The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome

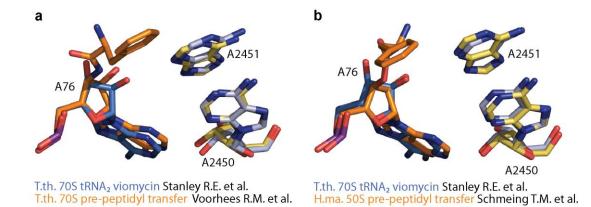
Robin E. Stanley^{1,2*}, Gregor Blaha^{1*}, Robert L. Grodzicki^{1,3}, Michael D. Strickler^{1,3}, & Thomas A. Steitz^{1,3,4}

¹Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

²Present address: Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892, USA.

³Howard Hughes Medical Institute, New Haven, CT 06520, USA

⁴Department of Chemistry, Yale University, New Haven CT 06520, USA


* These authors contributed equally to this work

Correspondence to: Thomas A. Steitz e-mail: thomas.steitz@yale.edu

 R_2 H N H N R 3 ΓR₁ `N´ H || 0 ŅН 0⁷ H ΗŅ H N H_2N ∥ 0 || 0 ΗŅ HN R₄ 'N' H

Antibiotic	R ₁	R_2	R ₃	R ₄
Viomycin	NH2 NH2	-OH	-OH	-OH
Tuberactinomycin A		-OH	-OH	-OH
Tuberactinomycin B	••••••••••••••••••••••••••••••••••••••	-OH	-OH	-OH
Tuberactinomycin N	NH2 NH2 NH2 NH2	-OH	-OH	-H
Tuberactinomycin O	NH2 NH2	-OH	-OH	-H
Tuberactinamine	-H	-OH	-OH	-H
Capreomycin IA	-H	-OH	H ₂ N H ₂ N H	-H
Capreomycin IB	-H	-H	H ₂ N H ₂ N H ₂ N H	-H
Capreomycin IIA	-H	-OH	-NH2	-H
Capreomycin IIB	-H	-H	-NH2	-H

Supplemental figure 1: chemical structure of naturally occurring tuberactinomycins.

Supplemental figure 2: Comparison of the relative positions of A2450 and A2451 of the 23S rRNA to the A76 of a P-site substrate from structures of different ribosomal complexes. All structures were superimposed on the peptidyl transferase centre as defined by residues 2049-2074, 2244-2261, 2435-2466, 2484-2520, and 2545-2619 of 23S rRNA. (a) Comparison between *T.th.* 70S complex of a pre-peptidyl transfer reaction from the structure of Ramakrishnan and co-workers (2WDL and 2WDK) ¹² and the viomycin structure reported here. Residues of 23S rRNA are in gold and gray, the terminal residue of the P-site tRNA is in orange and blue, for the complex of the pre-peptidyl transfer reaction and for the viomycin complex, respectively.

(b) Comparison between the structure of a *H.ma*. 50S complex of a pre-peptidyl transfer reaction (1VQN) ¹¹ and the viomycin structure reported here. Residues of 23S rRNA are in gold and gray, the terminal residue of the P-site tRNA is in orange and blue, for the complex of the pre-peptidyl transfer reaction and for the viomycin complex, respectively.