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A. Algorithm Implementation With One-step Updates

To speed up the estimation algorithm, we use a one-step update version of the iterative
algorithm in Stages 1 and 2, as follows. The key is to replace the full optimization steps of
minimizing (5) within the iterative updating of S(-) and © by a one-step Newton-Raphson
algorithm. This eliminates the computational burden of full iteration within the inner loop
when the estimates of S(-) and © are still far away from the target. As a consequence, it
also speeds up the iterative process.

Recall that ¢i(z,y) = {y — 97" (2)}p1(2), @2(z,y) = {y — 97" (2)}p}(x) — pa(z), where
pe(z) = {dg~'(z)/dx}'/V{g~ (x)}, £ = 1,2, and Z;;; = Ziy — Z;1. When we fix the
parametric component, ©, and minimize (5) with respect to (ao;, a1;), we use a Newton-

Raphson algorithm to perform the following one-step update:
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where 7;; = {&; + (ao; + aljéTZ¢j71)d2}T§i + ,BTZi: all estimates on the right-hand-side of
(A.1), and later (A.2) and (A.3), denote their values before the update. To enforce the
constraint that n=' 321" S(6"Z;1) = 0, we set do; = do; —n~" >y, doe-

Similarly, we update the parametric components other than 6 by
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To enforce the constraint, we adjust the value of a by letting @y = sign(Qa;) X as/||@s||-

Finally, we update 6,
-1
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To adjust for the constraint on 8, we let 8 = sign(6;) x 5/“5”

B. Technical Proofs

We sketch the proofs of our main theoretical results. Throughout, n{a,3,0,S(-)} =
n{0,S(-)} denotes the expression al¢ + S0 Z,)alé + B'Z, and the subindices “” and
“19”7 of n indicate the replacement of each random variable by the corresponding observa-
tions. Provided that the clarity of the presentation is preserved, we also leave out arguments

of functions to simplify certain equations.

B.1 Proof of Theorem 1

For the iterative estimation procedure proposed in Section 3.1, we denote the current value
of the parameter with a subscript “curr”, and the previous values with a subscript “prev”.

For the first step, we fix éprev, and update S(z) by minimizing (4). We let ag = So(8, ),
a* = bS)(032), denote Zy, = (Za — 2)/b, af = ba, and define, for any z € R™, the



multivariate kernel weight as w;(z) = >, , H{(Zn — 2)/b}| "H{(Z;; — z)/b}, where b is
the bandwidth. Recall that Z;;; = Z;; —Z ;. The updated estimate (50,curr,aik7curr)T satisfies
the local estimating equation

~ ~ ~x re *
0 = Z?:lwi<z>q1 [nl {apreva ﬂprew 0preV7 (aO,CUU + C"1,cu1r1“0p1reinO,1)}7 )/l]

1
X (&;F,prevé.i) ( * ) .
0preVZzO 1

By a standard Taylor expansion, we have
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Denote 0} = b? + {log(n)/(nb™)}1/2 and A(@prev) = [[(@prev: Byrer) ™ — (@, 83)"|. Define

71(Z;e7‘9) = E[QI{nl<e78)’E}(ag€z)|zll = Z]?
Vi(2:,0,5) = —Elg{n:(8,5), i} (@3€,)*| Zir = 7).

By (B.1) and some standard derivation, we obtain that, uniformly for z € D,
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By similar calculations, we can derive from (B.1) that, uniformly for z € D,
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By the fact that 7,(z;0¢,Sy) = 0 for all z, a Taylor expansion of v, on a and 3, and further

derivations, we obtain
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Next, holding the link function and @ fixed at their current values, we update a and S.

At convergence, @y and E satisfy the estimating equations (B.4),
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By (B.2), (B.4), the fact v,(z;0¢,Sy) = 0 for all z, the expansion 72(Zj1;60,§curr) =
—V2(Z 1500, So) (Gojcurr — aoj) X {1+ 0p(1)}, We obtain
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One source of additional variation that could be easily missed is the éprev embedded within
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the expressions of Gy, as given by (B.2) and (B.3). This is carefully taken into account in
our derivations.

Asymptotically, the iterations converge if the distances between the current and previous
estimates of a’s and ’s go to zero as the iteration number goes to co. By (B.5) and for
a large n, this occurs when E{V'3(Z1; 6, SQ)}_lE{(VgV;F/Vl)(Zl; ©0, So)} has eigenvalues
strictly less than 1. By the Cauchy-Schwartz inequality, we can show that, for all z € D,
(VaVi)(2:0,8) < (Vi xV3)(2;0,8), where equality holds only if the order of the products
of nonlinear functions and the conditional expectations are exchangeable, which does not
hold in our model. Consequently, this establishes the asymptotic convergence property for

the iteration procedure. As a result, at the limit,

(al,curr - al,[)) &Q,Curr - &2,07 ﬁcurr ﬂO) - p( ) (B6)

The constraints on S(-) and @y guarantee that the estimators converge to the uniquely

defined parameters.

Finally, using the (a,) at convergence, we update 6 by solving the local estimating

equation
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We expand the right hand side of the equation as before,
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By (B.3), we obtain that 0o = (0 6o) 100 + O,(b'07). By standardizing 0. and

prev

correcting the sign of the first entry, we have
gcurr - 00 = Op(b_15:;), (B?)

which converges to 0 by Condition (C2.1).

B.2 Proof of Theorem 2

Following similar notation as in Carroll et al. (1997), we denote U; = GEZ“, Z;l\z = ETZH For
the refined estimator, the kernel weight is defined as w;(u) = K{(U; — u)/h}/ Y K{U, -
w)/h} for u € R. Denote 8, = {log(n)/(nh)}/2, A(®) = ||© — 6|

First, we fix the value of © at the value from the previous iteration, denoted by éprev. For
any z € D C R™, as in the previous subsection, we let Zj), = (Z;1 —2z)/h and (Go,curr; @} eyry)

be the updated estimators for ay and a] which solves the local estimation equation (B.8),
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For the observations with |0 Z;1 — u| < h, we obtain
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Define

Vi(2:0) = E{pa(mi)(@3€,)°10" Zis = 6" 2}, (B.9)
&

T = pa(ni) (o) § SO Za)E ¢ Mo = pa(mi)(ago€i)’ Za,
Z;

7?1(Z;0) = E(7r2~1|0TZ,~1 = 0Tz), 7/!\'2(Z,0) = E(ﬂ'ingZﬂ = 0Tz),

Va(2;6) = m(2:6)

S0 2){Ro(2:0) — V1 (07} |
By solving the local estimating equation in (B.8), we obtain the following results, uniformly

for all u = @,z with z € D:
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where, by letting ¢; = q1{n;, Yi},
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Again, the expressions in (B.10) allow us to account for the éprev embedded with the esti-
mated a’s in equation (B.13) below. Next, we fix S(-) and S (-) and update O by solving

the estimating equation (B.12),
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Define vz, (z;0) = E(Z110°Z, = 6"z). The right hand side of equation (B.12) can be

rewritten as

§;
S(00Zn)E;
Z;
(ag,ofi)s(l)(aoTZﬁ){Zﬂ —vz,(Z:1,00)}

~

‘H”L_IZ?:l{ —V3(Z1;60)(Bcurr — O0) — Va(Zj1;00) (dojcurr — aoj)
o2 h?
2

0 = n 'Yl x {1+ 0,(1)}

S (B3 Z1)V2(Z:60) 1 + 0p(1)} + 0y(n72) + 0,{AB )}, (B.13)

where Vs(z;0) is a symmetric matrix whose (1, £5)" block is denoted by VPEZI’M for 01,0y =
1,2, and
®2
&
1,1
Vi(z:0) = B |pa(n){ S(63Zin)E,

i 0TZZ-1 = 0TZ ;
Z;

V;)ELQ](Z; 0) = S(l)(ooTZ){E(WnZ;rﬂoTZil = 0TZ) —71(2;0)z" },
V@) = (V(z6))",
Vg[cwl(z; 0) = {3(1)(90TZ)}2 E{Pz(nz‘)(ag,oﬁi)QZﬂZﬁ 0°Z, = 0TZ} —Ta(2;0)2"

—27, (2;0) + Vi (z;0)z2" |
By plugging (B.10) into (B.13) we have
Bcurr — Q9 = AN, + AC(B ey — 60) + 0,(17V2) + 0,(|Oprev — O0l)),  (B.14)

where

£ — Vl_l(Zﬂ;00)(0’;0@')]3{@(77)(a’;r,of)ﬂagzl = 00TZz‘1}
S(GOTZil)gi - V1_1 Zu;00)(05051-)]3{@(77)(0505)5(9521)89321 = eoTzz'l}
Z; — Vfl(Zu;00)(aioﬁi)E{pz(n)(aioﬁ)z\eoTzl = 00TZi1} ’

(aéf,ofi)s(l)(eoTZﬂ){Zﬂ — Vfl(Z¢1;0o)7?2(Zi1,90)}
T SN(06Z,)71 (72 — V1Z1)" }]

Nn = n_lz?zlei

C=E

v . N I -
' { SW(B0Z)) @y —WiZ )7, {SW(0:2,)}2(Ty — Vi Z)) @y — Vi Z,))"
A=E{V3(Z;6,)}. (B.15)



Define

g = oy () [€T.{S(672))€}7, 27", &2 = SND(O7Z1)py () (@L€)Z1,
g=(gl.eD)", o={7(Z1:00),8V 012 )7L (Z1;0,)}",

and let D = A—C = E(gg") — E(V; '00"). It can be shown that both A and C are positive
semi-definite matrices with rank 2p + 2d — 1. As in the previous subsection, an asymptotic
convergence property is achieved provided that the eigenvalues of A~C are strictly less than
1. This can be established by the Cauchy-Schwartz inequality so that D is positive semi-
definite with the same rank as A and C, and the eigenvalues of A~C are strictly less than
1. Consequently, at the end of iterations, O — 6y = AN, + 0,(n~'/?). By the Central

Limit Theorem, N, is asymptotically normal. Defining
B =n x cov(N,), (B.16)

the asymptotic normality result of O follows immediately. Finally, the asymptotic normal

distribution of S(u) follows from (B.10).

B.3 Proof of Theorem 3

Proof of Lemma 1: The first result in Lemma 1 that ||t — vx| = O,{h2 + (nhs)~/2}
was established by Hall, et al. (2006) for the case of fixed m. With the smoothing parameter
he in the range defined in (C4.4), we have ||¢y, — 1|| = O,(n~Y/3). It is casily shown that

Ek — ik = Crix + Co,ik + C3,ik;s (B.17)

where Q1 x = {(b—a)/m}3 70 Xi(ti;)Un(tis) —[7 Xi(t)w(t)dt, Coir = {(b—a)/m}> 75 Ui (tij),
and (3 = {(b— )/m}zjzlmj{¢k( i) — Ui(t 7JJ)} It can then be established that, with
X;(t) and v (t) being continuously differentiable, ¢ ;x, representing the numerical integra-
tion error, is of order O,(m™1), that (y = O,(m~'/?). Lemma 1 now follows because
C3ir = Op(n~1/3) by the Cauchy-Schwartz inequality, since

1/2

b— m 12rh — m >
|G| < ( azjzlwé-) [ma j:1{¢k(tij)—¢k(tij)}2

m

= Op([[vn = vxll) = Op(n™7%).
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Proof of Theorem 3: The proof of Theorem 3 essentially follows the same lines as those
for Theorem 1 but with extra effort on keeping track of additional terms due to EZ —§,, as
given by equation (B.17). It can be shown that, for equations (B.2), (B.3) and (B.6), the
effect due to &; being estimated is an additional term of order O,(m~' 4+ n~'/3) on the right
hand side of the equations. For equation (B.7), this results in an additional term of order
0,(b'm~" + b~'n"/3). Under the bandwidth assumption (C4.4), the estimator © remains

consistent.

B.4 Proof of Theorem 4

The proof of Theorem 4 follows the same lines as those for Theorem 2, except that the term

¢; in equations (B.11)-(B.13) should be replaced by

& = afol &+ S0 Zn)al g, + By Zi, i}

= et o Yl {ano + (0 Ziao} (€ —€,).
Let A and C be as defined in the Proof of Theorem 2. Equation (B.14) becomes
Ocurr — 09 = AN, + A" C(O ey — 80) + 0,(n %) + 0,([|Opsev — 1)),

where ./\7n =No+Nip, Nijp = ”_12?:151‘(21' —§;) and

& — Vi (Zi1;00) (0 &) E{p2(n)(ad £)€|0 Z1 = 0, Z 1}

) (e, ) (e,
S05Z:1)€ — Vi (Zi1;00)(ad &) ELpa(n) (@ €SO3 Z1)€105 Z, = 03 Z1 }
) )(

& = 2
Zi— Vl_l(Zﬂ;oO (a;oﬁi)E{Pz(ﬁ a;r,og)ZWOTZl = 00TZi1}

(a;ogi)s(l)(ooTZﬂ){Zn -V 1(Zi1;00)5f\2(zi1,00)}
xq2(ni, Yi){a1,0 + So (90TZ¢1)C¥2,0}T-

Define Z2(t) = E{X;(¢)&;}, which is a (2p + d + d;) X p matrix of functions. Denote 9(t) =
(Y1, -+, ) T (¢), then Ny, = <E,'¢$ — ) > +0,(n"1/2). By Lemma 2, the j** element in N,

1S

Nl[i]l = 12:1 <E'[j7€] (t)v J@(t) - ¢€<t)>L2 + OP(TL_I/2)

=054
= L S S [ o ultydsd o),

Wy — Wk

11



Since Z is a Gaussian random field, n'/2\; 1,» converges to a Gaussian random vector. It can
be further verified that N, and N7, are independent. Define
B; = lim n X cov(Ni,). (B.18)

n—oo

The asymptotic normality of © now follows from similar arguments to those for Theorem 2.
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