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Discussion of RMSF and SASA parameters for the stueld structures.

The stability of the SAV scaffold on the local se&d visible in the graphs representing the Root
Mean Square Fluctuation (RMSF) of the backbonearadioms (Figures SI110 — SI12 of this Online
Resource 2). Data for full tetramer are shown. NmiBcant difference in the RMSF is observed
between the four apo structures. This underlinesrbst important point of the classical dynamias pa
of this study: point mutations did not affect sigrantly the overall dynamics of the protein backbo
This is true on the global as well as local scAlsimilar behavior is recorded also for the biotor-
cofactor-loaded SAV variants. This suggests that odifications leading to the changes of the
catalytic activity must be connected with the loealvironment of the metal, and not with backbone
dynamics.

Solvent-Accessible Surface Area (SASA) is a paramfgtcilitating analysis of the interaction
between studied cofactor-protein complexes andrwatés parameter helps to detect unusual events
e.g.: closing or opening of the pockets in the igtighrotein. Its time dependence during classicBl M
runs for the considered structures is presentellignres SI13, SI14 and SI15. In the case of apo
structures (Figure SI13), the graphs are similat,tbe S112K SAV has significantly larger solvent-
accessible surface areas. This is consistentlyrebdealso for the cofactor-loaded protein strucure
(Fig. SlI14, SI15). Summarizing, variations of th&S2\ during the simulation do not mark any of the
protein variants as having significantly disturlsadlvation structure.
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Fig. SI1 Superimposition of the WT SAV before (red colorfafter 56 ns of the MD run (blue color)

Sl-4



Fig. SI2 Superimposition of WT SAV (blue color) and its mnt S112A (purple color) after the MD
run
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Fig. SI3 Superimposition of WT SAV (blue color) and its 2Kl(silver color) mutant after the MD
run
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Fig. Sl14 Superimposition of WT SAV (blue color) and its FBdpink color) mutant after the MD run
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Fig. SI5 Superimposition of WT SAV and WT SAV-Biotin comgléabove). WT SAV is marked in
blue while WT SAV-Biotin is marked in cyan. In atidn the Biotin positions are indicated using
licorice. Root mean square deviation (RMSD, in A)tlwe protein backbone as a function of MD
simulation time (in ns) for WT SAV and WT SAV-Biatcomplex is presented (below)
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Fig. SI6 Superimposition of WT SAV and WT SAWf-(p-cymene)Ru(Biop-L)CI] complex (above).
WT SAV is marked in blue while WT SAWRP-(p-cymene)Ru(Biop-L)CI] is marked in silver. In

addition, the 1j°-(p-cymene)Ru(Biop-L)CI] positions are indicated using licorice. Ranean square
deviation (RMSD, in A) of the protein backbone afuaction of MD simulation time (in ns) for WT

SAV and WT SAV-h°(p-cymene)Ru(Biop-L)CI] complex is presented (below). WT SAV is madk
in red while WT SAV-k°-(p-cymene)Ru(Biop-L)Cl] complex is marked in green
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Fig. SI8 Mass-weighted radius of gyration (RGYR) calculagsda function of simulations time for
WT SAV, WT SAV-Biotin and its mutants with BiotiWwT SAV is marked in red, WT SAV-Biotin in
cyan, S112A-Biotin in green, S112K-Biotin in bluadaP64G-Biotin in purple
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Fig. SI9 Mass-weighted radius of gyration (RGYR) calculagsda function of simulations time for
WT SAV, WT SAV-[n°(p-cymene)Ru(Biop-L)CI] and its mutants withr>-(p-cymene)Ru(Biotp-
L)CI. WT SAV is marked in red, WT SAVH’-(p-cymene)Ru(Biop-L)CI] in cyan, S112A4°(p-
cymene)Ru(Biop-L)CI] in green, S112K4j®(p-cymene)Ru(Biop-L)CI] in blue and P64GH®-(p-
cymene)Ru(Biofp-L)ClI] in purple
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Fig. SILI0Root Mean Square Fluctuation (RMSF) of the backlainens of individual residues of WT
SAV and its mutants. WT SAV is marked in red, S1i8A4reen, S112K in blue and P64G in purple
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Fig. SI11Root Mean Square Fluctuation (RMSF) of the backlainens of individual residues of WT
SAV, WT SAV-Biotin complex and mutants with BiotidVT SAV is marked in red, WT SAV-Biotin
in cyan, S112A-Biotin in green, S112K-Biotin in bland P64G-Biotin in purple
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Fig. SI12Root Mean Square Fluctuation (RMSF) of the backlainens of individual residues of WT
SAV, WT SAV-[n°(p-cymene)Ru(Biop-L)Cl] complex and mutants witmf-(p-cymene)Ru(Biop-
L)CI. WT SAV is marked in red, WT SAVH’-(p-cymene)Ru(Biop-L)CI] in cyan, S112A4°(p-
cymene)Ru(Biop-L)CI] in green, S112K4j°-(p-cymene)Ru(Biop-L)CI] in blue and P64GH®-(p-
cymene)Ru(Biofp-L)CI] in purple
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Fig. SI13 Solvent accessible surface area (SASA) calculagea fanction of simulation time for WT
SAV and its mutants. WT SAV is marked in red, S1i8A4reen, S112K in blue and P64G in purple
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Fig. SI14 Solvent accessible surface area (SASA) calculagea fanction of simulation time for WT
SAV and WT SAV-Biotin and its mutants with Biotid'T SAV is marked in red, WT SAV-Biotin in
cyan, S112A-Biotin in green, S112K-Biotin in bluadaP64G-Biotin in purple
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Fig. SI15 Solvent-accessible surface area (SASA) calculased function of simulation time for WT
SAV, WT SAV-[n®(p-cymene)Ru(Biop-L)CI] and its mutants withr{>-(p-cymene)Ru(Biop-L)CI].
WT SAV is marked in red, WT SAVR’-(p-cymene)Ru(Biop-L)Cl] in cyan, S112A4°(p-
cymene)Ru(Biop-L)CI] in green, S112K4j°(p-cymene)Ru(Biop-L)CI] in blue and P64GH®-(p-
cymene)Ru(Biofp-L)CI] in purple
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Fig. SI16 Time evolution of the Ru-Ru distances for metals:¢éighboringn®-(p-cymene)Ru(Biop-
L)CI ligands anchored in WT SAV. Results of claati®lD. Stereochemistry of the metal centers: the
R — R pair is marked green, thR — S pair is marked red. Average distances and theindstrd
deviations: 6.45+0.99A for th@ — R 7.48+0.30A for th&R® — S
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Fig. SI17 Time evolution of the Ru-Ru distances for metals:¢éighboringn®-(p-cymene)Ru(Biop-
L)ClI ligands anchored in S112A-SAV. Results of sleal MD. Stereochemistry of the metal centers:
the R — R pair is marked green, the — S pair is marked red. Average distances and thammdstrd
deviations: 8.81+1.13A for th@ — R 7.96+0.78A for th&® — S
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Fig. SI18 Time evolution of the Ru-Ru distances for metalsi¢éighboringn®-(p-cymene)Ru(Biop-
L)ClI ligands anchored in S112K-SAV. Results of sleal MD. Stereochemistry of the metal centers:
the R — R pair is marked green, the — S pair is marked red. Average distances and thammdstrd

deviations: 7.38+0.81A for the — R 7.36+0.55A for th&R — S
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Fig. SI19 Time evolution of the Ru-Ru distances for metals:¢éighboringn®-(p-cymene)Ru(Biop-
L)CI ligands anchored in P64G-SAV. Results of dlzesMD. Stereochemistry of the metal centers:
the R — R pair is marked green, the — S pair is marked red. Average distances and thammdstrd

deviations: 9.34+1.29A for the — R 8.67+0.97A for th&R — S
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Fig. S120 Additional view of the biotin surrounded by selettesidues forming hydrogen bonding
network — a model folab initio Born-Oppenheimer Molecular Dynamics. For claribply those
hydrogen atoms which participate in the hydrogemdsaare visualized
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Fig. SI21 Additional view of the biotin surrounded by seksttresidues forming hydrogen bonding
network — a model foab initio Born-Oppenheimer Molecular Dynamics. Fixed atoors \hich the
position constraints were assumed during initigimization and MD run) are marked with orange
spheres
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Fig. SI22 Time evolution of the hydrogen bonds with carbooyl/gen atom of biotin acting as an
acceptor. Results of classical force field molecdimnamics for the P64G SAV mutant loaded with the
metal-bearing cofactor. The behavior is typical dtler models as well: the contact to Asn23 is less

stable than the remaining two hydrogen bonds.
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Fig. SI23Time evolution of the hydrogen bonds with the N&ido nitrogen atom of biotin acting as a

donor. The acceptor atoms are two carboxyl oxyg#naspl128 (distinguishable by red and green
graphs). Results of classical force field molecdimamics for the S112K SAV mutant loaded with the
metal-bearing cofactor. Typically also for othanalations, this bond can be unstable for one bondin

pocket (lower panel), while it is conserved for thther ones (upper panel). Note that both oxygen
atoms of the Asp128-CO@®@an serve as acceptors and exchange their ralegdte simulation.
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Fig. SI24Time evolution of the two hydrogen bonds: with e ureido nitrogen atom of biotin acting
as a donor (N1-H...O-Ser45, upper panel) and theusaifom of the biotin acting as an acceptor
(Ser90-0O-H...S, lower panel). Results of classicatddield molecular dynamics for the S112K SAV
mutant loaded with the metal-bearing cofactor. €Hesnds are stable in the simulations.
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