Enantioselective Synthesis of Allylboronates Bearing Tertiary or Quaternary B-Stereogenic Carbon by NHC-Cu-Catalyzed Substitution Reactions

Aikomari Guzman-Martinez and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION, PART I

List of Contents

General ····· Page S2
Reagents and Ligands Page S-3
Copper Salt Screening Page S-4
Synthesis of Substrates Page S5-S14
Compound 9 ····· Page S14
Compound 10 Page S16
Compound 11 ····· Page S16
Compounds in Table 2 ····· Page S17-S21
Compounds in Table 3 ····· Page S21-S26
Compound 13 ····· Page S26
Compound 14 ····· Page S26
Compound 15 Page S27

General. Infrared (IR) spectra were recorded on a Bruker FTIR Alpha (ATR mode) spectrophotometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ¹H NMR spectra were recorded on a Varian Unity INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: 77.16 ppm). High resolution mass spectrometry was performed on a JEOL AccuTOF-DART (positive mode) at the Mass Spectrometry Facility, Boston College. Enantiomer ratios were determined by GLC analysis [Alltech Associated Chiraldex CDB/DM column (30m x 0.25 mm), Betadex 120 column (30 m x 0.25 mm), and Alphadex 120 column (30 m x 0.25 mm)] in comparison with authentic racemic materials. The inlet and detector temperatures are set to 250 °C and runs were isothermal of the temperature given using ultra high purity helium as the carrier gas. Other enantiomer ratios were determined by high performance liquid chromatography (HPLC) with a Shimadzu chromatograph [Chiral Technologies Chiralcel OD-H (4.6 x 250 mm)] in comparison with authentic racemic materials. Specific rotations were measured on a Rudolph Research Analytical Autopol IV Polarimeter. Unless otherwise noted, all reactions were carried out with distilled and degassed solvents under an atmosphere of dry N2 in oven- (135 °C) or flame-dried glassware with standard dry box or vacuum-line techniques. 1,2-Dimethoxyethane (Aldrich Chemical Co.) was purified by distillation from sodium benzophenone ketal immediately prior to use. Dichloromethane (Fisher Scientific) was purified by being passed through two alumina columns under a positive pressure of dry argon by a modified Innovative Technologies purification system. Tetrahydrofuran (Aldrich Chemical Co.) was purified by distillation from sodium benzophenone ketal immediately prior to use unless otherwise specified. All work-up and purification procedures were carried out with reagent grade solvents (purchased from Doe & Ingalls) under air.

Reagents and Ligands:

Benzoyl Chloride: purchased from Aldrich Chemical Co. and used as received.

Bis(pinacolato)diboron (1): gifted from Frontier Scientific, Inc., dried overnight in vacuo.

tert-Butyldimethylsilyl chloride: purchased from Aldrich Chemical Co. and used as received.

meta-Chloroperoxybenzoic acid: purchased from Aldrich Chemical Co. and used as received.

Copper (II) triflate (98%): purchased from Aldrich Chemical Co. and used as received.

Copper salts (for copper screening): purchased from Strem and used as received.

4-Dimethylaminopyridine: purchased from Aldrich Chemical Co. and used as received.

N,*N*-Dimethylforamide (99.8%, Acroseal): was purchased from Acros was used as received.

Hydrogen peroxide (35 wt. % solution in water): purchased from Aldrich Chemical Co. and used as received.

Imidazole: was purchased from Aldrich and used as received.

Imidazolinium salt (2): prepared according to previously reported procedures.¹

Imidazolinium salt (3): prepared according to previously reported procedures.²

Imidazolinium salt (4a-b): prepared according to previously reported procedures.³

Imidazolinium salt (5a-c): prepared according to previously reported procedures.⁴ (*opposite enantiomers to what is shown in publication*)

Imidazolinium salt (6,7): prepared according to previously reported procedures.⁵

Periodic acid: purchased from Aldrich Chemical Co. and used as received.

Pyridine (anhydrous): purchased from Aldrich Chemical Co. and used as received.

Sodium borohydride: purchased from Aldrich Chemical Co. and used as received.

Sodium tert-butoxide (98%): purchased from Strem Chemicals Inc. and used as received.

Sodium hydride (60% in mineral oil): purchased from Strem Chemicals Inc. and used as received.

Sodium methoxide (98%): purchased from Strem Chemicals Inc. and used as received.

⁽¹⁾ Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877-6882.

⁽²⁾ Clavier, H.; Coutable, L.; Toupet, L.; Guillemin, J.-C.; Mauduit, M. J. Organometallic Chem. 2005, 690, 5237–5254.

⁽³⁾ Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 1097–1100.

^{(4) (}a) Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.; Hoveyda A. H. J. Am. Chem. Soc. 2008, 130, 446-

^{447. (}b) Akiyama, K.; Gao, F.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2010, 49, 419–423.

⁽⁵⁾ Lee, K.-s.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455-4462.

Dh	0	6.0 mol %	Ph Ph N Ph A A A A	Ph NMes Ph	
l		5.0 m	ol % Cu(OTf) ₂ ,	, – L	
<u> </u>	E- 8	/le 20 m 2.0 ec thf, 24 h;	ol % NaO <i>t-</i> Bu, juiv B ₂ (pin) ₂ (1 ; H ₂ O ₂ , NaOH,	→	S-9
entry	Cu salt	temp (°C)	conv (%) ^b	yield (%) ^c	er ^d
1	CuCl	22	75	70	77:23
2	CuBr	22	41	40	78:22
3	Cul	22	23	21	81:19
4	(CuOTf) ₂ •tol	22	>98	72	72:28
5	CuTC	22	>98	97	76:24
6	CuTC	-30	43	41	80:20
7	CuCN	22	42	38	77:23
8	CuOAc	22	70	54	69:31
9	CuCl ₂ •2H ₂ O	22	35	27	79:21
10	CuCl ₂	22	83	80	77:23
11	CuBr ₂	22	11	10	75:25
12	Cu(OTf) ₂	22	>98	94	83:17
13	Cu(OTf) ₂	-30	81	76	85:15
14	Cu(OAc) ₂ •H ₂ O	22	>98	93	81:19
15	Cu(OAc) ₂ •H ₂ O	-30	46	43	83:17

Table 1. Evaluation of Cu Salts^a

^{*a*} Reactions were performed under N₂ atm; >98% site selectivity in all cases (e.g., <2% $S_N 2$ product). ^{*b*} Values determined by analysis of 400 MHz ¹H NMR spectra of unpurified mixtures. ^{*c*} Yields of Purified products. ^{*d*} By GLC analysis. (see page *S*-14).

Preparation of Substrates: Allylic alcohols were synthesized from the corresponding aldehydes or ketones by a two-step Horner-Wadsworth-Emmons olefination⁶/dibal–H reduction⁷ sequence. Allylic alcohols were converted to the corresponding allylic carbonates based on well-established methods.⁸ Physical attributes of compounds that have not been previously reported are presented below.

^{(6) (}a) Martyn, D. C.; Hoult, D. A.; Abell, A. D. Aust. J. Chem. 2001, 54, 391–396. (b) Dyker, G.; Grundt, P. Helv. Chim. Acta 1999, 82, 588–596.

⁽⁷⁾ Clive, D. L. J.; Stoffman, E. J. L. Chem. Comm. 2007, 21, 2151–2153.

^{(8) (}a) Meyers, A. I.; Tomioka, K.; Ronald, D. M.; Comins, D. *Tetrahedron Lett.* **1978**, *19*, 1375–1378. (b) Hu, T; Corey, E. J. Org. Lett., **2002**, *4*, 2441–2443.

CO₂Et

(E)-Ethyl 4-cyclohexylbut-2-enoate: IR (neat): 2922 (m), 2851 (w), 1718 (s), 1654 (w), 1448 (w), 1367 (w), 1306 (w), 1264 (m), 1206 (w), 1163 (m), 1132 (w), 1045 (m), 983 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.93 (1H, dt, J = 15.5, 7.6 Hz), 5.78 (1H, dt, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz), 2.08 (2H, t, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz), 2.08 (2H, t, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz), 2.08 (2H, t, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz), 2.08 (2H, t, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz), 2.08 (2H, t, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz), 2.08 (2H, t, J = 15.7, 1.4 Hz), 4.17 (2H, q, J = 7.1 Hz7.8 Hz), 1.71-1.62 (5H, m), 1.47-1.36 (1H, m), 1.28 (3H, t, J = 7.2 Hz), 1.25-1.07 (3H, m), 0.97-0.87 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 148.2, 122.1, 60.1, 40.1, 37.2, 33.1, 26.3, 26.2, 14.3; HRMS (ESI+): Calcd for C₁₂H₂₁O₂ [M+H]⁺: 197.15415, Found: 197.15441.

(E)-4-Cyclohexylbut-2-en-1-ol: IR (neat): 3312 (br), 2919 (s), 2850 (m), 1670 (w), 1447 (m), 1366 (w), 1262 (w), 1094 (w), 1070 (w), 1046 (w), 999 (m), 968 (s), 889 (w), 843 (w), 665 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ

5.71-5.57 (2H, m), 4.08 (2H, t, J = 4.4 Hz), 1.94 (2H, t, J = 6.7 Hz), 1.71-1.61 (5H, m), 1.34-1.07 (5H, m), 0.93-0.83 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ 132.0, 129.8, 63.8, 40.2, 37.7, 33.0, 26.5, 26.2; HRMS (ESI+): Calcd for C₁₀H₁₇ [M-OH]⁺: 137.13303, Found: 137.13323.

(E)-4-Cyclohexylbut-2-en-1-yl methyl carbonate: IR (neat): 2921 (m), 2850 (w), 1746 (s), 1672 (w), 1587 (w), 1443 (m), 1381 (w), 1250 (s), 1114 (w), 972 (m), 941 (s), 899 (w), 844 (w), 791 (m) cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): δ 5.83-5.75 (1H, m), 5.60-5.52 (1H, m), 4.57 (2H, dd, J = 6.5, 1.0 Hz), $3.78 (3H, s), 1.95 (2H, t, J = 7.0 Hz), 1.70-1.61 (5H, m), 1.35-1.08 (4H, m), 0.92-0.84 (2H, m); {}^{13}C$ NMR (100 MHz, CDCl₃): § 155.7, 136.1, 124.1, 68.7, 54.7, 40.2, 37.6, 33.0, 26.5, 26.2; HRMS (ESI+): Calcd for C₁₀H₁₇ [M-OCO₂Me]⁺: 137.13303, Found: 137.13370.

OCO₂Me

(E)-3-Cyclohexylallyl methyl carbonate: IR (neat): 2923 (m), 2851 (w), 1746 (s), 1670 (w), 1442 (m), 1382 (w), 1250 (s), 1116 (w), 1088 (w), 970 (m), 940 (m), 899 (w), 791 (m), 508 (w) cm⁻¹; ¹H NMR (400 MHz,

CDCl₃): δ 5.76 (1H, dd, J = 15.6, 6.6 Hz), 5.67-5.49 (1H, m), 4.57 (2H, d, J = 6.6 Hz), 3.78 (3H, s), 1.99-197 (1H, m), 1.74-1.62 (5H, m), 1.31-1.02 (5H, m); ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 142.9, 120.6, 68.9, 54.6, 40.3, 32.4, 26.0, 25.9; HRMS (ESI+): Calcd for C₉H₁₅ [M-OCO₂Me]⁺: 123.11683, Found: 123.11454.

Me Me OCO₂Me

(E)-3,7-Dimethylocta-2,6-dien-1-yl methyl carbonate: IR (neat): 2959 (br, w), 2918 (br, w), 2857 (br, w), 1745 (s), 1670 (w), 1588 (w), 1441 (m), 1379 (w), 1340 (w), 1251 (s), 1108 (w), 938 (m), 903

(w), 833 (w), 792 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.40-5.37 (1H, m), 5.09-5.05 (1H, m), 4.65 (2H, dd, J = 7.2, 0.6 Hz), 3.77 (3H, s), 2.13-2.02 (4H, m), 1.72 (3H, s), 1.68 (3H, s), 1.59 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 143.2, 131.9, 123.6, 117.7, 64.7, 54.6, 39.5, 26.2, 25.6, 17.5, 16.5; HRMS (ESI+): Calcd for C₁₀H₁₇ [M-OCO₂Me]⁺: 137.13303, Found: 137.13351.

(*Z*)-3,7-Dimethylocta-2,6-dien-1-yl methyl carbonate: IR (neat): 2961 (br, w), 2917 (br, w), 2857 (br, w), 1745 (s), 1670 (w), 1442 (m), 1378 (w), 1347 (w), 1251 (s), 1108 (w), 1043 (w), 937 (m), 904 (w), 830 (w), 792 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.39-5.35

(1H, m), 5.10-5.06 (1H, m), 4.61 (2H, d, J = 7.4 Hz), 3.76 (3H, d, J = 0.8 Hz), 2.14-2.06 (4H, m), 1.76 (3H, s), 1.67 (3H, s), 1.59 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 143.2, 132.2, 123.5, 118.6, 64.4, 54.6, 32.1, 26.6, 25.6, 23.4, 17.6; HRMS (ESI+): Calcd for C₁₀H₁₇ [M-OCO₂Me]⁺: 137.13303, Found: 137.13260.

Me Ph OCO₂Me (*E*)-Methyl (3-methyl-5-phenylpent-2-en-1-yl) carbonate IR (neat): 3027 (w), 2954 (br, w), 2857 (w), 1743 (s), 1670 (w), 1602 (w), 1495 (w), 1441 (m), 1382 (w), 1340 (w), 1251 (s), 1115 (w), 1076 (w), 936 (m), 903 (w), 791 (m), 745 (w), 698 (m), 582 (w), 521 (w), 465 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.25 (2H, m), 7.20-7.16 (3H, m), 5.42-5.37 (1H, m), 4.65 (2H, dd, J = 7.2, 0.7 Hz), 3.78 (3H, s), 2.76-2.72 (2H, m), 2.34 (2H, t, J = 8.0 Hz), 1.77 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 142.6, 141.7, 128.2, 125.8, 118.2, 64.5, 54.6, 41.3, 34.1, 16.6; HRMS (ESI+): Calcd for C₁₂H₁₅ [M-OCO₂Me]⁺: 159.11738, Found: 159.11714.

 $\begin{array}{c} \mbox{Me} \\ \mbox{Cy} & \mbox{CO}_2 \mbox{Et} \end{array} (E)-Ethyl 4-cyclohexyl-3-methylbut-2-enoate: IR (neat): 2980 (w), 2922 (m), 2850 (w), 1715 (s), 1647 (w), 1448 (w), 1381 (w), 1368 (w), 1323 (w), 1268 (w), 1220 (s), 1146 (s), 1126 (m), 1096 (w), 1073 (m), 983 (w) cm^{-1}; ^{1}H NMR (400 MHz, CDCl_3): \\ & 5.61-5.60 (1H, m), 4.12 (2H, q, J = 7.1 Hz), 2.12 (3H, t, J = 1.0 Hz), 1.99 (2H, d, J = 7.0 Hz), \\ & 1.71-1.62 (5H, m), 1.55-1.45 (1H, m), 1.28-1.10 (6H, m), 0.91-0.81 (2H, m); ^{13}C NMR (100 MHz, CDCl_3): \\ & \delta 166.7, 158.8, 116.6, 59.4, 49.1, 35.6, 33.2, 26.4, 26.2, 18.7, 14.3; HRMS (ESI+): Calcd for C_{13}H_{23}O_2 [M+H]^+: 211.16980, Found: 211.16990. \end{array}$

Me Cy (*E*)-4-Cyclohexyl-3-methylbut-2-en-1-ol: IR (neat): 3313 (br), 2918 (s), 2849 (m), 1667 (w), 1447 (m), 1381 (w), 1268 (w), 1239 (w), 1182 (w), 1093 (w), 1060 (w), 995 (s), 892 (w), 845 (w), 769 (w), 733 (w), 585 (w), 513 (w), 485 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.36 (1H, td, *J* = 6.8, 1.0 Hz), 4.13 (2H, d, *J* = 6.9 Hz), 1.88 (2H, d, *J* = 7.2 Hz), 1.70-1.62 (8H, m), 1.47-1.35 (2H, m), 1.26-1.07 (3H, m), 0.89-0.78 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 124.6, 59.3, 47.8, 35.4, 33.2, 26.5, 26.3, 16.2; HRMS (ESI+): Calcd for C₁₁H₂₁O [M+H]⁺: 169.15924, Found: 169.15927.

Me Cy Cy $CO_{2}Me$ Cy $CO_{2}Me$ CV $CO_{2}Me$ CV $CO_{2}Me$ CV $CO_{2}Me$ CV $CO_{2}Me$ CV $CO_{2}Me$ CV CVCV (100 MHz, CDCl₃): δ 155.8, 141.9, 118.9, 64.7, 54.6, 47.8, 35.3, 33.2, 26.5, 26.3, 16.4; HRMS (ESI+): Calcd for C₁₁H₁₉ [M-OCO₂Me]⁺: 151.14868, Found: 151.14823.

Me (*E*)-3-Cyclohexylbut-2-en-1-ol: IR (neat): 3309 (br), 2922 (s), 2851 (m), 1662 (w), 1447 (m), 1379 (w), 1261 (w), 1229 (w), 1187 (w), 1078 (w), 995 (s), 891 (w), 858 (w), 840 (w), 806 (w), 761 (w), 618 (w), 528 (w), 435 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.41-5.37 (1H, m), 4.16 (2H, t, J = 6.2 Hz), 1.88-1.65 (9H, m), 1.36-1.07 (6H, m); ¹³C NMR (100 MHz, CDCl₃): δ 121.5, 59.4, 47.1, 31.7, 31.5, 26.6, 26.3, 14.6; HRMS (ESI+): Calcd for C₁₀H₁₇ [M-OH]⁺: 137.13303, Found: 137.13331.

Me (*E*)-3-Cyclohexylbut-2-en-1-yl methyl carbonate: IR (neat): 3309 (br), Cy OCO₂Me 2922 (s), 2851 (m), 1662 (w), 1447 (m), 1379 (w), 1261 (w), 1229 (w), 1187 (w), 1078 (w), 995 (s), 891 (w), 858 (w), 840 (w), 806 (w), 761 (w), 618 (w), 528 (w), 435 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.37-5.33 (1H, m), 4.66 (2H, d, *J* = 7.0 Hz), 3.78 (3H, s), 1.90-1.84 (1H, m), 1.78-1.66 (8H, m), 1.32-1.08 (5H, m); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 148.1, 115.8, 64.9, 54.6, 47.1, 31.5, 26.5, 26.2, 14.9; HRMS(ESI+): Calcd for C₁₀H₁₇ [M-OCO₂Me]⁺: 137.13248, Found: 137.13385.

(*E*)-3-(Naphthalen-1-yl)but-2-en-1-ol: IR (neat): 3332 (br, w), 3058 (w), 2976 (w), 2915 (w), 2871 (w), 1661 (w), 1590 (w), 1506 (w), 1438 (w), 1394 (w), 1375 (w), 1337 (w), 1246 (w), 1215 (w), 1181 (w), 1090 (w), 1061 (w), 998 (m), 907 (w), 863 (w), 799 (s), 729 (s), 648 (w), 609 (w), 573 (w), 500 (w), 472 (w),

432 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.93 (1H, m), 7.88-7.83 (1H, m), 7.76 (1H, d, *J* = 8.4 Hz), 7.49-7.41 (3H, m), 7.29-7.27 (1H, m), 5.78-5.74 (1H, m), 4.46 (2H, d, *J* = 6.7 Hz), 2.15 (3H, d, *J* = 0.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 138.4, 133.7, 130.8, 129.3, 128.3, 127.2, 125.8, 125.6, 125.5, 125.3, 124.7, 59.6, 19.1; HRMS (ESI+): Calcd for C₁₄H₁₃ [M-OH]⁺: 181.10173, Found: 181.10197.

(*E*)-Methyl (3-(naphthalen-1-yl)but-2-en-1-yl) carbonate: IR (neat): 3043 (w), 2956 (w), 2854 (w), 1743 (s), 1659 (w), 1590 (w), 1506 (w), 1441 (m), 1376 (w), 1323 (w), 1251 (s), 1184 (w), 1137 (w), 1108 (w), 1011 (w), 940 (m), 904 (w), 864 (w), 800 (m), 790 (m), 775 (s), 738 (w),

652 (w), 612 (w), 575 (w), 519 (w), 495 (w), 468 (w), 449 (w), 427 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.89 (1H, m), 7.87-7.83 (1H, m), 7.77 (1H, d, J = 8.4 Hz), 7.49-7.40 (3H, m), 7.28-7.25 (1H, m), 5.74-5.70 (1H, m), 4.94 (2H, d, J = 6.9 Hz), 3.83 (3H, s), 2.20 (3H, t, J = 0.6 Hz),); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 142.4, 141.8, 133.7, 130.7, 128.3, 127.4, 125.9, 125.7, 125.5, 125.3, 124.7, 123.7, 64.6, 54.8, 19.4; HRMS (ESI+): Calcd for C₁₄H₁₃ [M-OCO2Me]⁺: 181.10173, Found: 181.10128.

(*E*)-**3**-(**2-Bromophenyl**)**but-2-en-1-ol:** IR (neat): 3299 (br, w), 3053 (w), 2917 (w), 2871 (w), 1661 (w), 1587 (w), 1559 (w), 1466 (w), 1430 (w), 1375 (w), 1284 (w), 1247 (w), 1212 (w), 1111 (w), 1072 (w), 1019 (m), 1000 (m), 942 (w), 751 (s), 726 (m), 659 (w), 604 (w), 561 (w), 549 (w), 446 (w) cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): δ 7.54 (1H, dd, J = 8.0, 1.2 Hz), 7.29-7.24 (1H, m), 7.18-7.10 (2H, m), 5.62-5.58 (1H, m), 4.35 (2H, t, J = 5.7 Hz), 2.02 (3H, d, J = 0.8 Hz), 1.32 (1H, t, J = 5.5 Hz; ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 139.3, 132.7, 129.7, 129.3, 128.3, 127.2, 121.8, 59.4, 17.8; HRMS (ESI+): Calcd for C₁₀H₁₀Br [M-OH]⁺: 208.99659, Found: 208.99594.

 $\begin{array}{cccc} & (E)-3-(2-Bromophenyl)but-2-en-1-yl methyl carbonate: IR (neat): \\ & (P)-3-(2-Bromophenyl)but-2-en-1-yl methyl methyl carbonate: IR (neat): \\ & (P)-3-(2-Bromophenyl)but-2-en-1-yl methyl meth$

 $\begin{array}{c} (E) - Ethyl \ 3 - (2 - chlorophenyl) but - 2 - enoate: IR (neat): 3057 (w), 2980 (w), \\ 1714 (s), 1642 (w), 1591 (w), 1565 (w), 1471 (w), 1430 (w), 1367 (w), 1341 \\ (w), 1287 (w), 1246 (w), 1172 (s), 1128 (w), 1093 (w), 1041 (m), 945 (w), 878 \\ (w), 758 (m), 676 (w), 592 (w), 569 (w), 545 (w), 456 (w) cm^{-1}; ^{1}H NMR (400 MHz, CDCl_3): \delta \\ 7.40 - 7.36 (1H, m), 7.28 - 7.22 (2H, m), 7.19 - 7.15 (1H, m), 5.83 (1H, q, <math>J = 1.4 \text{ Hz}), 4.22 (2H, q, J = \\ 7.2 \text{ Hz}), 2.49 (3H, d, J = 1.6 \text{ Hz}), 1.32 (3H, t, J = 7.2 \text{ Hz}); ^{13}C NMR (100 \text{ MHz}, CDCl_3): \delta \\ 155.6, 142.7, 131.3, 129.8, 129.0, 128.9, 126.7, 120.5, 59.9, 20.1, 14.2; HRMS (ESI+): Calcd for \\ C_{12}H_{14}ClO_2 [M+H]^+: 225.06823, Found: 225.06795. \end{array}$

 $\begin{array}{c} \begin{array}{c} \text{Me} \\ \text{CI} \end{array} (E)-3-(2-Chlorophenyl)but-2-en-1-ol: IR (neat): 3311 (br, w), 3064 (w), 2918 (w), 2871 (w), 1657 (w), 1592 (w), 1564 (w), 1470 (w), 1428 (w), 1376 (w), 1286 (w), 1265 (w), 1248 (w), 1213 (w), 1127 (w), 1112 (w), 1074 (w), 1044 (w), 999 (m), 943 (w), 750 (s), 730 (w), 680 (m), 606 (w), 554 (w), 455 (w), 429 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ 7.36-7.34 (1H, m), 7.22-7.17 (3H, m), 5.65-5.61 (1H, m), 4.35 (2H, t, *J* = 5.9 Hz), 2.04-2.03 (3H, m), 1.33-1.31 (1H, m); ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 137.9, 132.0, 129.8, 129.5, 128.2, 126.7, 59.4, 17.6; HRMS (ESI+): Calcd for C₁₀H₁₅ClO [M+NH₄]⁺: 200.08422, Found: 200.08377. \end{array}

(*E*)-3-(2-Chlorophenyl)but-2-en-1-yl methyl carbonate: IR (neat): 2957 (w), 1744 (s), 1662 (w), 1591 (w), 1565 (w), 1471 (w), 1441 (m), 1378 (w), 1331 (w), 1252 (s), 1128 (w), 1076 (w), 1044 (w), 999 (w), 943

(s), 905 (w), 850 (w), 791 (m), 753 (s), 732 (w), 712 (w), 678 (w), 611 (w), 562 (w), 466 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.33 (1H, m), 7.22-7.16 (3H, m), 5.62-5.57 (1H, m), 4.83 (2H, dd, *J* = 6.8, 0.8 Hz), 3.81 (3H, s), 2.07-2.08 (3H, m); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 142.9, 141.0, 131.9, 129.7, 129.6, 128.4, 126.7, 123.9, 64.4, 54.8, 17.8; HRMS (ESI+): Calcd for C₁₀H₁₀Cl [M-OCO₂Me]⁺: 165.04710, Found: 165.04712.

 $\begin{array}{c} & \underset{Me}{\overset{Me}{}} \\ & \underset{Me}{\overset{CO_2Et}{}} \end{array} \begin{array}{c} (E) - Ethyl \ 3 - (o-tolyl) but - 2 - enoate: IR (neat): 2980 (w), 1712 (s), 1639 (m), 1601 (w), 1485 (w), 1446 (w), 1366 (w), 1338 (w), 1290 (w), 1262 (m), 1197 (w), 1158 (s), 1122 (w), 1095 (w), 1072 (w), 1041 (m), 942 (w), 876 (m), 811 (w), 760 (m), 726 (m), 601 (w), 578 (w), 556 (w), 512 (w), 455 (m) cm^{-1}; ^{1}H NMR (400 MHz, CDCl_3): \delta 7.22 - 7.15 (3H, m), 7.08 - 7.06 (1H, m), 5.76 (1H, q, <math>J = 1.4 \text{ Hz}$), 4.22 (2H, q, J = 7.2 Hz), 2.44 (3H, d, J = 1.4 Hz), 2.29 (3H, s), 1.31 (3H, t, J = 7.2 Hz); ^{13}C NMR (100 MHz, CDCl_3): δ 166.5, 158.1, 143.8, 133.7, 130.3, 127.5, 126.9, 125.6, 119.3, 59.7, 20.7, 19.6, 14.2; HRMS (ESI+): Calcd for C₁₃H₁₇O₂ [M+H]⁺: 205.12285, Found: 205.12373. \\ \end{array}

 $\begin{array}{c} \mbox{Me} \\ \mbox{Me}$

 $\begin{array}{c} & (E) - Ethyl - 3 - (m - tolyl) but - 2 - enoate: IR (neat): 2979 (w), 1710 (s), 1627 (m), \\ & 1605 (w), 1584 (w), 1444 (w), 1366 (w), 1340 (w), 1283 (w), 1199 (m), 1155 \\ & (s), 1096 (w), 1043 (m), 1000 (w), 870 (w), 786 (m), 747 (w), 696 (w), 581 (w), \\ & 449 (w) \text{ cm}^{-1}; \ ^{1}\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3): \delta 7.29 - 7.24 (3H, m), 7.19 - 7.16 \\ & (1H, m), 6.12 (1H, q, J = 1.4 \text{ Hz}), 4.22 (2H, q, J = 7.2 \text{ Hz}), 2.57 (3H, d, J = 1.4 \text{ Hz}), 2.38 (3H, s), \\ & 1.32 (3H, t, J = 7.1 \text{ Hz}); \ ^{13}\text{C} \text{ NMR} (100 \text{ MHz, CDCl}_3): \delta 166.9, 155.7, 142.2, 138.1, 129.7, 128.3, \\ \end{array}$

127.0, 123.4, 116.9, 59.8, 21.4, 17.9, 14.3; HRMS (ESI+): Calcd for $C_{13}H_{17}O_2$ [M+H]⁺: 205.12285, Found: 205.12314.

 $\begin{array}{c} \mbox{Me} \\ \mbox{(E)-3-(m-Tolyl)but-2-en-1-ol: IR (neat): 3318 (br. w), 3028 (w), 2919 (w), } \\ \mbox{2861 (w), 1646 (w), 1603 (w), 1582 (w), 1486 (w), 1441 (w), 1377 (w), 1282 (w), 1222 (w), 1189 (w), 1171 (w), 1100 (w), 1066 (w), 993 (s), 904 (w), 878 (w), 776 (s), 697 (s), 613 (w), 582 (w), 533 (w), 441 (w) cm^{-1}; {}^{1}\mbox{H NMR (400 MHz, CDCl_3): } \delta 7.23-7.21 (3H, m), 7.10-7.07 (1H, m), 5.99-5.94 (1H, m), 4.36 (2H, t, <math>J = 5.9$ Hz), 2.36 (3H, s), 2.08-2.07 (3H, m), 1.30 (1H, t, J = 5.5 Hz); ${}^{13}\mbox{C NMR (100 MHz, CDCl_3): } \delta 142.8, 137.8, 137.7, 128.1, 127.9, 126.5, 126.3, 122.8, 59.8, 21.4, 16.0; HRMS (ESI+): Calcd for C_{11}H_{13} [M-OH]^+: 145.10173, Found: 145.10243. \end{array}$

(*E*)-Methyl (3-(*m*-tolyl)but-2-en-1-yl) carbonate: IR (neat): 2956 (w), 1743 (s), 1647 (w), 1603 (w), 1583 (w), 1441 (m), 1376 (w), 1332 (w), 1251 (s), 1173 (w), 1125 (w), 941 (s), 903 (w), 833 (w), 779 (s), 698 (m), 584 (w), 536 (w), 453 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.19

(3H, m), 7.11-7.09 (1H, m), 5.93-5.88 (1H, m), 4.84 (2H, dd, J = 7.0, 0.6 Hz), 3.80 (3H, s), 2.36 (3H, s), 2.12 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 142.4, 141.1, 137.8, 128.3, 128.2, 126.6, 123.0, 120.4, 64.9, 54.7, 21.4, 16.3; HRMS (ESI+): Calcd for C₁₁H₁₃ [M-OCO₂Me]⁺: 145.10173, Found: 145.10203.

 $\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{OH} \\ \text{Me} \\ \begin{array}{c} \textbf{(E)-3-(p-Tolyl)but-2-en-1-ol:} IR (neat): 3316 (br, w), 3085 (w), 3024 \\ (w), 2920 (w), 2864 (w), 1645 (w), 1512 (m), 1441 (w), 1409 (w), 1377 (w), \\ 1312 (w), 1275 (w), 1216 (w), 1189 (w), 1112 (w), 1064 (w), 994 (s), 925 \\ (w), 808 (s), 717 (w), 699 (w), 642 (w), 547 (m), 512 (w), 458 (w), 407 (w) cm^{-1}; {}^{1}\text{H NMR} (400 \\ \text{MHz, CDCl}_3): \delta 7.33-7.30 (2H, m), 7.16-7.13 (2H, m), 5.98-5.94 (1H, m), 4.36 (2H, t, <math>J = 5.9 \text{ Hz}), \\ 2.35 (3H, s), 2.08-2.07 (3H, m), 1.32-1.29 (1H, m); {}^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3): \delta 139.9, 137.6, \\ 137.0, 128.9, 125.6, 59.9, 21.0, 15.9; \text{HRMS} (ESI+): Calcd for C_{11}H_{13} [M-OH]^+: 145.10173, \\ \text{Found: 145.10189.} \end{array}$

Me OCO₂Me

(*E*)-Methyl (3-(*p*-tolyl)but-2-en-1-yl) carbonate: IR (neat): 2956 (w), 1747 (s), 1514 (w), 1443 (m), 1378 (w), 1333 (w), 1261 (s), 1128 (w), 943 (m), 904 (w), 812 (w), 792 (w) cm⁻¹; ¹H NMR (400 MHz,

CDCl₃): δ 7.32-7.29 (2H, m), 7.13 (2H, d, J = 8.0 Hz), 5.93-5.88 (1H, m), 4.84 (2H, d, J = 7.0 Hz), 3.80 (3H, s), 2.35 (3H, s), 2.11 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 140.9, 139.5, 137.4, 129.0, 125.7, 119.7, 65.0, 54.7, 21.0, 16.2; HRMS (ESI+): Calcd for C₁₃H₁₆O₃ [M]⁺: 220.10994, Found: 220.10914.

(E)-Methyl(3-(4-(trifluoromethyl)phenyl)but-2-en-1-yl)carbonate: IR (neat): 2959 (w), 1746 (s), 1617 (w), 1444 (m), 1412(w), 1379 (w), 1323 (s), 1257 (s), 1195 (w), 1164 (m), 1113 (s), 1073(m), 1059 (m), 1014 (m), 944 (m), 906 (w), 829 (m), 791 (m), 727 (w),631 (w), 604 (m), 540 (w), 509 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃):

δ 7.58 (2H, d, J = 8.4 Hz), 7.49 (2H, d, J = 8.4 Hz), 5.99-5.95 (1H, m), 4.86 (2H, d, J = 6.8 Hz), 3.81 (3H, s), 2.14 (3H, d, J = 0.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 145.9, 139.6, 129.7, 129.4, 126.1, 125.5, 125.3, 125.2, 122.7, 64.6, 54.8, 16.2; HRMS (ESI+): Calcd for C₁₁H₁₀F₃ [M-OCO₂Me]⁺: 199.07346, Found: 199.07287.

Et Ph (E)-Methyl (3-phenylpent-2-en-1-yl) carbonate (12): IR (neat): 2967 (w), 2875 (w), 1743 (s), 1644 (w), 1598 (w), 1492 (w), 1442 (m), 1376 (w), 1346 (w), 1306 (w), 1251 (s), 1128 (w), 1065 (w), 1031 (w), 937 (m), 904 (m), 852 (w), 791 (m), 760 (s), 696 (s), 514 (w), 445 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.27 (5H, m), 5.79 (1H, t, J = 7.0 Hz), 4.85 (2H, d, J = 7.0 Hz), 3.80 (3H, s), 2.59 (2H, q, J = 7.5 Hz), 1.00 (3H, t, J = 7.5 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 147.9, 141.4, 128.3, 127.5, 126.5, 120.3, 64.7, 54.7, 23.4, 13.7; HRMS (ESI+): Calcd for C₁₁H₁₃ [M-OCO₂Me]⁺: 145.10173, Found: 145.10203.

Preparation of ether-containing substrates: Allylic carbonate **12** was converted to the corresponding ether-containing allylic carbonates based on previously established methods.⁹

(E)-5-(3,3-Dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl methyl carbonate: m-Me Me OCO₂Me Chloroperbenzoic acid (1.7 g, 10 mmol) was added to a solutionof (E)-3,7-dimethylocta-2,6-dien-1-yl methyl carbonate (2.1 g, 10 mmol) in CH₂Cl₂ (70 mL) at 0 °C. The mixture was allowed to

warm to 22 °C and stir for 4 hours. Calcium hydroxide (2.8 g, 37 mmol) was added and the reaction was allowed to stir for 40 min. The reaction was filtered, eluting with Et_2O , and

⁽⁹⁾ Tago, K; Arai, M.; Kogen, H. J. Chem. Soc., Perkin Trans. 1 2000, 2073-2078.

concentrated in vacuo to provide a yellow oil. The resulting residue was purified by silica gel column chromatography (gradient 10% to 12% Et₂O in hexanes) to afford the desired compound as clear oil (1.9 g, 8.4 mmol, 84%). IR (neat): 2959 (br, w), 1744 (s), 1670 (w), 1442 (m), 1378 (w), 1340 (w), 1252 (s), 1121 (w), 1049 (m), 936 (m), 903 (w), 874 (w), 792 (m), 737 (w), 679 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.44-5.40 (1H, m), 4.66 (2H, d, *J* = 7.2 Hz), 3.77 (3H, s), 2.70 (1H, t, *J* = 6.4 Hz), 2.27-2.11 (2H, m), 1.74 (3H, s), 1.69-1.63 (2H, m), 1.30 (3H, s), 1.26 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 142.2, 118.3, 65.8, 64.5, 63.8, 58.3, 54.6, 36.1, 27.0, 24.8, 18.7, 16.5, 15.2; HRMS (ESI+): Calcd for C₁₂H₂₄NO₄ [M+NH₄]⁺: 246.1705, Found: 246.1711.

(*E*)-Methyl (3-methyl-6-oxohex-2-en-1-yl) carbonate: A solution of HIO₄•2H₂O (1.9 g, 8.5 mmol) in water (8 mL) was slowly added to a solution of the epoxide (1.8 g, 7.7 mmol) in THF (13 mL) at 0 °C. The

reaction was allowed to stir for 30 min. Brine (15 mL) was added to the reaction and the solution was extracted with Et₂O (10 mL x 3). The combined organic layers were washed with a saturated solution of NaHCO₃ (15 mL x 2), and brine (15 mL x 2). The organic layer was separated, dried over Na₂SO₄, filtered, and concentrated in vaccuo. The resulting residue was purified by silica gel chromatography (10% \rightarrow 30% Et₂O in hexanes) to provide the product as clear oil (1.2 g, 6.44 mmol, 84%). IR (neat): 2958 (br, w), 2857 (br, w), 2724 (w), 1742 (s), 1721 (m), 1672 (w), 1442 (m), 1386 (w), 1340 (w), 1251 (s), 1120 (w), 1065 (w), 933 (m), 904 (w), 791 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.76 (1H, t, *J* = 1.6 Hz), 5.40-5.36 (1H, m), 4.64 (2H, dd, *J* = 7.2, 0.8 Hz), 3.77 (3H, s), 2.59-2.55 (2H, m), 2.37 (2H, t, *J* = 7.4 Hz), 1.73 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 201.5, 155.7, 141.0, 118.7, 64.3, 62.4, 54.7, 41.6, 31.3, 16.6; HRMS (ESI+): Calcd for C₉H₁₈NO₄ [M+NH₄]⁺: 204.1236, Found: 204.1245.

HO_____OCO₂Me

(*E*)-6-Hydroxy-3-methylhex-2-en-1-yl methyl carbonate: Sodium Borohydrate (0.19 g, 5.4 mmol) was added to a solution of aldehyde (1.0 g, 5.4 mmol) in methanol (60 mL) at 0 °C. The mixture was

allowed to stir for one hour at 0 °C. Acetone (10 mL) and water (30 mL) were added and the reaction was allowed to warm to 22 °C and washed with Et₂O (30 mL x 3). The combined organic layers were combined and washed with HCl (0.1 M aqueous solution, 25 mL x 2) and brine (25 mL x 2). The organic layer was separated, dried over Na₂SO₄, filtered, and concentrated under vacuo. The product was purified by silica gel chromatography with Et₂O/hexanes (1:1), to provide the product as clear oil (0.73 g, 3.9 mmol, 73%). IR (neat): 2942 (br), 2870 (br), 1743 (s), 1670 (w), 1442 (m), 1382 (w), 1339 (w), 1252 (s), 1120 (w), 1058 (m), 1006 (w), 932 (m), 904 (w), 792 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.42-5.38 (1H, m), 4.65 (2H, d, *J* = 7.2 Hz), 3.77 (3H, s), 3.65-3.61 (2H, m), 2.12 (2H, t, *J* = 7.8 Hz), 1.73 (3H, s), 1.71-1.66 (2H, m), 1.36 (1H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 142.8, 118.0, 64.6, 62.4, 54.7, 35.7, 30.4, 16.4; HRMS (ESI+): Calcd for C₉H₂₀NO₄ [M+NH₄]⁺: 206.1392, Found: 206.1396.

(E)-6-((tert-Butyldimethylsilyl)oxy)-3-methylhex-2-en-1-yl

methyl carbonate: t-Butyldimethylsilyl chloride (280 mg, 1.80

TBSO OCO_2Me mmol) was added to a solution of the alcohol (300 mg, 1.60 mmol) and imidazole (440 mg, 6.40 mmol) in DMF (20 mL) at 22 °C. The mixture was allowed to stir for 24 h. Water (20 mL) was added and washed with Et₂O (20 mL x 3). The combined organic layers were washed with water (25 mL x 2) and brine (25 mL x 2), dried over Na₂SO₄, filtered, and concentrated under vacuo. The product was purified by silica gel column chromatography (5% Et₂O in hexanes) to provide the product as clear yellow oil (445 mg, 1.47 mmol, 92%). IR (neat): 2953 (w), 2930 (w), 2890 (w), 2857 (w), 1747 (s), 1671 (w), 1442 (m), 1385 (w), 1361 (w), 1338 (w), 1252 (s), 1096 (m), 1006 (w), 939 (m), 904 (w), 833 (m), 792 (w), 774 (m), 714 (w), 662 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.42-5.38 (1H, m), 4.65 (2H, dd, *J* = 7.2, 0.6 Hz), 3.77 (3H, s), 3.59 (2H, t, *J* = 6.5 Hz), 2.08 (2H, t, *J* = 7.8 Hz), 1.72 (3H, s), 1.67-1.60 (2H, m), 0.90 (9H, s), 0.04 (6H, s); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 143.1, 117.7, 64.7, 62.6, 54.6, 35.7, 30.7, 25.9, 18.3, 16.5, -5.3; HRMS (ESI+): Calcd for C₁₅H₃₄NO₄Si [M+NH₄]⁺: 320.2257, Found: 320.2249.

Me

Me (*E*)-6-((Methoxycarbonyl)oxy)-4-methylhex-4-en-1-yl benzoate: BzO. °OCO₂Me Benzoyl chloride (170 µL, 1.50 mmol) was added to a solution of alcohol (200 mg, 1.10 mmol), pyridine (450 µL, 5.50 mmol), and N,N-dimethylaminopyridine (8.0 mg, 70.0 µmol) in CH₂Cl₂ (3 mL) at 0 °C. The mixture was allowed to stir for 1 hour at 0 °C. Water (10 mL) was added and the solution was allowed to warm to 22 °C, and washed with Et₂O (10 mL x 3). The combined organic layers were washed with brine (15 mL x 2), dried over Na₂SO₄, filtered, and concentrated under vacuo. The residue was purified by silica gel chromatography $(6\% \rightarrow 12\% \text{ Et}_2\text{O in hexanes})$ to provide the product as clear yellow oil (310 mg, 1.06 mmol, 95%). IR (neat): 2956 (b), 1744 (s), 1716 (s), 1602 (w), 1584 (w), 1442 (m), 1383 (w), 1338 (w), 1314 (w), 1251 (s), 1175 (w), 1111 (m), 1070 (w), 1026 (w), 935 (m), 904 (w), 852 (w), 792 (w), 710 (s) 688 (w), 675 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.05-8.02 (2H, m), 7.58-7.53 (1H, m), 7.46-7.42 (2H, m), 5.46-5.41 (1H, m), 4.65 (2H, dd, J = 7.0, 0.6 Hz), 4.31 (2H, t, J = 6.5 Hz), 3.77 (3H, s), 2.21 (2H, t, J = 8.2, 6.8 Hz), 1.95-1.88 (2H, m), 1.76 (3H, s); ¹³C NMR (100 MHz, CDCl₃): § 166.5, 155.8, 142.0, 132.9, 130.3, 129.5, 128.3, 118.5, 64.5, 64.3, 54.7, 35.8, 26.6, 16.4; HRMS (ESI+): Calcd for C₁₆H₂₄NO₅ [M+NH₄]⁺: 310.1655, Found: 310.1659.

Representative experimental procedure for enantioselective Cu-catalyzed substitution reaction of (*E*)-methyl(3-methyl-5-phenylpent-2-en-1-yl)carbonate with bis(pinacolato) diboron: (*R*)-3-Methyl-5-phenylpent-1-en-3-ol: In an N₂-filled glove-box, an oven-dried vial (4 mL, 17 x 38 mm) with magnetic stir bar was charged with imidazolinium salt 4a (6.0 mg, 0.012 mmol, 6.0 mol %), Cu(OTf)₂ (3.7 mg, 0.010 mmol, 5.0 mol %), NaOMe (8.8 mg, 0.16 mmol, 80 mol %) and DME (1.0 mL) under a N₂ atmosphere. The vessel was sealed with a cap (phenolic open top cap with red PTFE/white silicone) and the green solution was allowed to stir for 30

min. The color of the solution was then clear blue. Bis(pinacolato)diboron (102 mg, 0.400 mmol, 2.0 equiv) was added to the solution. The color of the solution immediately turned dark brown. The vial was resealed with a cap (phenolic open top cap with red PTFE/white silicone). After 30 min, (*E*)-methyl(3-methyl-5-phenylpent-2-en-1-yl)carbonate (46.9 mg, 0.200 mmol, 1.0 equiv) was added neat by syringe. After 24 h, the solution was quenched by passing through a short plug of celite and silica gel and washed with (reagent grade) thf (3 x 2 mL). The filtrate was allowed to cool to at 0 °C (ice bath) and H₂O₂ (217 μ L, 2.23 mmol) and 2 N NaOH (0.500 mL, 1.00 mmol) were added. The resulting solution was allowed to stir for 1 hour. After this time, the mixture was diluted with water (3 mL), washed with Et₂O (3 x 1 mL) and filtered through a plug of MgSO₄ and silica gel chromatography (5% \rightarrow 15% Et₂O in hexanes) to afford the allylic alcohol, (*R*)-3-methyl-5-phenylpent-1-en-3-ol, as colorless oil (33.8 mg, 0.192 mmol, 96% yield).

(*R*)-5-Phenylpent-1-en-3-ol (*R*-9): This product isolated as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.36 (m, 2H), 7.22-7.17 (m, 2H), 5.95–5.87 (1H, ddd, *J* = 16.6, 10.4, 6.1 Hz), 5.28–5.23 (1H, m), 5.16-5.13 (1H, m), 4.13 (1H, q, *J* = 6.5 Hz), 2.75–2.66 (2H, m), 1.89–1.83 (2H, m), 1.58(1H, s). Optical rotation: $[\alpha]_D^{20}$ –5.8 (*c* 1.0, CHCl₃) for a sample with 95:5 er. The spectroscopic data match those reported previously.¹⁰ Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (95:5 er shown below; CDB/DM, 15 psi, 100 °C; the GC trace was taken with the *R* enantiomer of product prepared by using the *R* enantiomer of ligand).

■ **Proof of Stereochemistry:** Literature value $([\alpha]_D^{21} + 4.96 \text{ is assigned for the } (S) \text{ enantiomer}^{10a}$ and $([\alpha]_D^{21} - 5.8 \text{ (c } 1.3, \text{CHCl}_3) \text{ is assigned for the } (R) \text{ enantiomer}^{10b}$

^{(10) (}a) Discordia, R. P.; Dittmer, D. C. J. Org. Chem. **1990**, 55, 1414–1415. (b) Sato, I.; Asakura, N.; Iwashita, T. *Tetrahedron: Asym.* **2007**, *18*, 2638–2642.

(S)-5-Phenylpent-1-en-3-ol (S-9): prepared from Z-8. Optical rotation: $[\alpha]_D^{20}$ +5.8 (*c* 1.0, CHCl₃) for a sample with 95:5 er.Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (95:5 er shown below; CDB/DM, 15 psi, 100 °C; the chiral GC trace was taken with the S enantiomer of product prepared by using the R enantiomer of ligand).

(*R*)-1-Cyclohexylbut-3-en-2-ol (10): IR (neat): 3332 (b), 3077 (w), 2920 (s), 2851 (m), 1644 (w), 1447 (w), 1425 (w), 1321 (w), 1262 (w), 1201 (m), 1148 (w), 1103 (w), 1080 (w), 1060 (w), 1043 (w), 1016 (w), 989 (m), 964 (w), 917 (m), 896 (w), 878 (w), 825 (w), 687 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.86 (1H, ddd, *J* = 17.2, 10.4, 6.26 Hz), 5.22 (1H, dt, *J* = 17.2, 1.4 Hz), 5.08 (1H, dt, *J* = 10.4, 1.4 Hz), 4.20 (1H, q, *J* = 6.5 Hz), 1.81-1.62 (5H, m), 1.48-1.10 (7H, m), 0.99-0.86 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ 141.8, 114.3, 70.8, 44.9, 33.9, 33.8, 33.1, 26.5, 26.3, 26.2; HRMS (ESI+): Calcd for C₁₀H₂₂NO [M+NH₄]⁺: 172.17014, Found: 172.17043. [α]_D²⁰ +5.4 (*c* = 1.0, CHCl₃) for an enantiomerically enriched sample of 91.5:8.5 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (91.5:8.5 er shown; CDB/DM column, 15 psi, 100 °C; the chiral GC trace was taken with the *R* enantiomer of product prepared by using the *R* enantiomer of ligand).

Retention time	Area	Area %	Retention time	Area	Area %
32.094	300.23016	50.30166	32.304	60.33381	8.53142
33.540	296.62924	49.69834	33.107	646.86133	91.46858

(*S*)-1-Cyclohexylprop-2-en-1-ol (11): IR (neat): 3353 (br, m), 3076 (w), 2921 (s), 2851 (m), 1644 (w), 1449 (m), 1424 (w), 1307 (w), 1260 (w), 1232 (w), 1213 (w), 1184 (w), 1145 (w), 1094 (w), 1081 (w), 1051 (w), 1017 (m), 990 (m), 973 (m), 918 (s), 891 (m), 862 (w), 840 (w), 779 (w), 728 (w), 690 (w), 617 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.86 (1H, ddd, *J* = 17.2, 10.4, 6.6 Hz), 5.21 (1H, dt, *J* = 17.2, 1.4 Hz), 5.14 (1H, dt, *J* = 10.4, 1.2 Hz), 3.85 (1H, t, *J* = 6.4 Hz), 1.80-1.62 (5H, m), 1.48-1.36 (2H, m), 1.29-0.95 (5H, m); ¹³C NMR (100 MHz, CDCl₃): δ 139.8, 115.5, 77.8, 43.5, 28.7, 28.2, 26.5, 26.13, 26.06; HRMS (ESI+): Calcd for C₉H₂₀NO [M+NH₄]⁺: 158.15449, Found: 158.15489. [α]_D²⁰ +13.4 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 97:3 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (97:3 er shown; α -dex column, 15 psi, 70 °C; the GC trace was taken with the *S*-enantiomer of product prepared by using the *R* enantiomer of ligand).

(-)-Linalool (Table 2, entry 1 and 2): ¹H NMR (400 MHz, CDCl₃): δ 5.91 (1H, dd, J = 17.4, 10.8 Hz), 5.22 (1H, dd, J = 17.4, 1.4 Hz), 5.14-5.10 (1H, m), 5.06 (1H, dd, J = 10.8, 1.2 Hz), 2.10-1.95 (2H, m), 1.68 (3H, d, J = 1.2 Hz), 1.60–1.53 (6H, m), 1.28 (1H, s); HRMS (ESI+): Calcd for C₁₀H₂₂NO [M+NH₄]⁺: 172.17014, Found: 172.17095. [α]_D²⁰ –17.2 (*c* 1.00, CHCl₃) for a sample with 97:3 er. The spectroscopic data match those reported previously.¹¹ Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (97:3 er shown below; β -dex column, 15 psi, 70 °C).

^{(11) (}a) Ohloff, G.; Klein, E. *Tetrahedron* **1962**, *18*, 37-42. (b) Schneider, J. S.; Yoshihara, K.; Nakanishi, K. J. Chem. Soc., Chem. Comm. **1983**, *7*, 352–353. (c) Reich, H. J.; Yelm, K. E. J. Org. Chem. **1991**, *56*, 5672–5679.

Proof of Stereochemistry: Value reported previously $([\alpha]_D^{20} - 19.4, c 8.15, CHCl_3)$ is assigned for the (*R*)-(-)-Linalool.¹¹

(*R*)-3-Methyl-5-phenylpent-1-en-3-ol, (Table 2, entry 3): IR (neat): 3409 (br, w), 3085 (w), 3062 (w), 3026 (w), 2971 (w), 2930 (w), 2864 (w), 1643 (w), 1603 (w), 1497 (w), 1454 (w), 1411 (w), 1370 (w), 1266 (w), 1216 (w), 1155 (w), 1105 (w), 1069 (w), 1030 (w), 996 (w), 917 (m), 828 (w), 756 (w), 730 (m), 697 (s), 620 (w), 558 (w), 503 (w), 425 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.25 (2H, m), 7.20-7.16 (3H, m), 5.98 (1H, dd, *J* = 17.4, 10.8 Hz), 5.27 (1H, dd, *J* = 17.2, 1.2 Hz), 5.12 (1H, dd, *J* = 10.8, 1.2 Hz), 2.722.60 (2H, m), 1.92-1.78 (2H, m), 1.45 (1H, bs), 1.35 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 142.3, 128.4, 128.3, 125.7, 112.0, 73.2, 44.0, 30.3, 28.0; HRMS (ESI+): Calcd for $C_{12}H_{20}NO [M+NH_4]^+$: 194.15449, Found: 194.15449. $[\alpha]_D^{20} -25.0 \ (c = 1.00, CHCl_3)$ for an enantiomerically enriched sample of 96.5:3.5 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (96.5:3.5 er shown; β-dex column, 15 psi, 120 °C).

(*R*)-6-((*tert*-Butyldimethylsilyl)oxy)-3-methylhex-1-en-3-ol, (Table 2, entry 4): IR (neat): 3413 (br, w), 2953 (w), 2929 (w), 2857 (w), 1645 (w), 1472 (w), 1462 (w), 1409 (w), 1388 (w), 1362 (w), 1254 (m), 1095 (s), 1004 (w), 938 (w), 918 (m), 832 (s), 773 (s), 712 (w), 682 (w), 661 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.89 (1H, dd, J = 17.2, 10.6 Hz), 5.23 (1H, dd, J = 17.2, 1.4 Hz), 5.04 (1H, dd, J = 10.8, 1.6 Hz), 3.69-3.59 (2H, m), 2.72 (1H, br s), 1.68-1.55 (4H, m), 1.27 (3H, s), 0.90 (9H, s), 0.06 (6H, s); ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 111.7, 72.6, 63.8, 39.5, 28.2, 27.3, 25.9, 18.3, -5.40; HRMS (ESI+): Calcd for C₁₃H₂₇OSi [M-OH]: 227.1831, Found: 227.1829. [α]_D²⁰ –3.2 (c = 1.00, CHCl₃) for an enantiomerically enriched sample of 95:5 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (95:5 er shown; β-dex column, 15 psi, 110 °C).

(*R*)-4-Hydroxy-4-methylhex-5-en-1-yl benzoate (Table 2, entry 5): IR (neat): 3494 (b, w), 3064 (w), 2965 (w), 1716 (m), 1703 (m), 1602 (w), 1584 (w), 1452 (w), 1315 (w), 1272 (s), 1176 (w), 1111 (m), 1070 (w), 1026 (w), 995 (w), 920 (m), 852 (w), 709 (s), 687 (m), 675 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.03 (2H, m), 7.58-7.54 (1H, m), 7.46-7.42 (2H, m), 5.93 (1H, dd, *J* = 17.4, 10.8 Hz), 5.24 (1H, dd, *J* = 17.4, 1.2 Hz), 5.09 (1H, dd, *J* = 10.8, 1.2 Hz), 4.33 (2H, t, *J* = 6.6 Hz), 1.87-1.79 (2H, m), 1.71-1.65 (2H, m), 1.44-1.43 (1H, m), 1.32 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 144.7, 132.8, 130.3, 129.5, 128.3, 112.1, 72.9, 65.2, 38.4, 28.0, 23.5; HRMS (ESI+): Calcd for C₁₄H₂₂NO₃ [M+NH₄]⁺: 252.15997, Found: 252.16059. [α]_D²⁰ -8.6 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 95:5 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (95:5 er shown; CDB/DM column, 15 psi, 140 °C).

(*R*)-1-Cyclohexyl-2-methylbut-3-en-2-ol (Table 2, entry 6): IR (neat): 3423 (b, m), 3085 (w), 2919 (s), 2850 (m), 1642 (w), 1448 (m), 1411 (w), 1369 (w), 1283 (w), 1259 (w), 1228 (w), 1102 (w), 995 (w), 975 (m), 916 (s), 892 (w), 845 (w), 744 (w), 690 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.93 (1H, dd, J = 17.6, 10.8 Hz), 5.20 (1H, dd, J = 17.2, 1.2 Hz), 5.02 (1H, dd, J = 10.4, 1.2 Hz), 1.77-1.73 (2H, m), 1.67-1.57 (3H, m), 1.45-1.36 (4H, m), 1.27-1.07 (6H, m), 1.01-0.88 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 111.0, 73.8, 49.8, 35.11, 35.07, 33.7, 28.7, 26.4, 26.3, 26.2; HRMS (ESI+): Calcd for C₁₁H₁₉ [M-OH]: 151.14868, Found: 151.14920. [α]_D²⁰ -25.0 (c = 1.00, CHCl₃) for an enantiomerically enriched sample of 81:19 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (81:19 er shown; β-dex column, 15 psi, 80 °C).

(*S*)-2-Cyclohexylbut-3-en-2-ol (Table 2, entry 7): IR (neat): 3436 (b, m), 3085 (w), 2923 (s), 2852 (m), 1642 (w), 1450 (m), 1411 (w), 1369 (w), 1291 (w), 1244 (w), 1194 (w), 1157 (w), 1130 (w), 1090 (w), 1015 (w), 996 (m), 917 (s), 892 (m), 848 (w), 809 (w), 761 (w), 744 (w), 696 (w) cm⁻

¹; ¹H NMR (400 MHz, CDCl₃): δ 5.91 (1H, dd, J = 17.4, 10.8 Hz), 5.18 (1H, dd, J = 17.2, 1.4 Hz), 5.06 (1H, dd, J = 10.8, 1.5 Hz), 1.82-1.75 (4H, m), 1.68-1.63 (1H, m), 1.43-0.92 (10H, m); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 111.9, 75.3, 48.0, 27.4, 27.0, 26.6, 26.5, 26.4, 25.1; HRMS (ESI+): Calcd for C₁₀H₁₇[M-OH]⁺: 137.13303, Found: 137.13258. [α]_D²⁰ –13.6 (c = 1.00, CHCl₃) for an enantiomerically enriched sample of 98:2 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (98:2 er shown; CDB/DM column, 15 psi, 100 °C).

(*S*)-2-Phenylbut-3-en-2-ol (Table 3, entry 1): IR (neat): 3411 (b), 3086 (w), 3059 (w), 3026 (w), 2979 (w), 2927 (w), 1645 (w), 1601 (w), 1492 (w), 1446 (w), 1367 (w), 1218 (w), 1177 (w), 1123 (w), 1064 (w), 1027 (w), 993 (w), 921 (m), 874 (w), 765 (m), 715 (w), 699 (s) 591 (w), 539 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (2H, m), 7.37-7.32 (2H, m), 7.28-7.23 (1H, m), 6.18 (1H, dd, *J* = 17.2, 10.8 Hz), 5.30 (1H, dd, *J* = 17.2, 1.2 Hz), 5.15 (1H, dd, *J* = 10.8, 1.2 Hz), 1.89 (1H, br. s), 1.66 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 146.4, 144.8, 128.2, 127.0, 125.1, 112.3, 74.7, 29.3; HRMS (ESI+): Calcd for C₁₀H₁₁ [M-OH]: 131.0861, Found: 131.0854. All spectral data matched the published values.¹² [α]_D²⁰ –23.3 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 90:10 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (90:10 er shown; CDB/DM column, 15 psi, 100 °C).

Proof of Stereochemistry: Literature value ($[\alpha]_D^{20}$ –28.3, c 2.1, acetone) is assigned for the (*S*) enantiomer with 98:2 er.¹²

^{(12) (}a) Ruano, J. L. G.; Rodriguez-Fernández, M. M.; Maestro, M. C. *Tetrahedron* **2004**, *60*, 5701–5710. (b) Stymiest, J. L.; Bagutski1, V.; French, R. M.; Aggarwal, V. K. *Nature* **2008**, *456*, 778–783.

(*S*)-2-(Naphthalen-1-yl)but-3-en-2-ol (Table 3, entry 2): IR (neat): 3413 (b, w), 3086 (w), 3048 (w), 2975 (w), 2930 (w), 1598 (w), 1509 (w), 1453 (w), 1408 (w), 1395 (w), 1367 (w), 1265 (w), 1233 (w), 1162 (w), 1096 (m), 1068 (w), 1015 (w), 991 (m), 921 (m), 882 (w), 862 (w), 802 (m), 775 (s), 737 (w), 704 (w), 666 (w) 612 (w), 572 (w), 546 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.52-8.50 (1H, m), 7.87-7.85 (1H, m), 7.80 (1H, d, *J* = 8.2 Hz), 7.70 (1H, dd, *J* = 7.2, 1.0 Hz), 7.48-7.42 (3H, m), 6.40 (1H, dd, *J* = 17.4, 10.6 Hz), 5.28 (1H, d, *J* = 17.4 Hz), 5.22 (1H, d, *J* = 10.6 Hz), 2.09 (1H, br. s), 1.90 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 141.3, 134.7, 130.7, 128.8, 128.8, 127.4, 125.2, 125.1, 124.8, 123.6, 113.7, 75.7, 29.8; HRMS (ESI+): Calcd for C₁₄H₁₃ [M-OH]: 181.1017, Found: 181.1016. All spectral data matched the published values (racemic compound).¹³ [α]_D²⁰ -16.6 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 94.4:5.6 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (94.4:5.6 er shown; CDB/DM column, 15 psi, 120 °C).

(13) Roversi, E.; Vogel, P. Helv. Chim. Acta 2002, 85, 761-771.

179.916498.9042149.82032182.04536.928455.62945	498.90421 49.82032 182.045 36.92845 5.62	945
--	--	-----

(*S*)-2-(2-Bromophenyl)but-3-en-2-ol (Table 3, entry 3): IR (neat): 3441 (b, w), 3062 (w), 2978 (w), 2927 (w), 2850 (w), 1588 (w), 1563 (w), 1463 (w), 1428 (w), 1408 (w), 1370 (w), 1328 (w), 1268 (w), 1233 (w), 1206 (w), 1164 (w), 1130 (w), 1074 (w), 1044 (w), 1017 (m), 988 (w), 921 (m), 872 (w), 755 (s), 729 (m), 683 (w), 650 (w), 596 (w), 553 (w), 457 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (1H, dd, *J* = 8.0, 1.8 Hz), 7.58 (1H, dd, *J* = 7.8, 1.4 Hz), 7.32 (1H, dt, *J* = 7.6, 1.8 Hz), 6.31 (1H, dd, *J* = 17.6, 10.4 Hz), 5.21 (1H, d, *J* = 0.8 Hz), 5.17 (1H, dd, *J* = 5.3, 0.8 Hz), 2.93 (1H, s), 1.80 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 143.8, 134.9, 128.8, 127.9, 127.4, 121.3, 114.2, 75.5, 27.9; HRMS (ESI+): Calcd for C₁₀H₁₅BrNO[M+NH₄]⁺: 244.03370, Found: 244.03358. [α]_D²⁰ –19.2 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 99:1 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (99:1 er shown; CDB/DM column, 15 psi, 100 °C).

Retention time	Area	Area %	Retention time	Area	Area %
79.912	197.69003	49.94566	80.583	2.28965	0.80419
81.845	198.12021	50.05434	81.667	282.42691	99.19581

(*S*)-2-(2-Chlorophenyl)but-3-en-2-ol (Table 3, entry 4): IR (neat): 3566 (w), 3426 (b, w), 3063 (w), 2979 (w), 2931 (w), 1638 (w), 1592 (w), 1567 (w), 1467 (w), 1432 (w), 1409 (w), 1370 (w), 1329 (w), 1271 (w), 1162 (w), 1134 (w), 1097 (w), 1035 (m), 989 (w), 921 (m), 874 (w), 755 (s), 738 (m), 731 (m), 689 (w), 660 (w), 596 (w), 555 (w), 466 (w), 418 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (1H, dd, *J* = 7.6, 1.8 Hz), 7.36 (1H, dd, *J* = 7.6, 1.5 Hz), 7.30-7.20 (2H, m), 6.31 (1H, dd, *J* = 17.2, 10.7 Hz), 5.22-5.16 (2H, m), 2.81 (1H, s), 1.78 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 142.8, 131.9, 131.2, 128.6, 127.5, 126.9, 113.7, 75.0, 27.7; HRMS (ESI+): Calcd for C₁₀H₁₀Cl[M+H-H₂O]⁺: 165.04710, Found: 165.04647. [α]_D²⁰ –23.4 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 99:1 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (99:1 er shown; CDB/DM column, 15 psi, 80 °C).

(*S*)-2-(*o*-Tolyl)but-3-en-2-ol (Table 4, entry 5): IR (neat): 3397 (b, w), 3063 (w), 3015 (w), 2976 (w), 2930 (w), 1639 (w), 1602 (w), 1486 (w), 1455 (w), 1407 (w), 1367 (w), 1290 (w), 1213 (w), 1164 (w), 1129 (w), 1099 (m), 1049 (m), 993 (w), 917 (s), 876 (w), 794 (w), 760 (s), 728 (s), 702 (w), 676 (w), 614 (w), 558 (w), 462 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.50 (1H, m), 7.19-7.14 (3H, m), 6.18 (1H, dd, *J* = 17.4, 10.6 Hz), 5.20-5.13 (2H, m), 2.46 (3H, s), 1.80 (1H, s), 1.72 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 143.3, 136.4, 132.3, 127.3, 125.7, 125.5, 112.9, 75.5, 29.0, 21.9; HRMS (ESI+): Calcd for C₁₁H₁₃[M+H-H₂O]⁺: 145.10173, Found: 145.10113. [α]_D²⁰ –19.8 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 98:2 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (98:2 er shown; CDB/DM column, 15 psi, 120 °C).

(*S*)-2-(*m*-Tolyl)but-3-en-2-ol (Table 3, entry 6): IR (neat): 3407 (br), 3087 (w), 2979 (w), 2925 (w), 2862 (w), 1640 (w), 1607 (w), 1588 (w), 1487 (w), 1451 (w), 1411 (w), 1367 (w), 1249 (w), 1170 (w), 1122 (w), 1092 (w), 1070 (w), 993 (m), 920 (s), 820 (w), 785 (s), 700 (s), 680 (w), 616

(w), 529 (w), 475 (w), 448 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.21 (3H, m), 7.09-7.06 (1H, m), 6.17 (1H, dd, J = 17.2, 10.6 Hz), 5.31 (1H, dd, J = 17.2, 1.2 Hz), 5.14 (1H, dd, J = 10.8, 1.2 Hz), 2.36 (3H, s), 1.86 (1H, s), 1.65 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 146.4, 144.9, 137.8, 128.1, 127.7, 125.8, 122.2, 112.2, 74.7, 29.3, 21.6; HRMS (ESI+): Calcd for C₁₁H₁₃[M+H-H₂O]⁺: 145.10173, Found: 145.10185. [α]_D²⁰ –13.7 (c = 1.00, CHCl₃) for an enantiomerically enriched sample of 93:7 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (93:7 er shown; CDB/DM column, 15 psi, 110 °C).

(*S*)-2-(*p*-Tolyl)but-3-en-2-ol (Table 4, entry 7): IR (neat): 3397 (b, w), 3087 (w), 2978 (w), 2924 (w), 2870 (w), 1641 (w), 1511 (w), 1450 (w), 1410 (w), 1367 (w), 1225 (w), 1183 (w), 1126 (w), 1105 (w), 1067 (w), 1019 (w), 993 (w), 918 (s), 875 (w), 816 (s), 725 (w), 701 (w), 655 (w), 579 (w), 536 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.35 (2H, m), 7.18-7.15 (2H, m), 6.17 (1H, dd, *J* = 17.2, 10.7 Hz), 5.30 (1H, dd, *J* = 17.2, 1.1 Hz), 5.14 (1H, dd, *J* = 10.8, 1.1 Hz), 2.56 (3H, s), 1.91 (1H, s), 1.65 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 143.5, 136.6, 128.9, 125.1, 112.1, 74.6, 29.3, 20.9; HRMS (ESI+): Calcd for C₁₁H₁₃[M+H-H₂O]⁺: 145.10173, Found: 145.10243. [α]_D²⁰ -17.4 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 92:8 er. Enantiomeric purity was determined by GLC analysis in comparison with authentic racemic material (92:8 er shown; CDB/DM column, 15 psi, 130 °C).

(*S*)-3-Phenylpent-1-en-3-ol (13): IR (neat): 3455 (b, w), 3086 (w), 3060 (w), 3027 (w), 2969 (w), 2934 (w), 2879 (w), 1638 (w), 1601 (w), 1492 (w), 1447 (w), 1410 (w), 1377 (w), 1348 (w), 1262 (w), 1167 (w), 1101 (w), 1059 (w), 1030 (w), 975 (w), 917 (m), 905 (m), 787 (w), 759 (s), 698 (s), 614 (w), 557 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (2H, m), 7.37-7.32 (2H, m), 7.27-7.22 (1H, m), 6.19 (1H, dd, *J* = 17.2, 10.7 Hz), 5.30 (1H, dd, *J* = 17.2, 1.2 Hz), 5.17 (1H, dd, *J* = 10.6, 1.1 Hz), 2.02-1.86 (2H, m), 1.79 (11H, s), 0.85 (3H, t, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 145.4, 144.1, 128.1, 126.8, 125.4, 112.7, 77.1, 34.6, 7.86; HRMS (ESI+): Calcd for C₁₁H₁₃ [M-OH]: 145.10173, Found: 145.10191. [α]_D²⁰ –16.4 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 80:20 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (80:20 er shown; Chiracel HPLC column OD(H)).

Representative experimental procedure for enantioselective Cu-catalyzed substitution reaction of (E)-3-Cyclohexylbut-2-en-1-yl methyl carbonate with bis(pinacolato) diboron: (R)-2-(2-Cyclohexylbut-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (14): In an N₂filled glovebox, an oven-dried vial (4 mL, 17 x 38 mm) with magnetic stir bar was charged with imidazolinium salt 4a (6.0 mg, 0.012 mmol, 6.0 mol %), Cu(OTf)₂ (3.7 mg, 0.010 mmol, 5.0 mol %), NaOMe (8.8 mg, 0.16 mmol, 80 mol %) and DME (1.0 mL) under N₂ atmosphere. The mixture was sealed with a cap (phenolic open top cap with red PTFE/white silicone) and allowed to stir for 30 min. The color of the solution was clear blue. Bis(pinacolato)diboron (102 mg, 0.400 mmol, 2.0 equiv) was added to the solution. The color of the solution immediately turned dark brown. The vial was resealed with a cap (phenolic open top cap with red PTFE/white silicone). After 30 min the vial removed from the glove box and was allowed to cool to -30 °C (cryocool), and stir for 10 min, and (E)-3-cyclohexylbut-2-en-1-yl methyl carbonate (42.5 mg, 0.200 mmol, 1.0 equiv) was added neat by syringe. The reaction was allowed to stir 24 h at -30 °C. The solution was quenched by the addition of THF (reagent grade), was allowed to warm to 22 °C, and passed through a short plug of celite and silica gel, eluting with Et₂O (3 x 2 mL). The filtrate was concentrated in vacuo to provide dark brown oil, which was purified by silica gel chromatography (0% \rightarrow 1% Et₂O in hexanes) to afford the allylic boronate, (R)-2-(2cyclohexylbut-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15), as a colorless oil (30.8 mg, 0.200 mmol, >98% yield). IR (neat): 3081 (w), 2977 (w), 2923 (m), 2852 (w), 1626 (w), 1449 (w), 1410 (w), 1371 (w), 1341 (m), 1308 (s), 1271 (w), 1245 (w), 1232 (w), 1193 (w), 1165 (w), 1143 (s), 1110 (m), 1087 (m), 1037 (w), 1004 (w), 966 (w), 898 (m), 886 (w), 852 (m), 808 (w), 772 (w), 722 (w), 671 (w), 662 (w), 579 (w), 520 (w), 445 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.90 (1H, dd, J = 17.4, 10.8 Hz), 4.98 (1H, dd, J = 10.8, 1.6 Hz), 4.89 (1H, dd, J = 17.6, 1.6 Hz), 1.73-1.51 (5H, m), 1.30-0.94 (21H, m); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 111.5, 83.0, 44.2, 30.3, 29.8, 27.6, 27.1, 27.0, 26.8, 24.7, 24.5, 14.3; HRMS (ESI+): Calcd for C₁₆H₃₀BO₂[M+H]: 265.23388, Found: 265.23501. $[\alpha]_{D}^{20}$ -12.6 (c = 1.00, CHCl₃) for an enantiomerically enriched sample of 98:2 er (enatiomeric purity was comfirmed after oxidation to the alcohol (S)-2cyclohexylbut-3-en-2-ol, page S-21).

(*R*)-2-(2-(2-Bromophenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15): IR (neat): 2976 (m), 2929 (w), 1466 (m), 1370 (m), 1315 (s), 1264 (m), 1141 (s), 1125 (s), 1082 (m), 1020 (m), 965 (m), 907 (m), 876 (m), 847 (m), 752 (m), 727 (m), 660 (m), 643 (m) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.53 (1H, dd, *J* = 8.0, 1.2 Hz), 7.30–7.24 (2H, m), 7.05 (1H, ddd, *J* = 8.0, 6.4, 2.4 Hz), 6.26 (1H, dd, *J* = 17.6, 10.8 Hz), 5.21 (1H, dd, *J* = 10.4, 1.2 Hz), 5.03 (1H, dd, *J* = 17.2, 0.8 Hz), 1.40 (3H, s), 1.19 (6H, s), 1.18 (6H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 145.9, 142.7, 133.2, 129.3, 127.6, 127.4, 125.0, 113.8, 83.6, 30.3, 24.8, 24.7, 20.6; HRMS (ESI+): Calcd for C₁₆H₂₃BBrO₂ [M+H]: 337.09745, Found: 337.09691. [α]_D²⁰ –41.3 (*c* = 1.00, CHCl₃) for an enantiomerically enriched sample of 99:1 er (enatiomeric purity was comfirmed after oxidation to the alcohol (*S*)-2-(2-bromophenyl)but-3-en-2-ol, page S-23).