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Text S2:  Cycles  
 

Basic definitions 

 

Consider a metapopulation network on n patches and denote  as its 

adjacency matrix such that for a directed dispersal route from patch-j to patch-i, 

, and otherwise, . We assume that there are no self-loops and thus for all 

i, . 

 

We define a cycle as a closed directed path on a network, where the nodes and 

links may be repeated along the path, and a simple cycle of length m as a cycle that 

has exactly m nodes and m links. Following these definitions we divide a network into 

cyclic components, such that each component is characterized as being one of the 

following: 

 

a) A single node component: a component containing exactly one node and zero 

links, where the node is not a member of any cycle in the network. 

 

b) A simple cycle component: a component containing a group of links and 

nodes which are members of a simple cycle, as defined above, with an 

additional assumption that all the nodes in this component are members only 

of this cycle and of no other in the network. 

 

c) A complex cycle component: a component containing a group of links and 

nodes members of a cycle that is not simple, under the assumption that all 

nodes in this component are members only of this cycle and of no other in the 

network. 

 



Note that this division may be seen as a partition of the nodes into groups, such 

that each node is a member of exactly one of the three above types of cyclic 

components. However, this is not a partition of the links, since each link belongs to at 

most one component, and it is possible that there are links that are not members of 

any component. These links are defined as lonely links. 

 

Some properties of cyclic components 

 

1) A simple cycle component of size k has exactly k nodes and k links and 

contains exactly one closed directed path of length k. A complex cycle 

component of size k has k nodes and at least k+1 links and contains at least 

two closed directed paths, all of which may be shorter than k.  

 

2) From the definitions above, a directed path exists between each pair of nodes 

in simple and complex cycle components. This includes a non-empty directed 

path going from each node to itself.   

 

3) The addition of a link to a simple cycle component of size k turns the 

component in to a complex cycle component of size k that has k nodes and k+1 

links. This new component contains exactly two closed directed paths, one of 

length k and the other of length m<k.  

 

 

Finding the eigenvalues 

 

To calculate the characteristic polynomial of matrix A, we define matrix B as: 

, where I is the nxn identity matrix. Using the Leibniz formula, the 

characteristic polynomial of A, , can be written as: 
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where  is a permutation on , and  is the group of such permutations (in 

total ).   equals either 1 or -1, depending on whether the permutation is 

even or odd, respectively.  Also note that for  ,  equals either 0 or -1, and on 

the diagonal . 

 

For a typical permutation, , it is straightforward to show that the product 

 must equal either 0 or , where m is the number of indices that fulfill 

.  

 

Clearly, for the m-n cases when , . However, for the remaining 

m cases, when , we find that the product  equals 1m  if and only if 

for all jk's in this product there exists a link going from  to  (that is, 

), and otherwise this product equals 0.  

 

Because a permutation can be decomposed into a product of disjoint permutation 

cycles (PC), such that PCs of length 1 are associated with the cases where , 

and PCs longer than 1, with the cases where , we find that  

if and only if for all  the link going from  to  in the network is on a 

cycle, and otherwise, . 

 

Implications 

 

1) The eigenvalues  of an adjacency matrix A of a network, which has no 

cycles (i.e., all of the cyclic components are single node components), are all 

zero i.e.,  Thus, a network with no cycles cannot persist.  

 



This is because when there are no cycles, from the definitions above, the 

characteristic polynomial of A is equal to , and the 

eigenvalues all equal 0. 

 

In a metapopulation network that is completely without cycles, all juveniles and 

any of their eventual descendants fail to recruit back to their patch of origin – they 

never “return home” [Ref. 3 in main text]. When there are no cycles, the adjacency 

matrix A must have spectral radius .  Hence in the absence of self-recruitment 

, the persistence parameter  is less than unity and so 

the metapopulation is unable to persist. A stable extinction state is expected.   

 

For metapopulations with self recruitment but without any other cycles, 

there is no advantage to dispersal.   Self-recruitment implies that a proportion  of 

juveniles are retained in the patch. As there are no other cycles, all other juveniles 

(and/or their descendants) fail to return home and the spectral radius remains  

and .  Thus the criterion for the entire metapopulation to persist, 

, is precisely the same as the criterion for a single self-recruiting patch 

to persist (see eqn. 3 in main text). Consequently there is no advantage for dispersal if 

there are no cycles and larvae fail to “return home” [Ref. 3 in main text]. 

 

 

2) Noting C as the adjacency matrix for the network after removing all of the 

lonely links, the eigenvalues of adjacency matrices A and C are equal. Thus, 

links which are not part of a cycle do not have any role in determining the 

persistence of a network. 

 

To see this, take a link in the network going from j to i ( ), such that  and 

following from that, . Assume this link is not a member of any cycle. Without 

loss of generality, take a permutation , where . When decomposing 

 into a product of disjoint PCs,  is a member of a PC which must be 



longer than one because . However, because we assumed that  is not a 

member of any cycle, there must be another permutation in this PC such 

that . Thus , and so there is no contribution of this term 

to the RHS sum in equation S2.1, making .  

 

 

Example 1: The characteristic polynomial of the adjacency matrix of both of the 

networks is equal: , and the maximum eigenvalue is 1. 

 

 

 

 

 

 

 

 

 

 

 

 

3) The maximum eigenvalue of an adjacency matrix A, which has exactly one 

simple cycle component and no complex cycle components, is real and equal 

to 1. 

  

From the definitions above [S2.1] the characteristic polynomial is 

, where m is the length of the 

simple cycle.  Thus, there are n-m eigenvalues that equal zero, and the rest are the m 

roots of unity ( ). Example 1 in the previous section demonstrates 

this. 

 



 

4) Taking each cyclic component as a network, the characteristic polynomial of 

the adjacency matrix of: 

 

a) A single node component is of the form: 

         [S2.2] 

 

 

b) A simple cycle component of size n: 

     [S2.3] 

     

c) A complex cycle component of size n: 

 

 

 [S2.4] 

 

where  is the number of simple cycles of length i.  is the number of couples of 

simple cycles, where one is of length i and the other of length j which don't share any 

links or nodes.  is the number of triplets of simple cycles, where one is of length 

i, the second of length j and the third of length k, which don't share any links or nodes, 

and so on. Note that the sum of the indexes in D for the coefficients of  equal i, 

and that the sign of D is determined by the number of indexes (e.g.,  has an even 



number of indexes and will always have a positive sign, while  has an odd 

number of indexes and will always have a negative sign). 

 

[S2.2] and [S2.3] were derived as explained in sections 1 and 3, and [S2.4] is directly 

obtained by the Leibniz formula in [S2.1]. 

 

Example 3 in section 6 demonstrates these formulas.   

 

5) The maximum eigenvalue of an adjacency matrix for a complex cycle 

component of  nodes is larger than 1, and reaches its maximum at  

when the component is fully connected (i.e., when the component has  

links). 

 

Take G to be the group of nodes and links of a complex cycle component of size k. 

Because this component has at least k+1 links, there exists at least one node which has 

at least two links pointing out from it. Take one of these nodes, mark it as g1, and 

choose a non-empty subgroup of nodes and links which define a closed directed path 

going from this node to itself. We name this subgroup G1 with size k1 ( ), and 

note that G1 is a simple cycle (G1 contains k1 nodes and k1 links). Taking a second link 

pointing out of g1, define a new group G2 that consists of the nodes and links in G1 

and this new link. If this link does not point to any of the nodes in G2, add the node it 

is pointing to, to G2. It is possible to continue adding nodes and links of a directed 

path (without repeats) until a link is found which points to one of the original nodes 

taken from G1. Mark the size of G2 as k2 such that the number of nodes is k2 

( ), and the number of links is . Note that this is a complex cycle 

component that consists of exactly two simple cycles that are of length k3 and k4 

( ).  

 

From section 4, the characteristic polynomial of the adjacency matrix of G1 is of the 

form: , and its maximum eigenvalue is 1. Because G2 consists 

of exactly two simple cycles, the characteristic polynomial of its adjacency matrix is 



one of three forms: i) if : , ii) if :  

, or else iii) , 

non of which have a root = 1.  

 

Because  their adjacency matrices  (respectively), and as 

such the spectral radii (i.e., the maximal eigenvalues) fulfill . 

However, because , and we have shown 1 is not a root of the characteristic 

polynomial of A2, we find that , such that the maximal eigenvalues of 

complex cycle components must be larger than 1. 

 

Along these lines it is clear that with the addition of links to a complex cycle 

component, the maximal eigenvalue increases. When the component is fully 

connected (i.e., is a clique), the adjacency matrix has values of 1's in all cells of the 

adjacency matrix except for the diagonal. By induction on k it is possible to show that 

the characteristic polynomial is , and the maximum 

eigenvalue equals k-1. 

 

 

Example 2: Sampling cyclic components ranging in size from 1 node to 30, we 

plotted the maximum eigenvalue of each component as a function of the link density 

(i.e., the number of links divided by the number of nodes). The x-axis is the ratio of 

links to nodes, and the y-axis is the maximum eigenvalue. We see that as the density 

of links in a cyclic component grows, so does the maximum eigenvalue. It is clear to 

see that for single node components (where the number of links is 0, in green), the 

maximum eigenvalue is always 0, and that for simple cycle components (where the 

number of links equals the number of nodes, in red), the maximum eigenvalue is 

always 1. For complex cycle components (where the number of links is larger than the 

number of nodes, in blue) we see that the maximum eigenvalues are always larger 

than 1, up to the maximum point where the number links is maximal. 

 



 
6) The characteristic polynomial of adjacency matrix A can be written as a 

product of the characteristic polynomials of each of the cyclic components in 

the network:  

 

  [S2.5] 

 

where is the number of single node components, is the number of simple 

cycle components and  is the number of complex cycle components.  , 

 and  are the polynomials as defined in section 4. 

 

Thus, the maximum eigenvalue of A is determined by the cyclic component 

with the maximum eigenvalue. 

 

To see this, note that from the properties of isomorphism of networks, we may assume 

that the nodes of the network are ordered in a way that indices of the nodes within 

each cyclic component are adjacent. As such, matrix C (as defined in section 2) is a 

block diagonal matrix of the form: 
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where  are the adjacency matrices of each cyclic component in the network. From 

the properties of block diagonal matrices we know that: . Thus, 

. 

 

 

Example 3:  

 

 
 

This metapopulation network has 18 nodes (patches) and 24 links: 9 single node 

components, 1 simple cycle component consisting of 3 nodes and 3 links, 1 complex 

cycle component consisting of 6 nodes and 9 links, and 12 lonely links. The 

characteristic polynomial is: 
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The characteristic polynomial of the complex component is derived as follows:  

The size of this component is 6. This component contains 2 simple cycles of length 2, 

so . These two simple cycles don't share any links or nodes, so . There 

is one simple cycle of size 5 ( ), and one simple cycle of size 6 ( ).  



From [S2.4] we find:  . 

 

The maximum eigenvalue of the single node components is 0, the maximum 

eigenvalue of the simple cycle component is 1 and the maximum eigenvalue of the 

complex cycle component is 1.4433. Indeed this is the maximum eigenvalue of the 

entire network, and we see that it is determined by the cyclic component with the 

maximal ratio between links to nodes. Note that the maximum eigenvalue (1.4433) is 

approximately equal to the ratio, 9:6=1.5, as expected from section 5. 

 

If the link marked “critical link” were to be remover we would be left only with 

simple cyclic components and the new characteristic polynomial would be: 
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