	Formula	Calculated	Observed	Mass Error	Upper Chain
		Mass	Mass	(ppm)	Fragment
A1	$C_{31}H_{34}N_2O_7$	546.2366	546.2360	1.19	189.13
A2	$C_{28}H_{30}N_2O_7\\$	506.2053	506.2062	1.78	149.09
A3, A4	$C_{29}H_{32}N_2O_7$	520.2210	520.2228	3.62	163.11
A5	$C_{30}H_{34}N_2O_7$	534.2366	534.2377	2.05	177.13
A6, A7	$C_{31}H_{36}N_2O_7$	548.2523	548.2530	1.36	191.14
B1	$C_{31}H_{36}N_2O_7$	548.2523	548.2528	0.91	189.13
B2	$C_{28}H_{32}N_2O_7$	508.2210	508.2229	3.74	149.10
B3 , B4	$C_{29}H_{34}N_2O_7$	522.2366	522.2382	3.06	163.11
B5	$C_{30}H_{36}N_2O_7$	536.2523	536.2517	1.02	177.13
C1	$C_{31}H_{34}N_2O_5$	514.2468	514.2477	1.73	189.13
C2	$C_{28}H_{30}N_2O_5$	474.2155	474.2163	1.68	149.10
C3, C4	$C_{29}H_{32}N_2O_5$	488.2311	488.2317	1.15	163.11
C5	$C_{30}H_{34}N_2O_5$	502.2468	502.2477	1.77	177.13
D1	$C_{31}H_{34}N_2O_6$	530.2417	530.2422	0.90	189.13
D2	$C_{29}H_{32}N_2O_6$	504.2260	504.2254	1.25	149.10
D3, D4	$C_{28}H_{30}N_2O_6$	490.2104	490.2110	1.34	163.11
D5	$C_{30}H_{34}N_2O_6$	518.2417	518.2411	1.06	177.13
A8	$C_{20}H_{20}N_2O_7$	400.1271	400.1289	4.73	
B8	$C_{20}H_{22}N_2O_7$	402.1427	402.1444	4.19	
C8	$C_{20}H_{20}N_2O_5$	368.1372	368.1394	6.02	
A1a	$C_{26}H_{29}NO_6$	451.1995	451.2010	3.44	189.13
A2a	$C_{23}H_{25}NO_6$	411.1682	411.1657	6.13	149.09
A3a,A4a	$C_{24}H_{27}NO_6$	425.1838	425.1804	8.13	163.11
A5a	$C_{25}H_{29}NO_6$	439.1995	439.1990	1.09	177.12
B1a	$C_{26}H_{31}NO_6$	453.2151	453.2171	4.43	189.13
B2a	$C_{23}H_{27}NO_6$	413.1838	413.1801	8.93	149.09
B3 a, B4 a	$C_{24}H_{29}NO_6$	427.1995	427.1956	9.19	163.10
B5a	$C_{25}H_{31}NO_6$	441.2151	441.2120	7.05	177.12

Supplemental Table 1. Exact mass of asukamycin and its derivatives.

Position	δ _C (ppm)	δ _H (ppm)	C,H-Coupling ^a
1	180.07		6-H, 0-NH, 5-H, 3-H
2	140.95		
3	124.57	6.21 (d, <i>J</i> =10.1)	0-NH (w)
4	69.63		7-H, 3-H, 8-H, 5-H (w), 0-NH (w)
5	152.53	6.93 (dd, <i>J</i> =10.0, 3.1)	6-H, 7-H, 3-H (w)
6	130.64	7.62 (d, <i>J</i> =2.95)	5-H, 3-H, 7-H, 0-NH
7	137.64	5.80 (d, <i>J</i> =15.5)	6-H, 5-H, 3-H, 8-H, 9-H
8	131.12	6.48 (dd, <i>J</i> =14.8, 11.8)	9-Н, 10-Н
9	138.97	6.66 (dd, <i>J</i> =14.8, 11.2)	7-H, 8-H, 11-H
10	129.35	6.53 (dd, <i>J</i> =15.37, 11.31)	8-H, 11-H
11	141.23	7.07 (dd, <i>J</i> =15.0, 11.6)	10-Н, 12-Н
12	123.47	6.46 (d, <i>J</i> =15.2)	11-Н, 10-Н
13	164.94		14-NH
1'	164.94		0-NH, 2'-H
2'	123.85	6.51 (d, <i>J</i> =15.2)	3'-Н, 4'-Н
3'	141.23	7.15 (dd, <i>J</i> =15.0, 11.6)	2'-H, 4'-H, 5'-H
4'	128.53	6.30 (dd, <i>J</i> =14.9, 11.7)	3'-Н, 2'-Н, 6'-Н
5'	140.59	6.63 (dd, <i>J</i> =15.0, 10.9)	3'-H, 6'-H, 7'-H
6'	127.67	6.18 (dd, <i>J</i> =15.2, 10.9)	4'-H, 5'-H
7'	144.84	5.90 (dd, <i>J</i> =15.4, 7.0)	5'-H, 9'/13'-H (w)
8'	40.46	2.08 (m)	6'-H, 7'-H, 9'/13'-H, 10'/12'-H
9',13'	32.10	1.70 (m), 1.09 (m)	10'/12'-Н, 13'/9'-Н, 7'-Н, 11'-Н
10',12'	25.39	1.26 (m), 1.68 (m)	11'-Н, 9'/13'-Н, 12'/10'-Н
11'	25.60	1.13 (m), 1.63 (m)	10'/12'-Н, 9'/13'-Н
1"			
2"	113.57		
3''			
4''			
5''			
NH-14		9.20 (s)	
NH-0'		9.17 (s)	

Supplemental Table 2. NMR connectivities in 4-hydroxyprotoasukamycin (**D1**) observed by ${}^{1}J$ - and ${}^{n}J$ -heteronuclear carbon-proton shift correlation methods (HSQC and HMBC).

^{a.} Indicated protons show connectivities to the given carbon attributed to ${}^{2}J$ -, ${}^{3}J$ - or weak ${}^{4}J$ -

coupling. (w) weak J-coupling.

^{b.} Coupling with 8'-H (2.08 ppm) was suppressed.

^{c. 13}C-NMR and ¹H-NMR signals for C1", C3", C4" and C5" are undetectable in DMSO-*d*⁶.

Supplemental Table 3. Oligonucleotide primers used for the mutant constructions and λ -Red recombinations.

Primers	Sequence from 5' to 3'
AsuE1-1	CCCAAGCTTCGAAGACCCGTGGCGTGAGCC
AsuE1-2	CCCAGATCTCCGCGCGCACAGCAGCGC
AsuE1-3	CCCAGATCTCCGGCGGTGAAGGGCGCGCAC
AsuE1-4	CCCCTCGAGACCTGATGGAGGGGTCCAGTA
AsuRED-4	<u>GGTCCGGAAGCGGCCTGCGGAGCGCCCTGCGGGGCGGCTCTAGAGATATC</u> ATTCCG
	GGGATCCGTCGACC
AsuRED-6	$\underline{AGAACCACGGCTGGACCGAGGGCTGACACCCCCGGGGCGTATCCGGCCGT}TGTAGG$
	CTGGAGCTGCTTC
AsuRED-E3F	<u>AGTCGTCAGCCTGCCCTACCACCCCGTTCATGGTGGCCTCGCGGGCC</u> ATTCCGG
	GGATCCGTCGACC
AsuRED-E3R	$\underline{\texttt{AGCCGACGATCGTGCTGCGCCGGTCGATCAGCTCGGCCAGGGCCTTGCG} \texttt{TGTAGGC}$
	TGGAGCTGCTTC
S83TF	AAGGATCCGGCGGCACCGCAACATCGGTGGCACCAA
S83TR	GGGATGGAGGTGGAGATGAAG

* The underlined regions indicate the DNA sequence matching pART1361.

Supplemental Figure 1. HPLC analysis of asukamycin metabolites. The arrows identify the peaks of asukamycin A1 and related metabolites, A2-A5, B1-B4, C1-C4, D1-D5, A1a-A5a, B1a-B4a.

a. Twenty μ L of crude culture extract of the *asuA1* mutant (i), the *asuA3* mutant (ii), the *asuA1* mutant supplemented with 3,4-AHBA (iii), the *asuA3* mutant supplemented with 3,4-AHBA (iv), the *asuA3* mutant supplemented with **D1** (v) and the *S. nodosus* subsp. *asukaensis* wild type strain (vi).

b. Twenty μ L of crude culture extract of the *asuA2* mutant (i), the *asuC13* mutant (ii), the *asuC11C12* mutant (iii), the *S. nodosus* subsp. *asukaensis* wild type strain (iv), and 100 μ L crude co-culture extract of the *asuA2* and the *asuC1* mutant (v), the *asuC13* and the *asuC1* mutant (vi), the *asuC11C12* and the *asuC1* mutant (vi).

c. Twenty μ L of crude culture extract of the *asuD1* mutant (i), the *asuD2* mutant (ii) and the *asuD3* mutant (iii).

d. Twenty μ L of crude culture extract of the *asuE1* mutant (i), the *asuE2* mutant (ii), the *asuE3* mutant (iii) and the *S. nodosus* subsp. *asukaensis* wild type strain (iv).

Supplemental Fig. 1b

Supplemental Fig. 1c

Supplemental Fig. 1d

Supplemental Figure 2. TLC analysis and bioassay. **a.** and **c.** Chromatograms visualized under UV 254 nm. **b.** The same TLC plate was further overlayed with *Bacillus subtilis* mixed with nutrient agar and incubated overnight at 37°C. The red arrow shows the newly formed product 2880-II. Lane 1, the wild type strain; Lane 2, the *asuD2* mutant; Lane 3, the *asuD2* mutant/pALS4; Lane 4, the *asuD2* mutant/pALS4-S83T; Lane 5, standard asukamycin (10 µg); Lane 6, *S. lividans*/pAS9A1; Lane 7,8, *S. lividans*/pAS9A1 supplemented with ferulic acid (2.5 mg/ml); Lane 9, standard ferulic acid (10 µg).

Supplemental Figure 3. Fatty acid profiles generated by GC-MS analysis. **a.** The *asuC15* mutant. **b.** The *S. nodosus* subsp. *asukaensis* wild type strain. The identified fatty acid derivatives are indicated.

b. S. nodosus subsp. asukaensis wild type

Supplemental Figure 4. Southern blots of thirteen constructed mutants. Hybridization probes and anticipated restriction digestion patterns are indicated.

Supplemental Fig. 4 continued

Pstl 4.1 kb 1.4 kb

1

Supplemental Fig. 4 continued

Supplemental Fig. 4 continued

Notes: probed with apramycin resistance gene.

Notes: probed with apramycin resistance gene.

Notes: probed with apramycin resistance gene.

Supplemental Figure 5. Construction of pART1391. **a.** Spectinomycin resistance gene cassette (*spec*) was PCR amplified from pIJ778 using primers AsuRED-4 and -6. **b.** The λ -RED based recombination was conducted to replace the 25.4 kb insert region of pART1361 with a *spec* cassette to create pART1391. The predicted *EcoR*I digestion fragments are indicated (kb).**c.** Comparison of the *EcoR*I digestion pattern by DNA gel electrophoresis. Note: Lane pART1381 indicates another pART1361 derived cosmid clone which is not related to this study.

Supplemental Figure 6. Proposed **E1** and **E3/E4** structures. The exact mass of **E1** is 301.1670 (calculated for $C_{18}H_{23}NO_3$, 301.1678; mass error, 3.30 ppm) with a fragment 189.1272 (calculated for $C_{13}H_{17}O$, 189.1279). The exact mass of **E3/E4** is 275.1501 (calculated for $C_{16}H_{21}NO_3$, 275.1521; mass error, 7.58 ppm) with a fragment 163.1105 (calculated for $C_{11}H_{15}O$, 163.1123).

