Web Appendix 1

We use a simple, hypothetical situation to illustrate the bias in estimating IRD using
first events, based on the commonly used approach as described in the Methods section.
Suppose the sample is equally divided into a vaccinated and an unvaccinated group, and
there are two strata of equal size in each group. The disease incidence rate is constant
over time and, without vaccination, equals to 4 and 6 events per person-year in the
low and high risk stratum, respectively. On average, time to first event in the low and
high risk groups are therefore 1/4 and 1/6 year, respectively, in the unvaccinated group.
Suppose an intervention causes an absolute reduction of 2 events per person-year, so
that the incidence rate is 2 and 4 events per person-year among vaccinated people in the
low and high risk stratum, respectively. On average, time to first event in the low and
high incidence risk groups are therefore 1/2 and 1/4 year, respectively, in the vaccinated
group. Using all events observed in one year, the estimate for incidence rate in the control
group is (4 4+ 6)/2 = 5 and that in the intervention group is (2 + 4)/2 = 3. Therefore,
IRD= 5—3 = 2, and that’s the truth in this case. But suppose only data on time to first
event is used, the estimate for incidence rate in the control group is 2/(1/4+1/6) = 4.8
and that in the vaccine group is 2/(1/241/4) = 2.67. Therefore, IRD= 4.8 —2.67 = 2.13,
which is biased upward. It can be shown in the same way that if the intervention causes
a proportional reduction in disease incidence (as opposed to absolute reduction), the use
of all events to estimate the IRD will remain unbiased whereas the use of first events will

be biased downward. In short, in the presence of heterogeneity, the use of all events for



estimating IRD is preferred.



Web Appendix 2

Robust variance estimator in the case of X; = (1, X;;) and X;; =0,1

In matrix form,
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therefore, the first and second diagonal elements of \//eﬂ"(ﬁ*) are the variance estimates

for 85 and [, respectively, i.e.,
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where Ty = > 1, . _p Zi for g = 0 or 1. Note that the first line in Va\r(ﬁl) is the robust
variance estimate for the OLS model that ey, = Y;//Z; and Xiew,il = VZ;X;; and
Yiewi = 85V Zi + 01 Xnew.i1 + €new,i-

Take X;; as a group factor to partition the subjects into two groups according to X;; =
0 and X;; = 1, and assume that epey;’s are independently and identically distributed
(i.i.d.) within each group, i.e, Var(enew; | Xi1 = ¢,Z;) = ¢, (¢ = 0,1). Moreover,
assume E(v;) = v = 0 such that Bg — (3, is the unbiased estimate for the incidence rate
when Xj;; = 0, then it follows that the unbiased estimate for ¢, is the empirical sample

variance, i.e.,

where N, = #{i : X;; = g} such that the variance estimate for the rate difference

proposed by Stukel et al. (11) is
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Therefore, under the i.i.d. assumptions for the ey ;’s within each level of X;;, the robust

variance estimate @(ﬂl) is consistent with Var(8;), meaning that E <®(61) - \7;1"(61))
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Web Appendix 3

Simulation parameter configurations and data generation processes

Suppose there are n study subjects. Since Y; (i = 1,--- ,n) is count data, we gen-
erate Y; ~ Poisson(Z;(X; 4+ v;)) where v; is the heterogeneity term. Equivalently, the
inter-arrival time between two consecutive events for subject i follows an Exponential

distribution with parameter X;3 + v;. The data generation process is as follows:

1. Generate the total length of follow-up time Z; for subject ¢ from a Uniform distri-

bution: Uniform(2, 3).
2. Generate X; = (1, X1, -+, Xj) in two configurations:

(a) No confounding, i.e., X; = (1, X;1): X1 ~ Bernoulli(p) where p = 0.5 or 0.7,
representing balanced and unbalanced study designs, respectively. Set G =
(1,-0.5) and (0.05,—0.025). These values mimic the incidence per person-
year of common events such as AOM and rare events such as RCP in young

children, respectively.

(b) Ome quantitative confounder i.e., X; = (1, X;1, Xj2): set 8 = (1,—-0.5,0.05)
and (0.05, —0.025, 0.005). X;; ~ Bernoulli(p) where p = 0.5 or 0.7. X;5 =
56y x Beta(on + a2 X1, a3). The parameters, a; (j = 1,2,3), of the Beta
distribution are chosen to reflect different degrees of collinearity between X;;
and X, and different degrees of skewness. (ay, s, a3)= (5, 2, 5) and (5, 5,

5) make X;o fairly symmetric (skewness are approximately —0.2 and —0.5



for ay = 2 and @y = 5, respectively), though not normal. The correlations
between X;; and X;» for the two settings are about 0.3 (moderate) and 0.5
(strong), respectively. Another two settings (o, ag, a3)= (2,2, 1) and (2, 5, 1)
represent highly skewed distributions (skewness are approximately —1.0 and
—1.6 for ay = 2 and ay = 5, respectively) where the correlations between X

and Xy are about 0.3 (moderate) and 0.5 (strong), respectively.
3. Generate the heterogeneity term v; according to three scenarios:

(a) homogeneous: v; = 0.
(b) discrete: Pr(v; = %) = p and Pr(v; = —@) = 1 — p where p is same as
the Bernoulli probability for X;; = 1.

(c) positive and continuous: v; ~ Gamma(p(1l — p), By + 51).

Note that with same p, the v; in scenarios (b) and (c) have the same variance

p(1—p)(Bo + 51)*.

4. For the ¢-th subject, the j-th event time is generated using the inversion method
T;; = —InU/(X;3 + v;) where U ~ Uniform(0, 1). Trivially, 7} = 0. Iterate until
ZZSJ T,¢ > Z; and let Y; = m; = J — 1. Estimation using all events is based on
{i + X;,Z;,Y;}. Let Y,y = 1and Z;; = T, if T;; < Z;. Otherwise Y;; = 0 and

Zi1 = Z;. The estimation using first events only is based on {i : X;, Z;1, Y1 }.

5. In a main series of simulations the performance of the proposed method using

data on all events was evaluated and compared with the estimation using data on



first events and Stukel’s method (if without confounder). For the high incidence
scenarios with 3; = —0.5, sample size was set as n = 200 and 1,000. For the low
incidence scenarios with 3; = —0.025, only n = 1,000 was used as no study would
use n = 200 for such a rare outcome. The performance of the asymptotic and
small-sample versions of the robust standard errors was further studied in more
details in a supplementary series of simulations. The total sample size varied from
n = 100 to 1,000 at interval of 100 for the high incidence scenarios and n = 500 to

2,000 at interval of 100 for the low incidence scenarios.
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Web Table 1. Simulation Results on the Estimates for g7 With High Incidence in the Absence of

Confounding (n = 200).

First Events All Events
p A v; Proposed Method Proposed Method Stukel
Avg_est* ESDf

Avgest* ESD' Avgse.f CP,% Avgsert CP,8 Avgsel CP!
0.5 -0.5 0 -0.5083 0.1243 0.1220 94.9 -0.5002 0.0784  0.0775 94.8 0.0775 94.8
+0.25 -0.5183 0.1202 0.1185  94.9 -0.5001  0.0864  0.0852 94.6 0.0852  94.5
Gamma -0.5093 0.1367 0.1353  94.7 -0.5001  0.0907  0.0909 94.9 0.0908 94.9
0.7 -0.5 0 -0.5140 0.1492 0.1465  94.8 -0.5010 0.0904  0.0899 94.5 0.0901 94.7
+0.25 -0.5260 0.1611 0.1581  94.8 -0.4987 0.1018 0.1013 94.4 0.1015 94.4
Gamma -0.5193 0.1638 0.1589  94.5 -0.4996 0.1021 0.1014 94.4 0.1016 94.4

* Average of the parameter estimates.

T Empirical standard deviation.

¥ Average of the robust standard error estimates.

8 95% coverage proportion based on the robust standard error estimates.

9 Average of the standard error estimates using the method proposed by Stukel et al. (11).

1 95% coverage proportion based on the standard error estimates using the method proposed by Stukel et al. (11).



Web Table 2. Simulation Results on the Estimates for (51, §2) With High Incidence, n = 200 and X5

Slightly Skewed.

Moderate Collinearity Strong Collinearity

p Coeflicient V4 First Events All Events First Events All Events

Avg est* Avgse,t CP.* Avgest* Avgse,! CP.* Avgest* Avgse,! CP.* Avgest* Avgse,i CP,.}

0.5 B1 =—-0.5 0 -0.5067 0.1440 94.8 -0.4991 0.0880 94.8 -0.5094 0.1644 94.4 -0.4985 0.1006 94.6
+0.25 -0.5182 0.1412 95.0 -0.4997 0.0955 94.5 -0.5199 0.1607 94.6 -0.5002 0.1091 94.8

Gamma -0.5148 0.1606 95.1 -0.5003 0.1010 94.9 -0.5150 0.1844 94.6 -0.4996 0.1151 94.5

B2 = 0.05 0 0.0506 0.0912 93.9 0.0497 0.0591 94.8 0.0492 0.1015 94.2 0.0499 0.0642 94.6
+0.25 0.0522 0.0889 94.5 0.0513 0.0641 94.3 0.0516 0.0990 94.2  0.0508 0.0695 94.6

Gamma 0.0533 0.1011 94.1  0.0508 0.0676 94.6 0.0520 0.1119 94.3  0.0498 0.0732 94.3

0.7 B =-0.5 0 -0.5128 0.1682 94.6 -0.4998 0.0997 94.5 -0.5181 0.1844 94.5 -0.5005 0.1107 94.3
+0.25 -0.5266 0.1805 94.8 -0.4990 0.1107 94.5 -0.5314 0.1986 94.4 -0.4999 0.1237 94.5

Gamma -0.5199 0.1874 94.7 -0.4995 0.1112 944 -0.5224 0.2046 94.5 -0.5000 0.1236 94.1

B2 = 0.05 0 0.0490 0.0845 94.3 0.0495 0.0569 94.5 0.0491 0.0967 94.2  0.0495 0.0639 94.5
+0.25 0.0525 0.0918 94.8 0.0505 0.0645 94.2 0.0515 0.1051 94.5 0.0500 0.0723 94.8

Gamma 0.0513  0.0926 94.1 0.0506 0.0646 94.2 0.0500 0.1060 93.9 0.0503 0.0724 94.5

* Average of the parameter estimates.

T Average of the robust standard error estimates.

¥ 95% coverage proportion based on the robust standard error estimates.



Web Table 3. Simulation Results on the Estimates for (51, §2) With High Incidence, n = 200 and X5

Highly Skewed.

p  Coefficient 4

Moderate Collinearity

Strong Collinearity

First Events

All Events

First Events

All Events

Avg_est* Avg.se,l

CcpP,.f Avg_est* Avg,seTJr CP,f Avg_est™ Avgseﬁ

CP,.* Avg_est* Avg,seﬁ

CP,.t

0.5 g1 = —0.5 0
+0.25

Gamma

B2 = 0.05 0
+0.25

Gamma

0.7 B =-0.5 0
+0.25

Gamma

B2 = 0.05 0
+0.25

Gamma

-0.5066

-0.5205

-0.5120

0.0475

0.0492

0.0484

-0.5180

-0.5272

-0.5261

0.0482

0.0485

0.0476

0.1537

0.1511

0.1685

0.0700

0.0687

0.0772

0.1776

0.1907

0.1926

0.0684

0.0742

0.0749

95.1

95.0

94.5

94.5

94.7

94.2

94.6

94.4

94.8

94.3

94.3

94.8

-0.4996

-0.4988

-0.4999

0.0499

0.0501

0.0505

-0.4998

-0.4980

-0.5017

0.0499

0.0501

0.0497

0.0919

0.0993

0.1045

0.0436

0.0470

0.0494

0.1037

0.1150

0.1149

0.0446

0.0500

0.0500

94.7

94.7

94.6

94.6

94.8

94.5

94.4

94.0

94.2

94.4

94.5

94.3

-0.5100

-0.5210

-0.5145

0.0470

0.0481

0.0480

-0.5173

-0.5370

-0.5257

0.0468

0.0480

0.0453

0.1737

0.1710

0.1902

0.0835

0.0820

0.0913

0.1986

0.2140

0.2145

0.0897

0.0967

0.0973

94.6

94.8

95.1

94.1

93.8

94.3

94.2

94.1

93.9

93.6

93.7

93.9

-0.5002

-0.5016

-0.5011

0.0500

0.0505

0.0510

-0.4999

-0.4997

-0.5003

0.0505

0.0493

0.0491

0.1028

0.1106

0.1161

0.0498

0.0534

0.0559

0.1160

0.1283

0.1285

0.0555

0.0617

0.0617

94.4

94.9

94.8

94.3

94.4

94.0

94.2

94.1

93.9

94.1

94.1

94.4

* Average of the parameter estimates.

T Average of the robust standard error estimates.

¥ 95% coverage proportion based on the robust standard error estimates.





