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Text S1:  The persistence parameter χ 
 

We address the challenge [Ref. 2, 4 and 21 in main text] of developing a framework 

for analyzing age-structured metapopulations. Begin with a single isolated patch population, 

and suppose it may be divided into m age-classes as described by the vector   

N t( ) = N1 t( ),N2 t( ),...,Nm t( )⎡⎣ ⎤⎦  where Nk t( )  is the number of individuals in the k'th age 

class in year t. We suppose the dynamics may be represented by the familiar Leslie matrix 

equations: 
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and the time-step is one year.  Here pk  is the probability that an individual of age (k-

1) years survives to age-k.  A fraction σ  of juveniles from the population that 

successfully "self-recruit" and return to the population after the dispersal phase, 

which in marine settings might represent local larvae retention. The parameter fk  

represents the fertility of age-class-k individuals, in terms of the average number of 

juveniles produced in the next generation. 

 

The average number of juveniles produced in the lifetime of a typical individual 

is given by the reproductive number [Ref. 31 in main text]: 

 

R = fk
k=1

m

∑ pl
l=0

k−1

∏ .        [S1.2] 

 

The condition for population persistence (i.e., a growing population) requires that a 

typical individual is capable of replacing itself and give rise to at least a single 



offspring that successfully recruits back to the population. Thus a growing persisting 

population requires that the persistence parameter, , be larger than 1: 

 

χ = σR > 1 .       [S1.3] 

 

Should χ = σR < 1 , all age-classes approach a stable extinction state (Ni
* = 0 ). 

 

Scaling up from the single patch model of eqn. S1.1 consider a network of n 

age-structured patch-populations, where juveniles disperse between patches. The 

metapopulation dynamics are given by: 

Ni t +1( ) = SiN i t( ) + cijF
jN j t( )

j=1

n

∑   [S1.4] 

In this notation Ni t( )  is the m-dimensional age-class population vector at patch-i, 

and each patch has its own associated survival ( S ) and fertility ( F ) matrices 

specifying the respective pi  and fi  similar to the Leslie formulation in eqn. S1.1.  
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Dispersal processes between the n-patches are defined in the connectivity matrix 

C = cij( )  whose elements cij  correspond to the proportion of juveniles produced on 

local population-j that are transported and successfully recruit to local population-i.  

 

We emphasize that to our knowledge no other study has attempted to solve these 

m × n  age structured equations. At most approximations may be made that attempt 

to factor out age-structure, but they are not equivalent systems and their validity will 

remain questionable  [Kaszkurewicz and Bhaya, 2000]. 

 



The model of n-identical patches [S1.4] may be rewritten in simplified form 

using Kronecker product matrix notation.  Let N t( ) = N1 t( ),N 2 t( ),...,Nn t( )⎡⎣ ⎤⎦ , 

then: 

 

N t +1( ) = I ⊗ S + C⊗ F( )N t( )    [S1.5] 

 

where I is the n × n  identity matrix, S  is the lower diagonal matrix 

S j +1, j( ) = p j( )  that is otherwise zero, and F  has entries F 1, j( ) = f j  but 

otherwise zeroes.   Thus S +σF = L  in eqn. [S1.1]. 

 

Setting N t( ) = N * + δ t( )  and examining the Jacobian J of eqn. [S1.5] about the 

extinction equilibrium N *  gives: 

 

δ T +1( ) = Jδ t( ) = D I ⊗ S + C⊗ F( )N t( )⎡⎣ ⎤⎦δ t( ) = I ⊗S + C⊗ F( )δ t( )   

 

where D M[ ]ij = ∂Mij ∂N j .  

 

We use the identity C⊗ F( ) G⊗ H( ) = CG ⊗FH , and assume that C  is 

diagonalizable, i.e., C = PDc P
−1 , and Dc = diag λi( )  is the diagonal matrix whose 

elements are the eigenvalues of C .  Note that 

 

C⊗ F =PDc P
−1 ⊗ F = PDcP

−1 ⊗ I F I = P⊗ I( ) Dc ⊗ F( ) P−1⊗ I( ) .   

 

Hence P−1⊗ I( ) I ⊗ S + C⊗ F( ) P⊗ I( )= I ⊗ S + Dc ⊗ F  and the spectral radius of 

J  is the spectral radius of I ⊗ S + Dc ⊗ F , and thus equal to the spectral radius of: 
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Due to the correspondence between the metapopulation stability matrix M and 

the Leslie matrix L  in [S1.1], namely M = λcL , the metapopulation [S1.5] is 

persistent and growing if λM > 1  or equivalently χ = λCR > 1 , while the extinction 

state is stable if  

χ = λCR < 1  .    [S1.6]  

 

While the criterion is reminiscent [Refs. 24 and 25 in main text] of results found 

for unstructured metapopulations, however the inclusion of age-structure together 

with network structure makes this is a nontrivial problem and a challenge set in Ref. 

2, 4 and 21 of main text. For the particular case in the text  and the 

spectral radii satisfy λC = σ +αλA  so that χ = σ +αλA( )R . 

 

Closed Systems:  It is of interest to consider the special case of "closed" 

metapopulations in which there are no larvae losses; all larvae are successfully 

recruited back into the metapopulation.  Mathematically this occurs when the 

connectivity matrix has the property cij
i=1

n

∑ = 1 , a property that ensures that the 

spectral radius of the connectivity matrix C  is λC = 1 . The criterion for persistence 

thus becomes: χ = R > 1  and conversely the extinction state is stable if χ = R < 1 .   

 

Thus for all closed systems (e.g., the regular networks above), the dispersal 

structure has no effect whatsoever on the dynamics.  That is to say, the stability of 

the extinction state of the n-patch metapopulation is equivalent to the stability of this 

state in a fully self-recruiting (σ = 1 ) single patch, namely R < 1 . 

 

It is remarkable that for the threshold criteria [S1.6] (or Eqn. 6 in main text), the 

effects of age structure are ultimately subsumed in the reproductive number Rmight 

not appear to be otherwise influential. However, the effects of age-structure become 

more prominent under more complex migration schemes, for example, between 

different age-classes from different patches, and ontogenetic shifts in habitat use that 

are life history dependent [Ref. 21 in main text].  The model can be extended for 



these situations by using the full equations [S1.4] above and, for example, adding 

elements to the matrix F . Text S3 deals with other techniques for exploring this 

possibility further. 

 

Asymmetric Networks:  Metapopulation models usually assume that dispersal 

is a function of distance and not directional, making the connectivity matrix 

symmetric. Yet many real ecological networks are asymmetric, which according to 

recent simulation studies [Ref. 36 in main text], has a negative effect on 

metapopulation persistence [Ref. 37 in main text]. Compare a random ER model to 

one modified to have asymmetric directed connections.  The latter has the same 

number of patches and randomly distributed but now directed edges. The average 

number of connections per patch is r , but only r 2  disperse out of each patch. The 

spectral radius of the directed network is half  [Ref. 34 in main text] that of its 

undirected counterpart, and thus χ = σ + r α 2( )R , which can be far smaller than 

(Eqn. 8 in main text) χ = σ + rα( )R  in the text. Therefore asymmetry should be 

expected to have a negative effect on persistence.   In the text we provide a 

complementary explanation as to why symmetry promotes persistence due to the 

presence of "cycles."  

 

 

REFERENCE:  

Kaszkurewicz E and Bhaya A (Eds.) Matrix diagonal stability in systems and 

computation. pp. 267. Birkhäuser, Boston (2000) 

 


