1	Supplementary Materials			
2				
3	Impaired T cell receptor activation in Interleukin-1 Receptor-associated Kinase-4-			
4	deficient patients			
5				
6	Douglas R. McDonald, M.D., Ph.D. ^{1*} , Frederick Goldman, M.D. ^{2*} , Oscar D. Gomez-			
7	Duarte, M.D., Ph.D. ³ , Andrew C. Issekutz, M.D. ⁴ , Dinakantha S. Kumararatne, M.D. ⁵ ,			
8	Rainer Doffinger, Ph.D. ⁵ , and Raif S. Geha, M.D. ¹			
9				
10				
11	¹ Division of Immunology, Children's Hospital, Boston and the Department of Pediatrics,			
12	Harvard Medical School, Boston, MA, ² Division of Hematology and Oncology and the			
13	Department of Pediatrics, Children's Hospital of Alabama, Birmingham, AB,			
14	³ Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, IA,			
15	⁴ Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada,			
16	⁵ Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital,			
17	Cambridge, UK			
18	These authors contributed equally to this work.			
19				

1 Case Reports:

2 Patient 1

3	The patient, a 3 year old female, was born at term without complications to unrelated				
4	parents. Family history is negative for immune deficiency. Infectious history is				
5	remarkable for recurrent skin abscesses and impetigo, two urinary tract infections,				
6	recurrent otitis media, S. pneumoniae sepsis, P. aeruginosa brain abscess, S. pneumoniae				
7	cervical abscess. Maximum recorded temperatures with her brain abscess was 37.3°C.				
8	Physical examination is unremarkable. Initial immunologic evaluations revealed white				
9	blood cell counts from 3,300 to 17,000 per microliter and neutrophil counts from 560 to				
10	10,000 per microliter, and lymphocyte counts from 1,463 to 12,075 per microliter.				
11	Immunoglobulin levels were normal, except for low IgA levels (<5 to 13 mg/dl).				
12	Antibody titers to diphtheria and tetanus antigens, H. influenzae, and rubella were				
13	protective. Post immunization antibody titers following immunization with Pneumovax				
14	(Merck Pharmaceuticals, Whitehouse Station, NJ), which contains 23 pneumococcal				
15	polysaccharide antigens, were protective for 9/14 serotypes measured. T and B cell				
16	subsets were normal and T cell mitogen and antigen proliferation was normal. NK cell				
17	function was normal. CH50 was normal. HIV testing was negative. The patient has				
18	compound heterozygous mutations in IRAK-4 consisting of a nonsense mutation C877T				
19	(Q293X) on one allele and a 17 base pair deletion (870-887del) that results in a				
20	premature stop codon (I291X).				
21					

22 Patient 2

1	The patient, a 22 month old male, was born at term to unrelated parents. Family history					
2	is significant for an older sister with IRAK-4 deficiency. The patient was diagnosed in					
3	the first month of life based on absence of neutrophils to shed CD62L (L-selectin) in					
4	response to LPS, poly-IC, R848 and FSL lipopeptide. IL-6, TNF α , and IL-8 production					
5	by whole blood cells in response to IL-1, lipopeptide, LPS, poly-IC and R848 were					
6	absent. Immunoglobulin levels were normal at 11 months of age (IgG 386, IgA 29 and					
7	IgM 59 mg/dl) and at 22 months with IgG 651, IgA 31 and IgM 64 mg/dl, though IgE					
8	was elevated at 330U/ml (<110U/ml). Response to specific immunizations showed					
9	protective titers to hepatitis B vaccine, but failure to develop protective titers to varicella					
10	after two vaccinations with Varivax (Merck, Whitehouse Station, NJ). He did respond to					
11	MMR with mumps IgG, measles IgG and rubella IgG with protective titers. The patient					
12	did not develop protective titers to pneumococcus following vaccination with the					
13	polysaccharide antigens contained in Prevnar (diphtheria - pneumococcal conjugate					
14	vaccine; Pfizer, Kirkland Que.). The patient had a normal complete blood count,					
15	including normal lymphocyte populations. The patient has remained healthy since he					
16	was put on antibiotic prophylaxis shortly after birth. He has not had any invasive					
17	bacterial or fungal infections and has only had one episode of a mild bronchiolitis with					
18	parainfluenza 3. The patient has compound heterozygous mutations in IRAK-4					
19	consisting of a deletion (631del_G) on one allele resulting in a premature stop codon at					
20	amino acid 212 (V212X). The other allele contains the point mutation C144G, resulting					
21	in a tyrosine to stop codon (Y48X) substitution at position 48.					
22						

23 Patient 3

1	The patient, a 4 year old female, was born at term to unrelated parents. Family history is				
2	negative for immune deficiency. Infectious history is remarkable for pneumococcal				
3	meningitis. The patient was discharged to home after therapy but was subsequently				
4	readmitted with proptosis and complete opthalmoplegia of left eye. CT scan/ MRI				
5	showed a retro-orbital mass. Biopsy showed skeletal muscle infiltrated with chronic				
6	inflammatory cells. Complete resolution of retro-orbital mass occurred following				
7	treatment with antibiotics and steroids, though she was left with residual left optic				
8	atrophy. She later developed an episode of pneumococcal arthritis of the left ankle. She				
9	subsequently developed fever and meningismus but no organisms were isolated from the				
10	CSF. She has had recurrent impetigo and cellulitis of foot, no organisms isolated.				
11	Immunologic evaluations revealed normal complete blood counts, normal T and B cell				
12	subsets, normal immunoglobulin levels, protective immune responses to the				
13	polysaccharide antigens contained in Pneumovax, normal classical and alternative				
14	complement function, and a heterozygous mutation in MBL. The patient has compound				
15	heterozygous mutations in IRAK-4 consisting of C877T (Q293X) and G893A (G298D).				
16					
17	Patient 4:				
18	The patient is an 11 year male born at term to unrelated parents. Family history is				
19	negative for immune deficiency. Infectious history is significant for two episodes of				
20	pneumococcal meningitis, one year apart. Sequelae of his episodes of meningitis				
21	included stroke, seizures, mild hearing loss, and, possibly, mild learning impairment.				
22	The patient had multiple episodes of otitis media, requiring placement of myringotomy				
23	tubes at age 2 years. At eleven months of age he developed the intestinal intussuception,				

1 complicated by perforation of the intestine and abscess formation in the peritoneum. He 2 had several episodes of furuncles of the scalp and several skin infections, all of which 3 responded well to treatment with antibiotics. He was also noted to have a weak febrile 4 response, usually developing only low-grade fevers late in the course of an illness. 5 Physical examination is unremarkable. Immunologic evaluation revealed a normal 6 complete blood count and normal T and B cell subsets. Immunoglobulins were all within 7 the normal range. Specific antibody titers demonstrated protective immune responses to 8 protein antigens, such as tetanus toxoid, HiB conjugate vaccine, and the pneumococcal 9 polysaccharide conjugate vaccine, Prevnar. However, immunization with pure 10 polysaccharide antigens, contained in Pneumovax, did not result in increased titers. 11 Complement function was normal. The patient is homozygous for a nonsense mutation 12 in IRAK-4 consisting of C877T (Q293X).

Patient#	1	2	3	4
CD3	2.7(2.3-6.5)	4.6(2.3-6.5)	3.0(2.4-6.9)	1.8(1.6-6.7)
CD3/4	1.6(1.5-5)	3(1.5-5)	1.9(1.4-5.1)	1.02(1-4.6)
CD3/8	0.9(0.5-1.6)	1.4(0.5-1.6)	1.04(0.6-2.2)	0.7(0.4-2.1)
CD19	1.3(0.6-3)	0.6(0.6-3)	1.7(0.7-2.5)	1.2(0.6-2.7)
CD56	0.05(0.1-1.3)	0.3(0.1-1.3)	0.36(0.1-1.3)	0.95(0.2-1.2)

Supplementary Table 1

Values are x 1000. Normal range in parentheses.