
Web Appendix 1

We use a simple, hypothetical situation to illustrate the bias in estimating IRD using

first events, based on the commonly used approach as described in the Methods section.

Suppose the sample is equally divided into a vaccinated and an unvaccinated group, and

there are two strata of equal size in each group. The disease incidence rate is constant

over time and, without vaccination, equals to 4 and 6 events per person-year in the

low and high risk stratum, respectively. On average, time to first event in the low and

high risk groups are therefore 1/4 and 1/6 year, respectively, in the unvaccinated group.

Suppose an intervention causes an absolute reduction of 2 events per person-year, so

that the incidence rate is 2 and 4 events per person-year among vaccinated people in the

low and high risk stratum, respectively. On average, time to first event in the low and

high incidence risk groups are therefore 1/2 and 1/4 year, respectively, in the vaccinated

group. Using all events observed in one year, the estimate for incidence rate in the control

group is (4 + 6)/2 = 5 and that in the intervention group is (2 + 4)/2 = 3. Therefore,

IRD= 5−3 = 2, and that’s the truth in this case. But suppose only data on time to first

event is used, the estimate for incidence rate in the control group is 2/(1/4 + 1/6) = 4.8

and that in the vaccine group is 2/(1/2+1/4) = 2.67. Therefore, IRD= 4.8−2.67 = 2.13,

which is biased upward. It can be shown in the same way that if the intervention causes

a proportional reduction in disease incidence (as opposed to absolute reduction), the use

of all events to estimate the IRD will remain unbiased whereas the use of first events will

be biased downward. In short, in the presence of heterogeneity, the use of all events for



estimating IRD is preferred.
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Robust variance estimator in the case of Xi = (1, Xi1) and Xi1 = 0, 1

In matrix form,
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therefore, the first and second diagonal elements of V̂ar(β∗) are the variance estimates

for β∗0 and β1, respectively, i.e.,
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2
i +

1

T 2
1

∑

{i:Xi1=1}
Z2

i ê
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where Tg =
∑

{i:Xi1=g} Zi for g = 0 or 1. Note that the first line in V̂ar(β1) is the robust

variance estimate for the OLS model that Ynew,i = Yi/
√

Zi and Xnew,i1 =
√

ZiXi1 and

Ynew,i = β∗0
√

Zi + β1Xnew,i1 + enew,i.

Take Xi1 as a group factor to partition the subjects into two groups according to Xi1 =

0 and Xi1 = 1, and assume that enew,i’s are independently and identically distributed

(i.i.d.) within each group, i.e, Var(enew,i | Xi1 = g, Zi) = ψg (g = 0, 1). Moreover,

assume E(vi) = ν = 0 such that β̂∗0 = β̂0 is the unbiased estimate for the incidence rate

when Xi1 = 0, then it follows that the unbiased estimate for ψg is the empirical sample

variance, i.e.,
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where Ng = #{i : Xi1 = g} such that the variance estimate for the rate difference

proposed by Stukel et al. (11) is
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Therefore, under the i.i.d. assumptions for the enew,i’s within each level of Xi1, the robust

variance estimate V̂ar(β1) is consistent with Ṽar(β1), meaning that E
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Simulation parameter configurations and data generation processes

Suppose there are n study subjects. Since Yi (i = 1, · · · , n) is count data, we gen-

erate Yi ∼ Poisson(Zi(Xiβ + vi)) where vi is the heterogeneity term. Equivalently, the

inter-arrival time between two consecutive events for subject i follows an Exponential

distribution with parameter Xiβ + vi. The data generation process is as follows:

1. Generate the total length of follow-up time Zi for subject i from a Uniform distri-

bution: Uniform(2, 3).

2. Generate Xi = (1, Xi1, · · · , Xik) in two configurations:

(a) No confounding, i.e., Xi = (1, Xi1): Xi1 ∼ Bernoulli(p) where p = 0.5 or 0.7,

representing balanced and unbalanced study designs, respectively. Set β =

(1,−0.5) and (0.05,−0.025). These values mimic the incidence per person-

year of common events such as AOM and rare events such as RCP in young

children, respectively.

(b) One quantitative confounder i.e., Xi = (1, Xi1, Xi2): set β = (1,−0.5, 0.05)

and (0.05, −0.025, 0.005). Xi1 ∼ Bernoulli(p) where p = 0.5 or 0.7. Xi2 =

5β0 × Beta(α1 + α2Xi1, α3). The parameters, αj (j = 1, 2, 3), of the Beta

distribution are chosen to reflect different degrees of collinearity between Xi1

and Xi2 and different degrees of skewness. (α1, α2, α3)= (5, 2, 5) and (5, 5,

5) make Xi2 fairly symmetric (skewness are approximately −0.2 and −0.5



for α2 = 2 and α2 = 5, respectively), though not normal. The correlations

between Xi1 and Xi2 for the two settings are about 0.3 (moderate) and 0.5

(strong), respectively. Another two settings (α1, α2, α3)= (2, 2, 1) and (2, 5, 1)

represent highly skewed distributions (skewness are approximately −1.0 and

−1.6 for α2 = 2 and α2 = 5, respectively) where the correlations between Xi1

and Xi2 are about 0.3 (moderate) and 0.5 (strong), respectively.

3. Generate the heterogeneity term vi according to three scenarios:

(a) homogeneous: vi = 0.

(b) discrete: Pr(vi = β0+β1

2
) = p and Pr(vi = −β0+β1

2
) = 1− p where p is same as

the Bernoulli probability for Xi1 = 1.

(c) positive and continuous: vi ∼ Gamma(p(1− p), β0 + β1).

Note that with same p, the vi in scenarios (b) and (c) have the same variance

p(1− p)(β0 + β1)
2.

4. For the i-th subject, the j-th event time is generated using the inversion method

Ti,j = −lnU/(Xiβ + vi) where U ∼ Uniform(0, 1). Trivially, Ti,0 = 0. Iterate until

∑
`≤J Ti,` > Zi and let Yi = mi = J − 1. Estimation using all events is based on

{i : Xi, Zi, Yi}. Let Yi,1 = 1 and Zi1 = Ti1 if Ti1 ≤ Zi. Otherwise Yi,1 = 0 and

Zi1 = Zi. The estimation using first events only is based on {i : Xi, Zi1, Yi1}.

5. In a main series of simulations the performance of the proposed method using

data on all events was evaluated and compared with the estimation using data on



first events and Stukel’s method (if without confounder). For the high incidence

scenarios with β1 = −0.5, sample size was set as n = 200 and 1,000. For the low

incidence scenarios with β1 = −0.025, only n = 1, 000 was used as no study would

use n = 200 for such a rare outcome. The performance of the asymptotic and

small-sample versions of the robust standard errors was further studied in more

details in a supplementary series of simulations. The total sample size varied from

n = 100 to 1,000 at interval of 100 for the high incidence scenarios and n = 500 to

2,000 at interval of 100 for the low incidence scenarios.
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Web Table 1. Simulation Results on the Estimates for β1 With High Incidence in the Absence of

Confounding (n = 200).

p β1 vi

First Events All Events

Proposed Method
Avg est∗ ESD†

Proposed Method Stukel

Avg est∗ ESD† Avg ser
‡ CPr

§ Avg ser
‡ CPr

§ Avg se¶ CP]

0.5 -0.5 0 -0.5083 0.1243 0.1220 94.9 -0.5002 0.0784 0.0775 94.8 0.0775 94.8

±0.25 -0.5183 0.1202 0.1185 94.9 -0.5001 0.0864 0.0852 94.6 0.0852 94.5

Gamma -0.5093 0.1367 0.1353 94.7 -0.5001 0.0907 0.0909 94.9 0.0908 94.9

0.7 -0.5 0 -0.5140 0.1492 0.1465 94.8 -0.5010 0.0904 0.0899 94.5 0.0901 94.7

±0.25 -0.5260 0.1611 0.1581 94.8 -0.4987 0.1018 0.1013 94.4 0.1015 94.4

Gamma -0.5193 0.1638 0.1589 94.5 -0.4996 0.1021 0.1014 94.4 0.1016 94.4
∗ Average of the parameter estimates.

† Empirical standard deviation.

‡ Average of the robust standard error estimates.

§ 95% coverage proportion based on the robust standard error estimates.

¶ Average of the standard error estimates using the method proposed by Stukel et al. (11).

] 95% coverage proportion based on the standard error estimates using the method proposed by Stukel et al. (11).



Web Table 2. Simulation Results on the Estimates for (β1, β2) With High Incidence, n = 200 and X2

Slightly Skewed.

p Coefficient vi

Moderate Collinearity Strong Collinearity

First Events All Events First Events All Events

Avg est∗ Avg ser
† CPr

‡ Avg est∗ Avg ser
† CPr

‡ Avg est∗ Avg ser
† CPr

‡ Avg est∗ Avg ser
† CPr

‡

0.5 β1 = −0.5 0 -0.5067 0.1440 94.8 -0.4991 0.0880 94.8 -0.5094 0.1644 94.4 -0.4985 0.1006 94.6

±0.25 -0.5182 0.1412 95.0 -0.4997 0.0955 94.5 -0.5199 0.1607 94.6 -0.5002 0.1091 94.8

Gamma -0.5148 0.1606 95.1 -0.5003 0.1010 94.9 -0.5150 0.1844 94.6 -0.4996 0.1151 94.5

β2 = 0.05 0 0.0506 0.0912 93.9 0.0497 0.0591 94.8 0.0492 0.1015 94.2 0.0499 0.0642 94.6

±0.25 0.0522 0.0889 94.5 0.0513 0.0641 94.3 0.0516 0.0990 94.2 0.0508 0.0695 94.6

Gamma 0.0533 0.1011 94.1 0.0508 0.0676 94.6 0.0520 0.1119 94.3 0.0498 0.0732 94.3

0.7 β1 = −0.5 0 -0.5128 0.1682 94.6 -0.4998 0.0997 94.5 -0.5181 0.1844 94.5 -0.5005 0.1107 94.3

±0.25 -0.5266 0.1805 94.8 -0.4990 0.1107 94.5 -0.5314 0.1986 94.4 -0.4999 0.1237 94.5

Gamma -0.5199 0.1874 94.7 -0.4995 0.1112 94.4 -0.5224 0.2046 94.5 -0.5000 0.1236 94.1

β2 = 0.05 0 0.0490 0.0845 94.3 0.0495 0.0569 94.5 0.0491 0.0967 94.2 0.0495 0.0639 94.5

±0.25 0.0525 0.0918 94.8 0.0505 0.0645 94.2 0.0515 0.1051 94.5 0.0500 0.0723 94.8

Gamma 0.0513 0.0926 94.1 0.0506 0.0646 94.2 0.0500 0.1060 93.9 0.0503 0.0724 94.5
∗ Average of the parameter estimates.

† Average of the robust standard error estimates.

‡ 95% coverage proportion based on the robust standard error estimates.



Web Table 3. Simulation Results on the Estimates for (β1, β2) With High Incidence, n = 200 and X2

Highly Skewed.

p Coefficient vi

Moderate Collinearity Strong Collinearity

First Events All Events First Events All Events

Avg est∗ Avg ser
† CPr

‡ Avg est∗ Avg ser
† CPr

‡ Avg est∗ Avg ser
† CPr

‡ Avg est∗ Avg ser
† CPr

‡

0.5 β1 = −0.5 0 -0.5066 0.1537 95.1 -0.4996 0.0919 94.7 -0.5100 0.1737 94.6 -0.5002 0.1028 94.4

±0.25 -0.5205 0.1511 95.0 -0.4988 0.0993 94.7 -0.5210 0.1710 94.8 -0.5016 0.1106 94.9

Gamma -0.5120 0.1685 94.5 -0.4999 0.1045 94.6 -0.5145 0.1902 95.1 -0.5011 0.1161 94.8

β2 = 0.05 0 0.0475 0.0700 94.5 0.0499 0.0436 94.6 0.0470 0.0835 94.1 0.0500 0.0498 94.3

±0.25 0.0492 0.0687 94.7 0.0501 0.0470 94.8 0.0481 0.0820 93.8 0.0505 0.0534 94.4

Gamma 0.0484 0.0772 94.2 0.0505 0.0494 94.5 0.0480 0.0913 94.3 0.0510 0.0559 94.0

0.7 β1 = −0.5 0 -0.5180 0.1776 94.6 -0.4998 0.1037 94.4 -0.5173 0.1986 94.2 -0.4999 0.1160 94.2

±0.25 -0.5272 0.1907 94.4 -0.4980 0.1150 94.0 -0.5370 0.2140 94.1 -0.4997 0.1283 94.1

Gamma -0.5261 0.1926 94.8 -0.5017 0.1149 94.2 -0.5257 0.2145 93.9 -0.5003 0.1285 93.9

β2 = 0.05 0 0.0482 0.0684 94.3 0.0499 0.0446 94.4 0.0468 0.0897 93.6 0.0505 0.0555 94.1

±0.25 0.0485 0.0742 94.3 0.0501 0.0500 94.5 0.0480 0.0967 93.7 0.0493 0.0617 94.1

Gamma 0.0476 0.0749 94.8 0.0497 0.0500 94.3 0.0453 0.0973 93.9 0.0491 0.0617 94.4

∗ Average of the parameter estimates.

† Average of the robust standard error estimates.

‡ 95% coverage proportion based on the robust standard error estimates.




