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Non-invasive assessment of kidney 
oxygenation: a role for BOLD MRI
RP Mason1

Blood oxygen level-dependent (BOLD) contrast magnetic resonance 
imaging (MRI) has been applied to investigate kidney oxygenation in 
human patients. These investigations reflect the progress of radiology 
from a primarily anatomic discipline to one that provides insight into 
tissue physiology. In particular, magnetic resonance imaging (MRI) is 
non-invasive, uses no ionizing radiation, and provides insight into disease 
development and tissue physiology.
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In this issue, research groups from 
Northwestern University (Chicago, Illi-
nois, USA) and the University of Berne 
(Switzerland) report having applied 
blood oxygen level-dependent (BOLD) 
contrast magnetic resonance imaging 
(MRI) to investigate kidney oxygena-
tion in human patients.1,2 Th ese investi-
gations refl ect the progress of radiology 
from a primarily anatomic discipline 
to one that provides insight into tissue 
physiology. Progress in instrumentation, 
computing power, and data analysis has 
revolutionized the abilities of radiologi-
cal techniques to provide non-invasive 
insight into disease development and 
tissue physiology. In particular, MRI 
is non-invasive and uses no ionizing 
radiation. Modern clinical magnetic 
resonance scanners can provide exquisite 
anatomy, but more importantly, magnetic 
resonance can provide images sensitive 
to multiple parameters, for example, 
longitudinal relaxation (T1 (=1/R1)), 
transverse relaxation (T2 (=1/R2) and 
(T2* (=1/R2*)), and diffusion, with 
additional separation of water, fat, and 
metabolite images. Th ese facets make 
MRI a complex discipline, but they open 

enormous opportunities for investigat-
ing tissue pathophysiology. Th e applica-
tion of appropriate spin physics can give 
insight into tissue perfusion, intracellular 
water diff usion, blood fl ow, and oxygena-
tion, which is most pertinent here.

The variation of the water proton 
nuclear magnetic resonance T2 with 
blood oxygenation was first reported 
by Th ulborn et al. some 20 years ago.3 
Ogawa et al.4 pioneered the application 
to tissues, and the BOLD approach has 
now become a mainstay for interrogat-
ing neurological function with so-called 
functional MRI. Th e observations are 
predicated on the paramagnetic proper-
ties of deoxyhemoglobin, which induces 
susceptibility gradients in blood, causing 
loss of signal in T2*-weighted magnetic 
resonance images. Conversion to oxyhe-
moglobin leads to signal gain.

A number of investigators5,6 have shown 
relationships between R2 or R2* and par-
tial pressure of oxygen (pO2) in blood, and 
an example is presented in Figure 1. In 
the range 4–148 torr, both R2 and R2* are 
sensitive to pO2, whereas R1 is essentially 
invariant. Ultimately, complex quadratic 
relationships are oft en found over the range 
0–760 torr, due to the sigmoidal binding 
of oxygen with hemoglobin. Th e forma-
tion of deoxyhemoglobin directly alters 
T2, and this has been successfully applied 
to estimate pO2 in major blood vessels or 
the heart, brain, and abdomen. In other 
tissues, it can be a little more complicated, 
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as individual image voxels oft en comprise 
both blood and surrounding tissues and 
now magnetic susceptibility gradients 
are pertinent as detected by R2*. Further 
complications arise because the signal 
may be infl uenced by blood fl ow, vascu-
lar volume, or hematocrit as well as pO2 
itself.6 Appropriate sequences can avoid 
flow effects.7 Moreover, changes in the 
oxygen–hemoglobin dissociation curve 
may be infl uenced by such factors as pH, 
2,3-diphosphoglycerate, and temperature,8 
which can modulate the fraction of deoxy-
hemoglobin as a function of pO2 and R2*.

Prasad and colleagues have pioneered 
the use of BOLD MRI to investigate 
kidney disease particularly related to 
hypoxia with a number of reports in 
recent years. In their latest paper,1 they 
demonstrate the use of a higher-field 
magnet (3 tesla) to examine kidney oxy-
genation with respect to water overload. 
It is widely recognized that the magni-
tude of the BOLD response increases at 
higher magnetic fi eld. Meanwhile, Hof-
mann et al.2 have examined BOLD signal 
response to administration of a number 
of common pharmaceutical drugs, which 
may be expected to be vasoactive and 
potentially induce hypoxia in kidneys. 
Because the human kidney is very well 
perfused, one might expect a particularly 
large BOLD response to variations in vas-
cular oxygenation. However, the blood 
vessels appear too small to allow diff er-
entiation of vessel from tissue in these 
studies. Nonetheless, separation of the 
medulla and cortex is readily achieved. 
Both teams report that the T2* of the cor-

tex is considerably shorter than that of 
the medulla. Meanwhile, the T2* of the 
medulla is considerably higher at 3 tesla 
and was found to undergo a signifi cant 
change upon water load. Th e investiga-
tors clearly demonstrate clinical applica-
bility of these measurements with groups 
of fi ve and 30 patients, respectively.1,2 
One of the largest issues for BOLD MRI 
in vivo is the elimination of motion arti-
facts, as small errors in signal co-regis-
tration for subtraction imaging can lead 
to anomalous results. In this case, both 
teams of investigators have chosen direct 
measurement of R2* rather than simple 
image subtraction, which should largely 
obviate problems of image registration.

A lack of signal change with respect to 
intervention (that is, drug administration) 
may be reasonably interpreted as constant 
renal vascular oxygenation. However, there 
must be caution in interpreting changes 
in signal directly in terms of pO2. Other 
investigators, most notably Baudelet and 
Gallez,9 have shown that a given change in 
R2* or signal intensity may relate to vastly 
diff erent changes in pO2. Th us, although 
there is a distinct relationship, quantita-
tive interpretation must be applied with 
caution. Changes in R2* may be caused by 
vasodilatation or pH and not necessarily 
pO2. Furthermore, an increase in R2* may 
refl ect a decrease in kidney vascular oxy-
genation (hypoxiation), but not necessarily 
one that achieves hypoxia or anoxia.

Ultimately, the beauty of BOLD MRI 
is that it uses blood itself as the reporter 
of vascular oxygenation. There is no 
need for exogenous reporter molecules. 
Prasad and colleagues1 and Hofmann et 
al.2 simply measured changes in R2* that 
accompanied drug administration. An 
alternative approach is to examine the 
ability to modulate vascular oxygena-
tion using inhaled gas as a contrast agent. 
Th is can be highly sensitive to alterations 
in the rate of oxygen delivery and has 
been used to evaluate tumor vascular 
oxygenation.7 Use of inhaled oxygen as 
a contrast agent can lead to much larger 
signal responses, potentially amplifying 
the eff ects of pharmaceutical interven-
tions. Beyond the applications shown 
for BOLD by Prasad and colleagues1 
and Hofmann et al.,2 one may envisage 
examination of renal-cell carcinoma.

Th e BOLD technique must be placed in 
the context of other approaches to assess-
ing tissue oxygenation. Studies with elec-
trodes are widely reported, but highly 
invasive. Near-infrared spectroscopy or 
imaging could provide direct insight into 
vascular oxygenation, but currently the 
ability to discriminate deep-seated tissues 
and organs is somewhat limited. Other 
nuclear magnetic resonance approaches 
can determine absolute pO2 within tissues, 
most notably on the basis of the spin lat-
tice relaxation rate, R1, of oxygen reporter 
molecules such as hexafl uorobenzene.10 
Of course, such approaches are invasive, 
as the agents must be introduced into the 
tissues being interrogated.

In conclusion, Prasad and colleagues1 
and Hofmann et al.2 provide further evi-
dence for the utility of BOLD MRI in the 
investigation of kidney physiology, and 
this may be important for assessing drug 
activity or the progression of disease.
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Figure 1 | Relationship between nuclear 
magnetic resonance relaxation parameters 
R1 (�), R2 (�), and R2* (�) and partial 
pressure of oxygen (pO2) in aliquots of 
fresh bovine blood observed by magnetic 
resonance imaging at 4.7 tesla. (Data kindly 
provided by  L Jiang.)


