1	0.90	0.01			

res	2°	Model	S ²	S ² err	S _{2f}	T _e (ps)	R _{ex} (s ⁻¹)
58	β	1	0.91	0.01		/	
59	ß	OL					
60	ß	2	0.89	0.01		40±9	
61	ß	1	0.93	0.02			
62	ß	1	0.98	0.02			
63	F	X					
64		1	0.95	0.03			
65	β	5	0.65	0.02	0.84±0.01	1478±137	
66	ß	2	0.83	0.01		49±13	
67	ß	1	0.90	0.02			
68	β	1	0.89	0.02			
69	β	Х					
70	β	2	0.92	0.01		51±13	
71		Р					
72		1	0.95	0.02			
73	β	1	0.95	0.01			
74	β	1	0.90	0.02			
75	β	2	0.88	0.01		55±23	
76	β	1	0.96	0.01			
77	β	0					
78	β	1	0.94	0.02			
79	•	0					
80	β	2	0.84	0.02		43±19	
81	β	OL					
82	β	1	0.90	0.01			
83	β	1	0.89	0.01			
84	β	1	0.91	0.01			
85		1	0.95	0.01			
86		1	0.95	0.00			
87		1	0.92	0.01			
88		1	0.87	0.01			
89		2	0.88	0.01		37±8	
90		OL					
91	β	1	0.94	0.01			
92	β	2	0.84	0.01		52±16	
93	β	OL					
94	β	1	0.95	0.01			
95	β	OL					
96	β	1	0.91	0.02			
97	β	1	0.92	0.02			
98		2	0.81	0.01		46±8	
99		2	0.81	0.01		62±5	
100		5	0.75	0.03	0.84±0.02	64 <mark>0±1</mark> 92	
101		2	0.92	0.02		68±29	
403	β	2	0.87	0.01		65±8	
404	β	2	0.82	0.01		68±13	
405	β	OL					
406	β	2	0.82	0.01		50±21	
407	β	1	0.86	0.01			
408	β	2	0.78	0.01		82±17	
409	β	2	0.89	0.01		89±58	
410	β	1	0.92	0.01			

res	2°	Model	S ²	S ² err	S _{2f}	т _e (ps)	R _{ex} (s ⁻¹)
411	β	2	0.89	0.01		69±6	
412	β	1	0.85	0.01			
413	β	1	0.91	0.02			
414		Р					
415		2	0.79	0.01		31±8	
416	β	1	0.92	0.01			
417	β	2	0.85	0.01		44±4	
418	β	5	0.81	0.01	0.89±0.01	1341±246	
419	β	2	0.87	0.02		65±22	
420	β	1	0.90	0.01			
421	β	2	0.88	0.01		58±9	
422	β	2	0.89	0.01		31±11	
423	β	1	0.88	0.01			
424	β	3	0.85	0.01			0.63±0.16
425	β	1	0.94	0.02			
426	β	1	0.96	0.02			
427		OL					
428		3	0.91	0.02			10.93±0.68
429	β	Х					
430	β	3	0.92	0.10			16.61±2.89
431	β	1	0.91	0.01			
432	β	1	0.90	0.00			
433	β	1	0.92	0.02			
434		1	0.93	0.01			
435	β	1	0.89	0.03			
436	β	1	0.94	0.01			
437	β	1	0.90	0.01			
438	β	1	0.97	0.01			
439	β	OL					
440	β	3	0.94	0.01			1.75±0.48

12. References for supporting materials

- 1. Makhatadze, G. I., Medvedkin, V. N. & Privalov, P. L. (1990). Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. *Biopolymers* **30**, 1001-10.
- 2. Palmer, A. G., III. (2001). NMR probes of molecular dynamics: overview and comparison with other techniques. *Annu. Rev. Bioph. Biom* **30**, 129-155.
- 3. Tjandra, N., Wingfield, P., Stahl, S. & Bax, A. (1996). Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. *J. Biomol. NMR.* **8**, 273-284.
- 4. Pawley, N. H., Wang, C., Koide, S. & Nicholson, L. K. (2001). An improved method for distinguishing between anisotropic tumbling and chemical exchange in analysis of 15N relaxation parameters. *J Biomol NMR* **20**, 149-65.
- 5. Bruschweiler, R., Liao, X. & Wright, P. E. (1995). Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. *Science* **268**, 886-9.
- 6. Lipari, G. & Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. *J. Am. Chem. Soc.* **104**, 4546-4559.
- Lipari, G. & Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. *J. Am. Chem. Soc.* 104, 4559-4570.
- 8. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. & Gronenborn, A. M. (1990). Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. *J. Am. Chem. Soc.* **112**, 4989-4991.
- 9. Cole, R. & Loria, J. P. (2003). FAST-Modelfree: A program for rapid automated analysis of solution NMR spin-relaxation data. *J. Biomol. NMR.* **26**, 203-213.
- Van Roey, P., Pereira, B., Li, Z., Hiraga, K., Belfort, M. & Derbyshire, V. (2007). Crystallographic and mutational studies of mycobacterium tuberculosis recA miniinteins suggest a pivotal role for a highly conserved aspartate residue. *J. Mol. Biol.* 367, 162-173.
- Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. & Bax, A. (1992). Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected twodimensional NMR spectroscopy: the central helix is flexible. *Biochemistry* 31, 5269-78.
- 12. Woessner, D. E. (1962). Nuclear spin relaxation in ellipsoids undergoing rotational Brownian motion. *J. Chem. Phys.* **37**, 647-54.
- 13. Mandel, A. M., Akke, M. & Palmer, A. G., III. (1995). Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. *J. Mol. Biol.* **246**, 144-63.