SUPPLEMENTAL MATERIAL for the manuscript by Takashi Daiho, Stefania Danko, Kazuo Yamasaki, and Hiroshi Suzuki Stable Structural Analog of Ca²⁺-ATPase ADP-insensitive Phosphoenzyme with Occluded Ca²⁺ Formed by Elongation of A-domain/M1'-linker and Beryllium Fluoride Binding Supplemental Figure S1. #### Mn^{2+} dependence of the rate of EP inhibition by BeF_x in 0.01 mM Ca²⁺. In A, microsomes expressing the mutant 4Gi-46/47 were incubated for various periods with BeF_x (1 mM KF plus 10 μ M BeSO₄) in 0.01 mM CaCl₂ and various concentrations of MnCl₂ in the absence of MgCl₂ otherwise as in Fig. 6. The samples were then diluted and phosphorylated with 10 μ M $[\gamma^{-3}\text{P}]$ ATP and the amount of EP formed was determined as in Fig. 6. Solid lines show the least squares fit to a single exponential. In B, the rate constants obtained in A were plotted versus the concentration of Mn²⁺ added. $K_{0.5}$ for the Mn²⁺ activation and Hill coefficient obtained by fitting to the Hill equation (solid line) were 1.4 mM and 2.1, respectively. Fig. S1 Supplemental Figure S2. ## Ca^{2+} dependence of the rate of EP inhibition by BeF_x in the absence of Mg²⁺ and Mn²⁺. In A, microsomes expressing the mutant 4Gi-46/47 were incubated for various periods with BeF_x (1 mM KF plus 10 μ M BeSO₄) and various concentrations of CaCl₂ in the absence of MgCl₂ otherwise as in Fig. 7. The samples were then diluted 10-fold and phosphorylated with 10 μ M [γ - 32 P]ATP and the amount of EP formed was determined as in Fig. 7. Solid lines show the least squares fit to a single exponential. In B, the rate constants obtained in A were plotted versus the concentration of Ca²⁺ added. $K_{0.5}$ for the Ca²⁺ activation and Hill coefficient obtained by fitting to the Hill equation (solid line) were 0.76 mM and 1.7, respectively. Fig. S2 Supplemental Figure S3. #### Proteolysis of the major intermediates and Ca²⁺-ATPase complexes with metal fluoride in Ca²⁺. The major intermediates and their structural analogs were produced with the wild type and mutant 4Gi-46/47 in the microsomes (0.15 mg/ml) under the following conditions, and subjected to the limited proteolysis with 0.5 mg/ml trypsin (A, B) or prtK (C, D) at 25 °C and then to SDS-PAGE with the immunodetection as described in "EXPERIMENTAL PROCEDURES". The E2 and E1Ca₂ states were formed in 1 mM EGTA and in 0.01 mM CaCl₂, respectively, in 15 mM $MgCl_2$, 1 μ M A23187, 0.1 M KCl, and 50 mM MOPS/Tris (pH 7). To produce EP from ATP, the microsomes were incubated at 25 °C for 10 s in 0.5 mm ATP, 10 mm CaCl₂, 15 mM MgCl₂, 1 μM A23187, 0.1 M KCl, and 50 mM MOPS/Tris (pH 7.0). In the wild type, EP accumulated was exclusively E1PCa₂·Ca (ADP-sensitive EP with the occluded two Ca²⁺ and with bound Ca²⁺ at the catalytic Mg²⁺ site), and its isomerization (therefore decay) was extremely slowed due to the Ca²⁺ ligation at the catalytic Mg²⁺ site and the feedback inhibition by the high concentration of lumenal Ca²⁺. In the mutant, EP accumulated was exclusively E2PCa₂·Ca (ADP-insensitive EP with the occluded two Ca²⁺ and with bound Ca²⁺ at the catalytic Mg²⁺ site), and its decay was almost completely blocked due to the elongation of the A/M1'-linker (14). To produce E1Ca₂·AlF_x, the microsomes were incubated at 25 °C for 30 min in 0.01 mM CaCl₂, 1 mM KF, 50 μ M AlCl₃, 15 mM MgCl₂, 0.1 M KCl, and 50 mM MOPS/Tris (pH 7.0). For the E1Ca₂·AlF₄·ADP formation, the microsomes were further incubated for 10 min with 0.5 mM ADP. The BeF_x treatment of the microsomes was performed in 0.01 mM CaCl₂, 1 mM KF, 50 μ M BeSO₄, 0.1 M KCl, and 50 mM MOPS/Tris (pH 7) in the presence of 15 mM MgCl₂, or in place of MgCl₂, 10 mM CaCl₂ or 1 mM MnCl₂ as indicated in the figure. The wild type produced the E1PCa₂ analog mM CaCl₂ or 1 mM MnCl₂ as indicated in the figure. The wild type produced the E1PCa₂ analog E1Ca₂·BeF₃⁻ with Mg²⁺ and Mn²⁺ but not with Ca²⁺ (27), and the mutant produced the E2PCa₂ analog E2Ca₂·BeF₃⁻ with Mg²⁺, Mn²⁺, and Ca²⁺. The tryptic T1 site is very rapidly cleaved producing the fragments "A" (Met¹-Arg⁵⁰⁵, immunodetected) and "B" (Ala⁵⁰⁶ to the C-terminus Gly⁹⁹⁴, not immunodetected). Further cleavage at T2 site (Arg¹⁹⁸) produces the fragments "A1" (Ala¹⁹⁹ to Arg⁵⁰⁵, immunodetected) and "A2" (Met¹ to Arg¹⁹⁸, not immunodetected). The fragments formed by prtK are "p95" (Lys¹²⁰-Gly⁹⁹⁴), "p81" (Met¹-Met⁷³³), and "p83" (Glu²⁴³-Gly⁹⁹⁴) (all immunodetected) (54, 55). The digestion periods and the positions of the Ca²⁺-ATPase, its fragments, and the molecular mass markers (kDa) are indicated. Note that the antibody unexpectedly immunodecorated trypsin (A, B) as previously observed (14). PrtK was also immunodecorated by the antibody against the Ca^{2+} -ATPase (C, D) as noted previously (14), but this band at the bottom of gels seems to include small ATPase fragments in addition to prtK since the rapid ATPase digestion is apparently associated with the more intense immunodecoration. In A and B, a band was sometimes observed after 4 min digestion and whose mass is intermediate (roughly ~60 kDa) between those of native ATPase and the "A" fragment. In the literature, such a fragment has never been observed in the tryptic digestion of the SR Ca²⁺-ATPase, *i.e.* the rapid cleavage at T1 site (Arg⁵⁰⁵) always occurs first producing the "A" and "B" fragments, whose migration rates are virtually the same in this SDS-PAGE system (e.g. see Refs. 23, 24). Therefore, the ~60-kDa band may possibly be due to non-specific immunodecoration of some fragment of contaminating protein (of which mass before cleavage is possibly similar to the 110 kDa-ATPase chain) in the microsome preparation. Cleavage and resistance at the major sites Arg¹⁹⁸, Leu¹¹⁹, and Thr²⁴² are summarized in supplemental Table S1, and the results are described below in "Proteolytic Structural Analysis of E2Ca₂BeF₃ (E2PCa₂) and Other Intermediates Formed from E1Ca₂". Supplemental Figure S4. #### Proteolysis of the Ca2+-ATPase complexes with metal fluoride formed without Ca2+ and treated with subsequently added Ca²⁺. Ca²⁺-free E2·BeF₃, E2·AlF₄, and E2·MgF₄²⁻ were produced with the microsomes (0.15 mg/ml) in 1 mM EGTA, 1 mM KF, 1 μ M A23187, and 50 mM MOPS/Tris (pH 7) by the incubation at 25 °C for 30 min in 50 μ M BeSO₄, 7 mM MgCl₂, and 50 mM LiCl (E2·BeF₃-); 50 μ M AlCl₃, 1 mM MgCl₂, and 0.1 M KCl $(E2 \cdot AlF_4)$; and 5 mM MgCl₂ and 0.1 M KCl $(E2 \cdot MgF_4)$. These complexes were further incubated with and without the addition of 10 mM Ca²⁺ at 25 °C for 30 min, and subjected to proteolysis with trypsin (A, B) or prtK (C, D), SDS-PAGE, and immunodetection as in Supplemental Fig. S3. Cleavage and resistance at Arg ¹⁹⁸, Leu¹¹⁹, and Thr²⁴² are summarized in supplemental Table S2, and the results are described below in "*Proteolytic Structural Analysis of E2Ca*₂·BeF₃⁻ Formed from $E2 \cdot BeF_3$ and $Ca^{2+\cdots}$. Fig. S3A,B Fig. S3C,D Fig. S4A,B Fig. S4C,D #### **Supplemental Table S1** Summary of proteolysis of the major intermediates and their analogs in supplemental Fig. S3. Relative cleavage rates of the tryptic T2 site (Arg¹⁹⁸) and prtK sites (Leu¹¹⁹ and Thr²⁴²), and the complete resistance against the proteases were classified as follows by the visual inspection of the band intensities (A1, p95, and p81/83, respectively) in supplemental Fig. S3. The result for E2·BeF₃⁻ (in Mg²⁺) in supplemental Fig. S4 was also included. - (+++) cleaved rapidly - (++) cleaved at moderate rate - (+) cleaved slowly - () completely resistant | Cleavage site | | E2 | \rightarrow E1Ca ₂ \rightarrow | E1Ca ₂ ·AlF ₄ ·ADP | $\sim E1Ca_2 \cdot AlF_x \rightarrow$ | $E1PCa_{2}$ $E1Ca_{2} \cdot BeF_{3} \longrightarrow$ $(in Mg^{2+} or Mn^{2+})$ | $E2PCa_2$ $E2Ca_2 \cdot BeF_3$ (in Mg^{2+} , Mn^{2+} , or Ca^{2+}) | $E2P$ $\rightarrow E2 \cdot BeF_3$ $(in Mg^{2+})$ | |--|-----------|-----|---|--|---------------------------------------|--|---|---| | Arg ¹⁹⁸ (tryptic T2) producing "A1" | Wild type | +++ | +++ | +++ | +++ | + | No accumulation | _ | | | 4Gi-46/47 | +++ | +++ | +++ | ++ | No accumulation | - | _ | | Leu ¹¹⁹ (prtK)
producing "p95" | Wild type | +++ | _ | | <u> </u> | <u> </u> | No accumulation | _ | | | 4Gi-46/47 | +++ | _ | _ | _ | No accumulation | ++ | _ | | | | | | | | | | | | Thr ²⁴² (prtK)
producing
"p81/83" | Wild type | ++ | ++ | _ | _ | _ | No accumulation | _ | | | 4Gi-46/47 | ++ | +++ | _ | _ | No accumulation | _ | _ | ### **Supplemental Table S2** Summary of proteolysis of E2·BeF₃, E2·AlF₄, and E2·MgF₄² with and without treatment by 10 mM Ca²⁺ in A23187 in supplemental Fig. S4. Relative cleavage rates and the complete resistance were classified with the band intensities in supplemental Fig. S4 as described in supplemental Table S1. (+++) cleaved rapidly (++) cleaved at moderate rate (+) cleaved slowly (–) completely resistant | | | E2P | +10 mM
Ca ²⁺ | E2PCa ₂ | | | +10 mM
Ca ²⁺ | | | +10 mM
Ca ²⁺ | | | +10 mM
Ca ²⁺ | | |--|-----------|---------------------|----------------------------|-------------------------------------|---------------|----------------------------------|----------------------------|--------------------|---------------------|----------------------------|-------------------|-----------------------------------|----------------------------|-------------------| | Cleavage site | | E2·BeF ₃ | \rightarrow | E2Ca ₂ ·BeF ₃ | \rightarrow | $E1\text{Ca}_2\cdot\text{BeF}_3$ | \rightarrow | E1Ca ₂ | E2·AlF ₄ | \rightarrow | E1Ca ₂ | E2·MgF ₄ ²⁻ | \rightarrow | E1Ca ₂ | | Arg ¹⁹⁸ (tryptic T2) producing "A1" | Wild type | - | | No
accumulation | | No
accumulation
No | | +++
No | _ | | +++ | _ | | +++ | | | 4Gi-46/47 | _ | | _ | | accumulation | | accumulation | _ | | +++ | _ | | +++ | | Leu ¹¹⁹ (prtK) producing "p95" | Wild type | _ | | No accumulation | | No accumulation | | _ | _ | | _ | _ | | _ | | | 4Gi-46/47 | _ | | +++ | | No accumulation | | No accumulation | _ | | _ | _ | | _ | | Thr ²⁴² (prtK)
producing
"p81/83" | Wild type | _ | | No
accumulation | | No
accumulation | | ++ | _ | | +++ | _ | | ++ | | | 4Gi-46/47 | _ | | _ | | No accumulation | | No
accumulation | _ | | +++ | _ | | ++ | Proteolytic Structural Analysis of $E2Ca_2 \cdot BeF_3$ ($E2PCa_2$) and Other Intermediates Formed from $E1Ca_2$ — for supplemental Fig. S3 and Table S1 — Strategy: In EP isomerization and Ca^{2+} release (E1PCa₂ \rightarrow E2P + 2Ca²⁺), the A domain substantially rotates and comes above one half of the P domain, and these domains incline significantly towards M2, which also inclines (see Fig. 2). In the resulting E2P, the A domain is associated with the P domain through interaction networks at the TGES¹⁸⁴ loop with the Asp³⁵¹ region and at the Val²⁰⁰ loop with the polar residues of the P domain. In E2P, the A and P domains also associate through a hydrophobic interaction network with the top part of M2 at Tyr¹²² and Leu¹¹⁹, the compact Tyr¹²²-hydrophobic cluster (or the loose cluster, see more in supplemental Fig. S5 and the following section). These motions and changes in domain organization are definitively monitored by the changes in the resistance against trypsin at the tryptic T2 site Arg¹⁹⁸ on the Val²⁰⁰ loop and against proteinase K (prtK) at the major cleavage sites Leu¹¹⁹ on the top part of M2 and at Thr²⁴² on the A/M3-linker as demonstrated previously (23, 24) and as noted below. Arg¹⁹⁸: the association of the largely rotated A domain with the P domain at the Val²⁰⁰ loop by ionic and hydrogen bonding interactions involving Arg¹⁹⁸ is explicitly monitored by the complete resistance of Arg¹⁹⁸ against the tryptic attack. Leu¹¹⁹: formation of the interactions involving Leu¹¹⁹ and Tyr¹²² on the top part of M2 are clearly monitored by the complete resistance at Leu¹¹⁹ against prtK attack. In $E1PCa_2$, Tyr¹²²-Leu¹¹⁹ on the top part of M2 is in van der Waals contact with the top of M4. In E2P, Tyr¹²²/Leu¹¹⁹ on M2 engages in the hydrophobic interaction network with the A and P domains. Thus both in the $E1PCa_2$ and E2P states, Leu¹¹⁹ is completely resistant against prtK attack. Then note that in order to realize the E2P structure from $E1PCa_2$, M2 (Tyr¹²²/Leu¹¹⁹) should move away from its contact with M4, and largely incline to the A and P domains to produce the interaction at Tyr¹²²/Leu¹¹⁹. Therefore in the intermediate transient state during $E1PCa_2 \rightarrow E2P + 2Ca^{2+}$, Leu¹¹⁹ becomes sterically available to prtK attack (as actually found in the transient state $E2PCa_2$ and $E2Ca_2 \cdot BeF_3$ stabilized by the elongation of the A/M1'-linker). <u>Thr</u>²⁴²: Upon ATP binding and $E1PCa_2$ formation (as seen in the change $E1Ca_2 \rightarrow E1Ca_2 \cdot CaAMPPCP/E1Ca_2 \cdot AlF_4 \cdot ADP$), the A domain rotates perpendicularly to the membrane plane thereby raising its junction with the A/M3-linker (as well as with the A/M1'-linker) and imposing a strain on this A/M3-linker (18). This change apparently causes complete resistance of Thr²⁴² on the A/M3-linker against the prtK attack (18, 19, 24, 27). The strain of the A/M3-linker has been predicted to function as a motive force of the large A-domain's rotation parallel to membrane for the E1P to E2P isomerization (18, 19, 50, 51). #### **Results and Conclusion:** Shown in supplemental Fig. S3 and Table S1 are the proteolytic patterns and the approximate cleavage rates and resistance at Arg¹⁹⁸ (producing A1 fragment) and at Leu¹¹⁹ and Thr²⁴² (producing p95 and p81/83 fragments, respectively). In E2Ca₂·BeF₃ and E2PCa₂, the tryptic T2 site Arg¹⁹⁸ is completely resistant as in E2·BeF₃ and E2P. On the other hand, the prtK site Leu¹¹⁹ in E2Ca₂·BeF₃ and E2PCa₂ is rapidly cleaved, in sharp contrast to its complete resistance in E1Ca₂·BeF₃·/E1PCa₂ and E2·BeF₃·/E2P. The results reveal that in E2Ca₂·BeF₃ and E2PCa₂, the A domain has already largely rotated from the position in E1Ca₂·BeF₃·/E1PCa₂ and docked onto the P domain at the Val²⁰⁰ loop (and at TGES¹⁸⁴) as in E2·BeF₃·/E2P, and that Leu¹¹⁹/Tyr¹²² on the top part of M2 has been released from its contact with M4 in E1Ca₂·BeF₃·/E1PCa₂ but not yet reached a position to produce the interaction network at Leu¹¹⁹/Tyr¹²² with the A and P domains (Tyr¹²²-hydrophobic cluster) in the E2·BeF₃·/E1PCa₂ and E2·BeF₃·/E2P. Thus the structure of E2Ca₂·BeF₃ and E2PCa₂ is intermediate between those of E1Ca₂·BeF₃·/E1PCa₂ and E2·BeF₃·/E2P. It is concluded that in the transient $E2PCa_2$ state and its analog $E2Ca_2 \cdot BeF_3$ stabilized by elongation of the A/M1'-linker, the inclining motions of M2 and the A and P domains have not yet advanced enough to gather and form the interaction network around Leu¹¹⁹/Tyr¹²². Actually, formation of this interaction network has been shown to be critical for Ca^{2+} release and formation of the Ca^{2+} -released E2P ground state by mutations of each of the seven residues involved in the network, Tyr¹²²-hydrophobic cluster (11-13). The results also reveal the critical role of the native length of A/M1'-linker for inducing the inclining motions of the A and P domains and M2 to deocclude and release Ca^{2+} from $E2PCa_2$ and to produce the E2P ground state structure. Regarding $E1Ca_2 \cdot BeF_3$ of wild type ($E1PCa_2 \cdot Mg$ analog), it should be mentioned that the T2 site Arg^{198} is cleaved more slowly than in $E1Ca_2 \cdot AlF_4 \cdot ADP$ and $E1Ca_2 \cdot AlF_x$ (the transition state analogs of phosphorylation) as demonstrated previously (27). This indicates that during $E1PCa_2$ ·Mg formation from the transition state, the A domain likely rotates to some extent parallel to the membrane plane and brings Arg^{198} close to the P domain (although this change is obviously not enough to reach the $E2PCa_2$ and E2P states, *i.e.* for the change $E1PCa_2 \rightarrow E2PCa_2 \rightarrow E2P + 2Ca^{2+}$, the A domain should further rotate to produce its association with the P domain at Arg^{198}) (27). Interestingly, the T2 site cleavage rate in $E1Ca_2$ ·AlF_x of the elongated A/M1'-linker mutant is between those of the wild-type $E1Ca_2$ ·AlF₄·ADP/ $E1Ca_2$ ·AlF_x and $E1Ca_2$ ·BeF₃. The result indicates that elongation of the A/M1'-linker allows some rotation of the A domain, thereby bringing the structure of mutant $E1Ca_2$ ·AlF_x close (but not completely) to that of the wild-type $E1Ca_2$ ·BeF₃ (see more in "DISCUSSION"). ### Proteolytic Structural Analysis of E2Ca₂·BeF₃⁻ Formed from E2·BeF₃⁻ and Ca²⁺ — for supplemental Fig. S4 and Table S2 — The effect of high concentration 10 mM of Ca^{2+} in the presence of A23187 on the structure of $E2 \cdot BeF_3^-$, $E2 \cdot AlF_4^-$, and $E2 \cdot MgF_4^{2-}$ were examined by proteolysis. In the A/M1'-linker elongated mutant, Ca^{2+} -treatment of $E2 \cdot BeF_3^-$ results in exactly the same proteolytic pattern as for $E2Ca_2 \cdot BeF_3^-$ formed from $E1Ca_2$ and BeF_x . The results show that the stable $E2Ca_2 \cdot BeF_3^-$ is produced from $E2 \cdot BeF_3^-$ most probably by lumenal Ca^{2+} binding to the transport sites (mimicking $E2P + 2Ca^{2+} \rightarrow E2PCa_2$). In wild type, the $E2 \cdot \text{BeF}_3^-$ complex is destroyed by 10 mM Ca^{2+} and converted to $E1\text{Ca}_2$. This is probably by the conversion $E2 \cdot \text{BeF}_3^- + 2\text{Ca}^{2+} \to E1\text{Ca}_2 \cdot \text{BeF}_3^-$ (mimicking lumenal Ca^{2+} -induced reverse conversion $E2P + 2\text{Ca}^{2+} \to E1P\text{Ca}_2$) and by the subsequent Ca^{2+} substitution of Mg^{2+} at the catalytic site in $E1\text{Ca}_2 \cdot \text{BeF}_3^-$ as shown previously (27). $E2 \cdot \text{AlF}_4$ and $E2 \cdot \text{MgF}_4^{2-}$ complexes of the mutant and wild type are also destroyed by 10 mM Ca²⁺ resulting in $E1\text{Ca}_2$. This is probably because Ca²⁺ at such a high concentration disrupts the closed gate, *i.e.* the closed structure of the Ca²⁺-releasing pathway in the transmembrane and lumenal regions, and consequently disorganizes the AlF₄- and MgF₄²-ligations at the catalytic site as described previously (27). Supplemental Figure S5. Interaction network around Leu¹¹⁹/Tyr¹²² on M2 with the A, P, and N domains in E2P analogs. The crystal structures E1Ca₂·AlF₄·ADP, E2·BeF₃·, E2·BeF₃·(TG) are depicted as in Fig. 2 (PDB accession code 1T5T (17), 2ZBE (21), and 2ZBF (21), respectively). Upper panels, whole molecules; lower panels, regions of the seven hydrophobic residues involved in the Tyr¹²²-hydrophobic cluster in E2·BeF₃·(TG) (Y¹²²-HC, semitransparent green sphere). These seven residues are Leu¹¹⁹/Tyr¹²² on the top part of M2, Ile¹⁷⁹/Leu¹⁸⁰/Ile²³² of the A domain, and Val⁷⁰⁵/Val⁷²⁶ of the P domain. In E2·BeF₃·(TG), the compact Tyr¹²²-hydrophobic cluster is fully achieved. On the other hand, E2·BeF₃· crystallized without TG possesses a rather loose cluster (Ile¹⁷⁹/Leu¹⁸⁰/Ile²³² and Val⁷⁰⁵/Val⁷²⁶, semitransparent blue sphere) and a more extended interaction network (dashed green line circle) involving Leu¹¹⁹ and Lys¹²⁰ next to Leu¹¹⁹/Tyr¹²² (semitransparent pink sphere). See more in the following analysis of the structure and role of the interaction network. # Hydrophobic Interactions at Tyr¹²² for E2P Ground State: Fully Realized Compact Tyr¹²²-hydrophobic Cluster or Rather Loose Cluster? In the crystal structure $E2 \cdot BeF_3^-(TG)$ as well as in $E2 \cdot AlF_4^-(TG)$, $E2 \cdot MgF_4^{2-}(TG)$, and $E2 \cdot AlF_4^-AMPPCP$ without TG, the Tyr¹²²-hydrophobic cluster is fully formed by the seven residues on the top part of M2 and the A and P domains. In $E2 \cdot BeF_3^-$ crystallized without TG (2ZBE (21) and 3B9B (22)), the side chains of Leu¹¹⁹ and Tyr¹²² are peripheral to and oriented outward from the other five clustered residues (Ile¹⁷⁹/Leu¹⁸⁰/Ile²³² and Val⁷⁰⁵/Val⁷²⁶), and Leu¹¹⁹ is in close contact with Thr⁴³⁰ on the N domain (2ZBE). Also in $E2 \cdot BeF_3^-$ without TG, Lys¹²⁰ next to Leu¹¹⁹/Tyr¹²² is now facing the P domain and in close contact with $Gly^{723}/Ser^{722}/Lys^{728}$ in the immediate vicinity of Val⁷²⁶ of the hydrophobic cluster. Thus, $E2 \cdot BeF_3^-$ crystallized without TG possesses a rather loose cluster but has a more extended interaction network around Leu¹¹⁹/Tyr¹²². The inaccessibility of the prtK-site Leu¹¹⁹ (completely resistant) both in TG-free $E2 \cdot BeF_3^-$ (the Ca²⁺-released E2P) and in $E2 \cdot BeF_3^-$ with bound TG (Refs. 23-25, also supplemental Figs. S3 and S4) may be reasonably accounted for by its steric protection seen in the crystal structures. Our biochemical studies in solution (25) demonstrated that TG binding to $E2 \cdot BeF_3^-$ closes the lumenal gate from an open state, as in fact seen in the crystal structural change accompanying $E2 \cdot BeF_3^- \to E2 \cdot BeF_3^-$ (TG) (21). $E2 \cdot AlF_4^-$, the transition state analog of E2P hydrolysis, was also demonstrated in solution to have a closed lumenal gate in contrast to the open one in $E2 \cdot BeF_3^-$, the E2P ground state analog (25). Therefore according to the crystals $E2 \cdot BeF_3^-$ and $E2 \cdot BeF_3^-$ (TG), the compact Tyr¹²²-hydrophobic cluster is expected to be fully formed together with lumenal gate closure during the reaction from E2P ground state to the transition state of E2P hydrolysis. On the other hand, we found by mutation and kinetic studies of each of the seven residues involved in the Tyr¹²²-hydrophobic cluster (11-13) that all the seven residues are critical for Ca²⁺ release from the transient *E*2PCa₂ state and for *E*2P hydrolysis, therefore probably for formation of the Ca²⁺-free *E*2P ground state structure. Actually, mutation of Tyr¹²² and Leu¹¹⁹ among the seven residues caused the most severe functional defect, indicating that they play central roles in the interaction network (13). Our preferred view from these findings is rather that, under physiological (not crystallizing) conditions, a full and compact Tyr¹²²-hydrophobic cluster is required for (*i.e.* present in) the *E*2P ground state structure, which possesses the lumenally opened Ca²⁺ release pathway and the catalytic site with hydrolytic function (11-13). This view seemingly conflicts with the atomic structure of *E*2·BeF₃⁻ (although this prediction was made before the *E*2·BeF₃⁻ crystal structure was solved). An important question for us now is whether the Tyr¹²²-hydrophobic cluster should be fully formed An important question for us now is whether the Tyr¹²²-hydrophobic cluster should be fully formed by all seven residues under physiological (not crystallizing) conditions to realize the *E*2P ground state, or is a loose cluster with an extended interaction network around Tyr¹²² (seen in the *E*2·BeF₃⁻ crystal) sufficient to stabilize this state. A compromise would be that the gathering of all seven residues in the Tyr¹²²-hydrophobic cluster occurs in some ordered sequence and not necessarily all at once. In fact, mutation of each of the seven residues exhibited different degrees of functional inhibition (see more detailed discussion in Ref. 13). Nevertheless, we should take into account possible structural perturbations by agents used for stabilizing the transmembrane helices during crystallization of $E2 \cdot BeF_3^-$ with the lumenal Ca^{2+} -release pathway open (gate). For example, in the structure of $E2 \cdot BeF_3^-$ crystallized without TG, Mg²⁺ is bound at or near Glu³⁰⁹ (the Ca^{2+} binding site II) because of the very high concentration of Mg²⁺ used (50 mM, 3B9B (22)), or a low pH could protonate the Ca^{2+} ligands (pH 5.7, 2ZBE (21)). The transmembrane structures stabilized in these ways might possibly differ from those in the absence of such agents. To expand on these examples, let us assume that a fully formed and compact Tyr¹²²-hydrophobic cluster is required for stabilizing the Ca²⁺-free sites in the E2P ground state. The cluster in E2·BeF₃⁻ crystallized in Mg²⁺ is possibly disrupted by the Mg²⁺ binding at or near the transport site, as also could occur by lumenal Ca²⁺ binding to E2·BeF₃⁻ (E2P) to produce E2Ca₂·BeF₃⁻ (E2PCa₂). It is possible that the structure of Mg²⁺-bound E2·BeF₃⁻ is somewhat between that of the E2PCa₂ transient state and that of the E2P ground state, as possibly in E2P with bound (but not occluded) Ca²⁺ within the open release pathway. If this is the case, the crystal structure of Mg²⁺-bound E2·BeF₃⁻ may suggest that the Tyr¹²²-hydrophobic cluster is only fully formed on Ca²⁺ release and appearance of the E2P ground state with empty transport sites. It is also possible that $E2 \cdot BeF_3$ crystallized at low pH (with likely protonation of transport sites and open lumenal gate *i.e.* un-occluded protons) may rather reflect an E2P ground state after protonation of the transport sites but before gate-closure. Closure of the gate is achieved subsequently in the transition state with occlusion of the protons (25). This view agrees with the predicted proton-counter transport mechanism, in which protonation occurs in the E2P ground state (*e.g.* see Scheme 2 in Ref. 56). In this case, the structure $E2 \cdot BeF_3$ crystallized at the low pH may suggest that the compact Tyr^{122} -hydrophobic cluster becomes loose by the protonation in the E2P ground state. Actually, the cluster (either full and compact or loose) formed in the E2P ground state is disassembled or becomes very loose upon E2P hydrolysis to E2 (as demonstrated by the very rapid prtK-cleavage at Leu^{119} in E2 (Ref. 23, and see Supplemental Figs. S3 and S4)). In the two types of crystals $E2 \cdot \text{BeF}_3^-$ formed with Mg^{2^+} or with low pH, it is interesting to note that the lumenal gate is much more widely opened with Mg^{2^+} than with the likely protonation at the low pH. Taking into account these possible interpretations of the two types of $E2 \cdot \text{BeF}_3^-$ crystals, it is tempting to speculate that the successive structural changes for gate opening to release Ca^{2^+} ($E2P\text{Ca}_2 \rightarrow E2P + 2\text{Ca}^{2^+}$), protonation of the empty sites in the E2P ground state, and the subsequent gate closure to occlude protons and to prevent Ca^{2^+} leakage may possibly be described by the following changes. Namely, $E2\text{Ca}_2 \cdot \text{BeF}_3^-$ with a closed gate ($E2P\text{Ca}_2$ with the occluded two Ca^{2^+}) $\rightarrow E2 \cdot \text{BeF}_3^-$ with an open gate crystallized with Mg^{2^+} (possibly similar to E2P with un-occluded Ca^{2^+} immediately before Ca^{2^+} release) $\rightarrow E2 \cdot \text{BeF}_3^-$ with an open gate without any ligation (the genuine E2P ground state after Ca^{2^+} release, *i.e.* with empty transport sites) $\rightarrow E2 \cdot \text{BeF}_3^-$ with an open gate crystallized at the low pH (E2P with the protonated transport sites before closing gate) $\rightarrow E2 \cdot \text{AlF}_4^-$ with closed gate (the transition state of E2P hydrolysis, with occluded protons). Roles of A/M1'-linker and Interaction Network at Tyr¹²² in Ca²⁺-release from E2PCa₂ What our present and previous studies clearly reveal is that the A/M1'-linker and its strain in E2PCa₂, is critical for Ca²⁺-deocclusion/release from the transient E2PCa₂ state thereby producing the Ca²⁺-free E2P ground state. This is accomplished probably by inducing the inclining motions of the A and P domains and connected helices M2/M1 and M4/M5 (Fig. 2 and supplemental Figs. S5 and S6). Such movements are reflected in the changes in resistance of Leu¹¹⁹ at the top part of M2 against prtK and of the tryptic T2 site Arg¹⁹⁸ on the Val²⁰⁰ loop, showing that the structure of E2Ca₂·BeF₃⁻ (E2PCa₂) is intermediate between those of E1Ca₂·BeF₃⁻ (E1PCa₂) and the Ca²⁺-free E2·BeF₃⁻ (E2P). The Ca²⁺-free E2P ground state with the lumenal gate open is stabilized by the interaction network around Tyr¹²² (either by the fully produced compact Tyr¹²²-hydrophobic cluster or by the loose cluster with extended interaction network around Leu¹¹⁹/Tyr¹²²). Supplemental Figure S6. A cartoon illustrating the structural changes of the Ca²⁺-ATPase and the predicted functional role of the A/M1'-linker during EP processing and Ca²⁺ release. The schematic model was constructed on the basis of the mutation and kinetic studies of the A/M1'-linker (this study and Refs. 14 and 26) and Tyr^{122} -hydrophobic cluster (11-13), the proteolytic analyses (this study and Refs. 14, 23-25, and 27), and the crystal structures noted in the parentheses in the Figure. The *large curved arrows* indicate the approximate motions of the A domain (A), the A domain together with the P domain (A-P), M2, and M1' to realize the next structural state. The tryptic T2 site Arg^{198} (198) and prtK-sites Leu^{119} (119) and Thr^{242} (242) are indicated in each of the intermediates with (\longrightarrow) for rapid cleavage, (\longrightarrow) for slow cleavage, and (\longrightarrow) for complete resistance. Note that the A/M1'-linker is strained in $E2PCa_2$ and the strain induces the inclinations of the A and P domains (A-P), M4/M5, and M2 to release Ca^{2+} and to realize the Ca^{2+} -released E2P. The structural models of E2, $E1Ca_2$, and $E1PCa_2 \cdot ADP \cdot Mg^{\ddagger}$ (the transition state of phosphorylation) are smaller in size to show the whole transport cycle.