Supplementary data

Identification of small molecules that suppress microRNA pathway and reverse tumorigenesis

Koichi Watashi, Man Lung Yeung, Matthew F. Starost, Ramachandra S. Hosmane, and Kuan-Teh Jeang

Supplementary Figures S1-8 and legends Supplementary Table

Supplementary Fig. S1.

Supplementary Fig. S1. Schematic representation of the strategy for identifying compounds that suppress small RNA biosynthesis/silencing pathway.

Supplementary Fig. S2. Specificity of sh-Fluc suppression of Fluc activity. (A) sh-Fluc (shRNA targeting firefly luciferase mRNA) suppressed the activity of Fluc (firefly luciferase) but not Rluc (renilla luciferase). 293T cells transfected with pGL3 (Fluc plasmid), pRL-TK (Rluc plasmid), and pRS-shLuc (sh-Fluc +) or pRS control vector (sh-Fluc -) were measured for Fluc (left) and Rluc activities (right). (B) Knockdown of endogenous AGO2 reversed shRNA-mediated gene silencing. 293T cells were transfected without (si-AGO2 -) or with (si-AGO2 +) siRNA targeting AGO2. After 24 hrs, the cells were transfected with pGL3 (Fluc), pRL-TK (Rluc), and pRS-shLuc (sh-Fluc +) or pRS control vector (sh-Fluc -). After a further 24 hrs, cells were harvested and detected for Fluc and Rluc activities. Relative ratios of Fluc/Rluc are shown.

Supplementary Fig. S3.

Supplementary Fig. S3. The various screening steps and their outcomes. 1) In the first screening, 293T cells were transfected with SV40 promoter-driven Fluc, Rluc, and sh-Fluc, and then treated with individual compounds from the library. 2) The second screening employed a Fluc cDNA driven from a CMV promoter instead of the SV40 promoter. This screening is designed to identify compounds that affect Fluc activity irrespective of the promoter that drives Fluc expression. 3) In the third screening, sh-GFP, which recognizes GFP mRNA, but not Fluc mRNA was used as a negative-control shRNA to rule out non-specific shRNA effects that might affect Fluc activity. In this figure, Rluc is not shown to simplify the schematic presentation. Treatment of transfected cells with PLL and TPF increased the Fluc/Rluc ratio in the first and second screening procedures, but not in the third screening (right).

Supplementary Fig. S4.

Supplementary Fig. S4. The structures of PLL (poly-L-lysine) and TPF (trypaflavine), two moieties identified from our screening of 530 compounds

Supplementary Fig. S5. Assays for PLL and TPF activities in cell lysates and cultured cells. (A) In vitro Dicer assay. Pre-let-7a RNA was labeled with ³²P and incubated with (lanes 2-5) or without (lane 1) Dicer in the presence of PLL (8 and 4 µM; lanes 3 and 4) or TPF (100 µM; lane 5). (B) In vitro RNA precipitation assays employing biotinylated pre-let-7a RNA in 293T cells over expressing myc-Drosha were performed as in Fig. 2D. The amount of Drosha protein associated with biotinylated RNA was quantified from untreated(-), PLL, or TPF- treated cells. (C) 293T cells overexpressing myc-Dicer were individually transfected with FLAG-AGO1, 2, 3, or 4, and the cells were treated with TPF or untreated (-). Each of the individually transfected cells was immunoprecipitated with anti-myc antibody followed by immunoblot detection with anti-FLAG or anti-myc antibody. The bottom myc-Dicer immunoblot panel is a representative result reflective of the anti-myc IP followed by anti-myc IB seen with each of the FLAG-AGO1, 2, 3, 4 transfected cells. (D) snoRNAs, ACA17 and ACA19 were quantified by real time RT-PCR analysis in 293T cells treated with PLL, TPF, or untreated. (E) The stability of endogenous AGO2 in TPF-treated or untreated (-) 293T cells was detected by immunoblotting with anti-AGO2 after cycloheximide treatment for 1, 3, 6, 12, and 24 hrs.

Supplementary Fig. S6.

Supplementary Fig. S6. PLL and TPF reversed the silencing activity of let-7a. A plasmid encoding firefly luciferase (Fluc) mRNA carrying three repeats of the target sequence for let-7a positioned in its downstream untranslated sequences was transfected into HeLa cells together with an expression plasmid for renilla luciferase (Rluc) and the indicated amounts (μ g) of let-7a expression plasmid. After 4 hours, cells were treated with PLL or TPF. After another 48 hours, cells were lysed and luciferase activities were quantified. The relative activities of Fluc/Rluc are shown after setting the value in lane 1 as 1.

Supplementary Fig. S7.

Supplementary Fig. S7. A cell-mouse model for miR-93 and -130b-dependant tumorigenesis. (A) NIH3T3 cells stably over expressing miR-93 (3T3-miR-93), -130b (3T3-miR-130b), or Ras (3T3-Ras), or control (3T3-control) cells with an empty vector (3T3-control) were assayed for focus formation in soft agar. Microscopy (upper) and graphic tabulation of colonies (bottom) are shown. 3T3-miR-93 and 3T3-miR-130b as well as 3T3-Ras produced significantly higher numbers of colonies than control. (B) 3T3-control, 3T3-miR-93, 3T3-miR-130b, and 3T3-Ras cells were implanted into nude mice subcutaneously in the back of the neck and observed for tumor formation. Pictures of the mice (upper) and the average weights of tumor masses dissected from the animals after necropsy (bottom) are shown.

Supplementary Fig. S8.

Supplementary Fig. S8. PLL and TPF treatment reduced the tumorigenic activity of miR-93 and -130b. (A) miR-93, miR-130b, and miR-16 (as a control) were quantified in 3T3-control, 3T3-miR-93, 3T3-miR-130b, and 3T3-Ras cells by real time RT-PCR analyses. (B) 3T3-miR-130b cells transfected with FLAG-AGO2 were treated with PLL or TPF, or were untreated (-) for 3 days, and then the cells were recovered for small RNAs as described in Fig. 6A. MiR-130b in the miRNA(T) and the miRNA(A) fractions were quantified, and the ratios of miRNA(A)/miRNA(T) are shown. (C) 3T3miR-130b cells treated with 2 µM PLL, 1 µM TPF, or untreated (-), were observed in soft agar growth assays as described in Fig. 6B. Representative images are shown. (D) Colony formation assays were performed with 3T3-control, 3T3-miR-93, 3T3-miR-130b, and 3T3-Ras cells treated with PLL, TPF, or untreated, as described in Fig. 6B. Numbers of colonies were counted and shown. (E) 3T3-miR-93 cells transfected with antagonizing oligonucleotide for miR-93 (miR-93i) or a randomized oligonucleotide (control miRNAi) were subjected to colony formation assay as described in Fig. 6B. Numbers of colonies were counted and shown. (F) MTT assays of 3T3-miR-93 and 3T3miR-130b cells treated with 2 µM PLL, 1 µM TPF, or untreated at days 3, 5, and 7 post treatment. (G) The average weights of tumor masses for the results in Fig. 6C are shown.

A23187	AB-RSH-5	Baicalein	Cisplatin
17-AAG	AB-RSH-6	Bafilomycin A1	Clofibrate
AB-112	AB-RSH-7	BAPTA-AM	CPA
AB-120	AB-RSH-9	BBL-1	9cRA
AB-122	ABR-1	BBL-116	Cucurbitacin I
AB-122	ABR-6	BBI -128	Cycloheximide
AB 13	ABD 8	BBL 120	Cyclosporin A
AD-15 AD-150	ADR-0	DDL-132	Cytochalasin D
AD-130	ADRSH 6	BDL-133	Dampacanthal
AD-100-OMe	ADRSH 10H	DDL-15	Daunorubicin
AB-161	ABRSH-10H	BBL-159	Dauliorubicui
AB-162	Actarubicin	BBL-161	Decylubiquinone
AB-166	acetic acid	BBL-19	Deoxynojirimycin
AB-166B	Actinomycin D	BBL-228	Depnostatin
AB-171	Actinonin	BBL-32	Deprenyl
AB-173	ADP	BBL-37	Dequalinium
AB-174	AG1024	BBL-37-1R	Dexamethasone
AB-175	AG1296	BBL-38-18R	DFMO
AB-176	AG1478	BBL-43	Diazoxide
AB-18	AG490	BBL-44	2',5'-dideoxyadenosine
AB-180	AG825	BBL-5	DIDS
AB-185	AG957	BBL-59	Diltiazem
AB-186	ALLN	BBL-65	DMSO
AB-2	a-Amanitin	BBL-66	Doxorubicin
AB-200	Amastatin	BBL-67	E-64d
AB-203	AMD3100	BBL-78	EGF
AB-213	Amiloride	BBL-RSH-1	ethanol
AB-214	1-aminoanthracene	BBL-RSH-2	Etoposide
AB-221	2-aminoanthracene	Benzamide	ETYA
AB-222	Aminoglutethimide	Benzylguanine	Finasteride
AB-260	Aminoguanidine	Bestatin	FK-506
AB-3	AMT		Flutamide
AB 31	Anacardic acid	Bisindolymaleimide I	fluvestatin
AD-31	Antimycin A1	Pierhanol A digluoidul other	Formestane
AD-32	Anhidicolin		FTL-276
AD-43	AD 1		5 EU
AB-49	AK-1	Bleomycin	5-10 Fumagillin
AB-5	AR-104	Bleomychi	Funiaginin Funitaria C
AB-53	AR-122	BMP4	
AB-55	AR-19	t-ButyInydroquinone	Fumonisin B1
AB-57	AR-2	0/5	geneticin
AB-61	AR-20	CA-0/4	Genistein
AB-63	AR-3	calpeptin	gentamicin
AB-64	AR-4	Camptothecin	GGTI-286
AB-66	AR-5	Cantharidin	Glibenclamide
AB-67	AR-6	CAT	GM 6001
AB-68	AR-61	CB-10	Go6976
AB-82	AR-RSH-1	CB-129	H-7
AB-85	arachidonic acid	CB-45	H-89, HCl
AB-87A	arsenate	2CB-202	HA 14-1
AB-9	arsenite	3-CB-85	HMC-RSH-12
AB-RSH-1	3-ATA	6-CB-59	HMC-RSH-16
AB-RSH-11	ATRA	6-CB-79	HMC-RSH-2
AB-RSH-2	Azacytidine	7-CB-178	HMC-RSH-26
AB-RSH-4	AZT	Cerulenin	HMC-RSH-27

Supplementary Table. Names of chemical compounds screened in this study.

Supplementary Table (continued).

HMC-RSH-29	L-NMMA	Phenelzine	SP-131
HMC-RSH-3	Lonidamine	N-phenylanthranilic acid	SP-133
HMC-RSH-30	Lovastatin	Pifithrin-a (cyclic)	SP-136
HMC-RSH-31	LY294002	РМА	SP-137
HMC-RSH-32	LY 83583	polyarginine	SP-138
HMC-RSH-33	Manumycin A	polylysine	SP-139
HMC-RSH-36	Methotrexate	PRIMA-1	SP-141
HMC-RSH-37	methylene blue	proflavin	SP-144
HMC-RSH-41	MG-132	puromycin	SP-146
HMC-RSH-42	Mifepristone	Purvalanol A	SP-159
HMC PSH 44	Mitomycin C	quinacrine	SP 106
HMC PSH 45	MK 886	R 59022	SP 107
IIMC DSIL 5	ML -7	Radicical	SD 100*
HMC-RSH-5	Monastrol	Banamyoin	SP-199*
HMC-KSH-51	Monastio		SP-212
HMC-RSH-53	Mohenshi	KHC80207	SP-217
HMC-RSH-57	MPA	riboflavin	SP-225
HMC-RSH-58	MS1-312	RK-05	SP-227
HMC-RSH-61	N-AcetyI-L-cysteine	RK-06	SP-3*
HMC-RSH-62	Nalidixic acid	RK-07	SP-35
HMC-RSH-66	NB-DNJ	RK-33	SP-36*
HMC-RSH-67	NEM	RK-40	SP-39*
HMC-RSH-71	Nifedipine	RK-48	SP-43
HMC-RSH-72	Nigericin	RK-52	SP-45
HMC-RSH-75	Nocodazole	RKP-04	SP-47
HMC-RSH-76	Nordihydroguaiaretic acid	RKP-08	SP-48
HMC-RSH-77	NS-398	RKP-09	SP-51
HMC-RSH-78	NS-1	RKP-09a	SP-6
HMC-RSH-79	NS-1'	Ro-20-1724	SP600125
HMC-RSH-8	NS-2	Ro 5-4864	Staurosporine
HMC-RSH-9	NS-3	Rotenone	SU1498
4-OH tamoxifen	NS-3'	Rp-8-CPT-cGMPS	Sulindac
Hydroxyurea	NS-4	RSH-004	Swainsonine
hygromycin B	NS-6	RSH-005	Tamoxifen
IBMX	Nutlin-3	RSH-009	TBB
IFNa	NZ28	RSH-012	TFP
IFNb	NZ48	RSH-019	TGF-b2
IFNg	N749	RSH-020	Thapsigargin
IGF1	NZ50	RSH-027	Theophylline
IL-1b	NZ51	RSH-117	thymidine
IL-6	NZ-53	RSH-161A	TNFa
insulin	ODO	RSH-6101	To-901317
Ionomycin	Oligomycin	salicylate	TOFA
IPTG	Olomoucine	Sanguinarine	TR-079
iuglone	Ouabain	SB 203580	TR-175
kanamycin	Paclitaxel	SB 431542	TR-191
Kennaullone	PAO	SC560	TP 106
KN93	PD169316	SD 102*	TR-107
KT 5823	PD 98059	SD 116	TD 251
Lactacystin		SD 110	TD 252
Lentomycin R		SI -117	TD 255
I FM_A13	Penstatin A	SF-120 SD 121	1K-233
Lidocaine		SF-121	1K-204
	PUAL	SP-122	1K-20/
lithium chloride	PHA	SP-128	I K-268

Supplementary Table (continued).

TR-269	VK-5
TR-270	VK-5dimer
TR-272	VK-5NH2
TR-275	VK-50
TR-280	VK-52
TR-281	VK-53
TR-291	VK-54
TP 601	VK-54
TP 600	VK-0
TD 610	VK-0A
TR-010	VK-0B
TR-90	VK-6C
TR-91	VK-6X
TR-94	VK-7
TR-96	VK-7C
Trichostatin A	VK-75
Troglitazone	VK-8
trypafravine	VK-RSH-1
Tunicamycin	VK-RSH-10
U0126	VK-RSH-12
UMR-101a	VK-RSH-16
UMR-101b	VK-RSH-18
UMR-103	VK-RSH-2
UMR-104a	VK-RSH-20
UMR-104b	VK-RSH-22
UMR-118	VK-RSH-3
UMR-120	VK-RSH-6
UMR-121	VK-RSH-7
UMP 126	1400W HC1
UMR-120	Wortmannin
UMR-127	Yanthohumol
UMR-104	Zaprinast
UMR-20	
UMR-22	ZP-110
UMR-58	ZP-121
UMR-03 Velorul coliculate	ZP-122
Valinomycin	ZP-14/ Z VAD EMK
Varanamil	L-VAD-PIVIK
Vinhlatina	
vindiastine	
VK-1	
VK-100	
VK-102	
VK-103	
VK-106	
VK-120	
VK-2	
VK-24	
VK-25	
VK-26	
VK-27	
VK-3	
VK-32	
VK-4	
VK-4-OPFP	