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Abstract

In this supplement to the article ‘A symbolic/subsymbolic interface protocol for cognitive modeling’, we describe the details of a
neural network model of the Tower of London task. A similar model has been shown to reproduce the behavior of normal human
subjects and also patients with prefrontal brain damage (Polk et al., 2002) and Parkinson’s disease (Simen et al., 2004). We discuss
in the second section a technique for parameterizing dynamical systems that proved essential to the construction of this model.

1. Problem-space search by a neural production system

In this section, we apply the principles of logic- and
architecture-level design that we have presented in previous
sections to construct a working model of brain circuits essen-
tial for step-by-step problem solving. We apply this to a task
that we have previously modeled with a hybrid neural/symbolic
model to explain problem-solving impairments by patients with
prefrontal brain damage (Polk et al., 2002). The task is the
Tower of London task (Shallice, 1982), a puzzle based on the
Tower of Hanoi disk-stacking puzzle that was developed for use
with potentially brain-damaged subjects. It requires a starting
configuration of colored balls on pegs to be transformed into a
goal configuration in as few moves as possible (see the bottom
of Fig. 1 for a representative problem).

In modeling this task, we confront many of the same difficult
choices about how to represent knowledge in a model — and
about how much knowledge to build into it — that symbolic
modelers face in cognitive psychology, and that programmers
of expert systems face in artificial intelligence (AI). Such lim-
its fundamentally shape the predictions of any problem-solving
model that acquires most of its knowledge from a programmer,
rather than from a training process. (Unfortunately, program-
ming a significant amount of knowledge into models of com-
plex cognition is currently unavoidable, both because we do not
have a well-understood learning algorithm to acquire the types
of model components and connections we use, and because the
amount of simulation necessary to train up the relevant task rep-
resentations under a plausible algorithm would likely pose an
insurmountable barrier to modeling complex cognition in prac-
tice.)

Email addresses: psimen@princeton.edu (Patrick Simen),
tpolk@umich.edu (Thad Polk)

To see how a psychologically implausible knowledge base
can impact a theory of problem solving, consider the extreme
case in which all relevant knowledge already exists in a system.
To implement such a system in a neural network, a program-
mer could use the design principles we have presented to en-
code exhaustively the optimal solution trajectories for all pos-
sible problems, identifying each with a unique identifier node,
and then causing the system simply to execute an appropriate,
pre-existing solution sequence whenever any Tower of London
problem is presented. Such a model may be suitable as a model
of well-learned sequence performance, but it is highly unintu-
itive as a model of problem solving (that is, as a model that
can produce sequences of actions that it has never before pro-
duced). Furthermore, for every problem requiring n moves, it
has at least n parameters (the units that encode the moves and
the weights that encode the transitions between them in a par-
ticular solution), making it extremely unparsimonious.

When the necessary sequence is not already stored, however,
it must be created. To do this, the problem space must be ex-
plored, meaning that possible solutions must be created and
evaluated. Despite the fact that the standard AI approach to
problem solving is a sequential search process, we need not ac-
cept this approach unquestioningly. Solutions, after all, could
conceivably be created and evaluated in parallel. We have al-
ready seen how a large number of individual responses can be
considered simultaneously in a single, winner-take-all process
that appears quite different from the typical decision-making
procedure at the architecture-level and below in digital elec-
tronics. Why could the same sort of process not simply select a
complete solution in one ‘step’ of parallel processing? In fact,
this type of solution may very well characterize the process of
solving problems by insight (Sternberg, 1999).

Our reason for favoring a sequential, AI-style search model
is that, in the type of winner-take-all decision-making process
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we have examined, we need to allocate one unit for every pos-
sible alternative being considered. In order to apply this ap-
proach to the selection of an entire sequence of atomic opera-
tors, rather than the atomic operators themselves, we must re-
sort to the type of model we have already discussed and re-
jected — a model with a combinatorially explosive represen-
tation scheme in which one node is assigned to every possi-
ble combination of operators. This approach is not only in-
efficient in terms of unit allocation; it also unrealistically as-
sumes that every stored combination has been experienced and
memorized. Some other form of parallel, distributed processing
could perhaps accomplish problem space exploration without
relying on a winner-take-all process, but to our knowledge, no
well-developed theory exists yet for how such processing can
be applied to problem solving; the processing dynamics of the
long-term, subconscious thinking involved in insight are likely
to be much more complicated than simply a high-dimensional
drift-diffusion process, for example.

Problem-space exploration therefore seems to require se-
quential processing, at least in some circumstances. With se-
quential search, a minimal-knowledge approach requires only
that the atomic operators be encoded. Then completely random
moves can be tried at every decision point. If more knowledge
is encoded, then random moves can be relegated to those de-
cision points that involve complete uncertainty. Otherwise, the
relevant knowledge about the next move or the next subgoal can
be implemented efficiently and deployed to bias action selection
only at the relevant decision points during the creation and eval-
uation of a solution sequence — for example, the knowledge
that when a ball cannot immediately go into a desired position,
there must be a particular obstacle that the system can work on
removing.

We now describe the model in greater detail. Since it consists
of a large number of units and connections, we focus primar-
ily on some critical components that illustrate the basic design
principles we have described, and that contributed most directly
to our explanation of cognitive deficits in patient populations
(Polk et al., 2002; Simen et al., 2004). These explanations were
based on extensive simulation using a large subset of all possi-
ble Tower of London problems.

1.1. Tower of London model
The model is hierarchically organized into two processing

levels. The bottom level consists of a sensory-motor decision-
making circuit. This circuit abstracts away from the details of
object recognition and spatial perception in its sensory inter-
face to the environment, and from the details of motor planning
and execution in its motor interface to the environment. This
is done for practical rather than theoretical reasons. It allows
us — at the risk of being misled by our assumptions (Drey-
fus, 1979) — to focus on the interaction between sensory and
motor processes in problem solving and how these are modu-
lated by cognitive processes. The environment itself is simply a
symbolic representation of the current Tower of London prob-
lem configuration which is updated appropriately in response
to threshold-crossings of move representations in the action-
selection network.

The top layer of the processing hierarchy consists of a
goal/subgoal loop circuit that biases the processing in the un-
derlying, feedforward sensory-motor circuit.1

Sequential processing is achieved in the model by the ap-
proximately punctate, threshold-crossing behavior of strongly
self-exciting units, especially those in the model’s Move layer,
despite the fact that the spread of activation from unit to unit is
continuous in time in every component of the model (quantum
leaps in activation can occur only as the result of white noise,
but such leaps occur with probability zero). This type of step-
by-step processing takes place simultaneously in parallel pro-
cessing streams in different parts of the model. However, these
streams form part of an overarching, unitary, sequential search
process that waits on the longest computation among these par-
allel streams (or on a timer that limits processing duration) be-
fore synchronously triggering the next step of the search. This
behavior is achieved by using the action-selection attractor net-
work (labeled Move in Fig. 1) as a fundamental processing bot-
tleneck, whose punctate decisions delimit the atomic compo-
nents of solution sequences.

The structure of the model is illustrated in Fig. 1. In its
modular structure, it resembles the models of Schneider and
Detweiler (1987) and Feldman and Ballard (1982). However,
unlike those models, which allocate complex roles to different
types of units, our modules consist of a single type of unit, with
self-excitation parameterized to produce an approximately lin-
ear layer of input units (with weak self-excitation) feeding for-
ward in a one-to-one connection pattern to a (possibly) highly
nonlinear layer of strongly self-exciting units, as in the main
article’s Fig. 4 and Fig. 11 (in this two-layer structure, our ap-
proach is again reminiscent of Schneider and Detweiler, 1987).
Output units of some modules may be left as weak self-exciters,
so that the modules implement approximately linear transfor-
mations of their inputs. Modules are indicated as winner-
take-all modules (modules implementing competitive decision-
making dynamics in the input layer and feeding forward to a
WTA output layer), latches (modules that can preserve sym-
bolic information indefinitely using strongly self-exciting out-
put units), sources (modules that are active by default, and that
must be actively inhibited in order to inactivate), delays (mod-
ules which impose propagation delay on the signals they trans-
mit), or any combination of these.

1.2. Sensory-motor backbone

Excluding the influence of goals on behavior, the operation
of the model is fairly simple. One Sense module is devoted
to each position on the gameboard. Each module has one unit
for representing each of the values ‘red’, ‘green’, ‘blue’ and
‘empty’. A simulated environment clamps these modules to
the appropriate values to model perception. Each Sense mod-
ule is a latch, guaranteeing nearly binary representations of the

1We note that this feedforward assumption merely reflects the degree of
abstraction required to make modeling tractable. Motor-sensory feedback and
feedback within the perceptual system itself appears to be fundamental to actual
brain organization.
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LEGEND: 

(a) A three-column module with low self-excitation and lateral inhibition – the column of 

symbols (q0,q1,q2) next to it denotes the columns comprised by the module; 

(b) A similar module with strong enough recurrent excitation to latch onto its current value; 

(c) A winner-take-all module with strong enough lateral inhibition at input and output 

layers to converge on dominance by one column; 

(d) A delay module with color-coded delay magnitude (darker = longer); 

(e) A low threshold module. Modules can have any any combination of properties denoted 

by (b)-(e);

(f) Feedforward inhibitory or excitatory connections, or a bundle of such connections.
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Figure 1: Tower of London schematic. All sets of modules whose connections are not explicitly shown are collections of AND gates that perform combinational
logic on their inputs.
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color of the ball occupying a given space (this localist repre-
sentational scheme may represent an abstraction from a pattern
of activity distributed across multiple units, and simply makes
the model easier to work with). The units in the Move module
(also a latch) encode possible moves as conjunctions of one of
three colors and one of six positions. This 3x6 matrix of move
encodings is repeated in several modules in the system. (Note
that a permanent, dedicated conjunctive representation of this
form is not a scheme that will scale up well to larger problem
spaces, as it is wasteful of neural resources. The most obvious
solution to this problem appears to be online binding of con-
junction components, but this is a form of the variable binding
problem and is beyond the scope of this paper.)

The representation of the current configuration (the Sense
modules) excites all legal moves in the Move module with the
same degree of preference, and similarly inhibits illegal moves.
Constructing connections that encode this excitation and inhibi-
tion is a straightforward matter. For example, the unit encoding
‘red’ in module Sense1 will excite Move units encoding moves
of the red ball to any other position on the board. It will also in-
hibit units encoding moves of any ball to position 1, since that
space is occupied. The ‘empty’ unit in module Sense4 will
vote for moves of any ball to position 4 (in fact, it will do so
more strongly than the ‘empty’ unit in module Sense3, in or-
der to bias the system toward moving balls to lower positions
on pegs, if possible).

This approach to preference encoding assumes a lack of
knowledge on the part of the problem solver about which ac-
tion should be preferred in any given situation. In an elabora-
tion of the voting process underlying action selection in section
3 of the main article, we could in theory allocate more units
and use an automated weight-setting algorithm to ensure that a
particular preference ranking among alternatives was encoded
for every possible context. Furthermore, we could use such an
algorithm to set weights in such a way that integral feedback
control of the overall level of activation in the Move network
was unnecessary. Finally, it is likely that we could do so in a
way that met any particular speed-accuracy tradeoff (SAT) cri-
terion, given a particular level of background processing noise
(cf. simple methods for controlling SAT in Simen et al., 2006).

Such an omniscient approach to preference ranking, how-
ever, seems highly implausible psychologically, and it requires
a combinatorially explosive number of units and connections.
Instead, we make what we consider to be a plausible, though
admittedly ad hoc assumption: this is that environmental af-
fordances (such as the perception that a colored ball is within
reach) trigger considerations of relevant operators (such as
moving the colored ball). Furthermore, since there is no way
to know ahead of time how many affordances are liable to in-
fluence decision making about actions in any given context, we
must employ feedback control to allow for net inputs consisting
of a weighted sum of arbitrarily many components, and there-
fore an arbitrarily large or small vector magnitude. As for our
use of selective, inhibitory influences on decision making, we
once again note that without them, it would be difficult to en-
code the limited proposition simply that certain moves should
not be considered. This proposition is fundamentally different

than the proposition that some other move should be consid-
ered.

1.3. Perceptual reasoning

Logic gates like the one in Fig. 10 of the main article are
used to determine which balls are blocked from moving by balls
stacked on top of them. This information requires input from
two Sense modules: the Sense module corresponding to the
ball that may be blocked, and the module corresponding to the
position above it. Thus for each of the blockable positions 2,
4 and 5, there is one module for each of the three colors. For
example, if Sense2 represents ‘red’, then the Red2Block mod-
ule will be activated to indicate that the red ball may be blocked
in position 2. This module excites the RedBlocked module,
but not enough to activate it. The ‘green’ and ‘blue’ units
in Sense3 also excite RedBlocked. RedBlocked is a neural
AND gate that only responds to the conjunction of Sense2 =

‘red’ and (Sense3 = ‘green’ or Sense3 = ‘blue’). Moves of
blocked balls are strongly inhibited by the Blocked modules.

1.4. Move selection and gating

Our approach to move selection assumes that low-level rules
about what can be moved, and where, have been compiled
through previous experience with analogous, real-world stack-
ing tasks. The possible legal moves then compete with each
other in the Move module via attractor dynamics until one is
selected. Without other sources of input, the move that is fi-
nally selected is random and simply depends on noise. The
ActivationRegulator module also supplies diffuse excita-
tion to the Move module as part of a feedback mechanism that
ensures the winner-take-all property of the Move module (that
is, if no winner emerges, the ActivationRegulator boosts
all Move unit excitations, but it does so by ramping up slowly
enough to ensure that the runner-up representation does not also
activate along with the winner; a sufficiently slow rate was de-
termined by trial and error during model construction in Mat-
lab).

Once a move is selected, it excites a corresponding unit in
the MoveGate module, which is not a latch. The activation of
this module can be thought of as a motor command issued to
the peripheral motor system. It also serves to extinguish the
move selected in the Move module, in order to allow for later
move elections to take place, as well as serving to extinguish
other short-term memories related to selecting subgoals that are
no longer relevant. Once MoveGate is active above a threshold
activation value of 0.9, the simulated environment is updated,
causing the representation of the configuration to change ac-
cordingly, and the new configuration once again votes for any
legal moves. In short, in the absence of goal direction, the
model simply performs random search using any moves that
are legal in the current configuration. (Another major simplifi-
cation of our model is that it simply executes actions, without
memorizing an internally simulated sequence first.)
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1.5. Goals

Goals as they are represented in the system correspond to
placing individual balls in specific locations (e.g., getting the
blue ball to the bottom of the third peg). Thus goals have the
same representational format as moves. The base level goals of
the system are represented in the latch modules Goal1 through
Goal6. The goal configuration of the gameboard is represented
there with six latches, as in the Sense system, by initializing
each to the color of the ball that occupies the corresponding
position.

Only one component of this goal configuration — the con-
trolling goal — is worked on at a time, because the move-
selection process would become disorganized otherwise (the-
oretically, though, there is no reason to suppose that multiple,
parallel goal-driven processes could operate simultaneously as
long as they did not conflict with each other). The identity of
the controlling goal is decided by attractor dynamics within the
winner-take-all, latch module, GoalDecide. Here, weights on
the connections from the Goal modules to GoalDecide were
easy to set with a fixed preference ordering that guaranteed a
unique winner at all times. The preference scheme favors mov-
ing balls to lower positions on pegs than to higher positions,
since a ball moved to its final position at the bottom of a peg
will never have to be moved thereafter to achieve a complete
solution (this choice represents an ad hoc insertion of knowl-
edge that is quite conceivably not shared by all subjects, but
which seems likely to emerge, at least in healthy subjects, after
experiencing a few difficult Tower of London problems). The
output of GoalDecide is fed to GoalGate, which attempts in
turn to guide move selection when the system is not already
working on some other goal, as discussed next.

In the hybrid model discussed in Polk et al. (2002),
GoalGate also has connections that can directly influence
move selection as well. These connections embody the notion
that base-level goals typically guide behavior whenever possi-
ble without the participation of the subgoal circuitry that we
discuss next (and which might be implemented in the brain dy-
namically, using resources that would otherwise best be left
available for other purposes). These connections provide one
explanation for the effects of problem-solving deficits in pre-
frontal patients as stemming from overly greedy search, which
also occurs in the neural Tower of London model in Dehaene
and Changeux (1997) (that model does not explicitly model a
production system).

1.6. Subgoals

The current controlling goal, if any exists, is represented in
the winner-take-all, latch module labeled Subgoal (the name
derives from the fact that this module also represents subgoals
generated by specific subgoal-generation knowledge or by im-
passes in the problem solving process). The Subgoal mod-
ule modulates processing in the Move module by inhibiting
all moves while simultaneously exciting the move that could
achieve the controlling goal if legal. The net effect is that one
move is excited while all others are inhibited. This modulation
biases the competition in the Move module so that the move

that could achieve the controlling goal (if legal) will tend to be
selected.

If no legal move will achieve the controlling goal, then with
high probability, no move is selected (because the controlling
goal will inhibit all legal moves in that case). We assume that
the model may decide either to select some move randomly, or
to remain below threshold throughout the duration of an interval
timed by an interval timer, at which point the system detects that
it has reached an impasse in its search. Then a new subgoal can
be generated, or work can commence on a different base-level
goal.

Once again, however, incorporating more knowledge into the
system would make this approach unnecessary. If the system
incorporated enough knowledge to detect when no move is pos-
sible in all possible contexts, then it could rely on a ‘no-move’
alternative in addition to the 18 possible moves in the Move net-
work. It could then dispense with the interval timer and use
‘no-move’ as a default output in the absence of strong enough
excitation of alternative moves. In a task as simple as the Tower
of London, it seems plausible that such knowledge might be
available to a subject after solving many instances of the task.
However, we are interested in the Tower of London task only as
a means of testing an architectural template that we hope will
be useful as a component of general theories of problem solv-
ing. Therefore, assuming minimal knowledge during search in
an architecture based on decision-making mechanisms that pro-
duce arbitrarily long decision times, and where impasses are
inevitable, seems to require interval timing as an integral com-
ponent. Such impasses in Soar, for example, trigger the gen-
eration of new search spaces. In these spaces, the solution to
an impasse in a given context is computed by a separate explo-
ration process. The solution sequence is then chunked into a
new operator that prevents impasses in future instances of the
same context.

In order to make our modeling effort tractable, however, we
do not model search space generation. Instead, we assume that
such meta-searches have already occurred, and we pre-chunk
their results into knowledge that is relevant to the current con-
trolling goal. We use latch modules to represent what is above
the ball to which the goal refers (AboveSource), the color of
the ball, if any, in the target position (InTarget), and the lowest
free position on the peg that is neither the source nor the target
of the current goal (FreePosition). This information is cru-
cial for generating the right subgoals to get blocking balls out
of the way without disrupting progress toward the controlling
goal. It is computed in the same manner that blockage infor-
mation is computed by the Sensory system, by using a cascade
of logic gates that receive input from the Subgoal module and
the Sense modules. Connections from these modules to the
Subgoal module encode the knowledge about which subgoals
to try that we assume has been acquired by impasse-generated
meta-searches, or else simple trial and error.

The selection of a new goal in the Subgoal module can occur
in one of two ways. First, if the current goal has been achieved,
then it is inhibited by the Sense modules (e.g., Sense1 = ‘red’
inhibits the goal ‘Red to 1’). Then one of the still-unachieved
base level goals is retrieved from the GoalGate module through
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a handshake procedure. The handshake works as follows. All
units in Subgoal inhibit all units in GoalGate. Because of
this inhibition, GoalGate cannot vote for Subgoal to instan-
tiate a base-level goal once progress has begun on some other
goal — that is, while Subgoal is actively representing some-
thing. (This is a case in which knowing how to parameterize a
closed-loop, self-cancelling production is critical for achieving
proper function.) Once Subgoal has reached baseline activa-
tion in all units, however, GoalGate is able to become active
for long enough to install a new base level goal in Subgoal.
The handshake is completed by Subgoal effectively issuing an
‘all done’ signal to GoalGate.

The second way in which a new goal can be instantiated
in Subgoal occurs when the current goal cannot be directly
achieved because of some obstruction (either a ball in the target
position or a ball above the ball that we want to move). Then a
new goal to remove the obstruction will be proposed via strong
input from Abovesource, InTarget, and FreePosition that
overwhelms any input from GoalGate. In order to compute a
new subgoal in this way, the current output of Subgoal must
not be destroyed prior to the computation of the new subgoal.
This output is fed into a logic circuit that feeds back into the
input of Subgoal, posing the risk of a critical race condition,
which flip-flops prevent.

We have discussed the use of a goal stack, which was in fact
implemented in earlier iterations of the hybrid neural/symbolic
Tower of London model in Polk et al. (2002). However, once
subgoals were achieved in these earlier versions of the model,
it was frequently the case that evaluating the problem from the
current configuration in relation to base-level goals, rather than
in relation to a parent subgoal, provided more flexible perfor-
mance. For example, if a parent subgoal was to remove a block-
ing ball so that the green ball could be moved to its goal posi-
tion, it often turned out that it was now serendipitously possible
to move the red ball to a more secure target position (a position
lower down on a taller peg). By allowing the model to rebuild
its goal stack after every move, it was better able to capitalize on
such opportunities. In this respect, the model acts more like re-
cent versions of ACT-R, with its flexible, activation-based goal
organization, rather than a rigid stack organization.

1.7. Impasse detection

In cases in which the Subgoal module is inhibiting moves
that would not help achieve the current goal, connection
strengths are such that the Move module will never select a win-
ner. In this case, a timer circuit will be triggered by a lack
of activation in the Move module. This is the purpose of the
NoMove timer chain in Fig. 1.

The NoMove timer chain starts with a single-unit source mod-
ule that has very small β in Eq. 7 of the main article, so that it
will tend to activate without external inhibition. Because of
finely tuned recurrent self-excitation, each element in the chain
ramps up slowly and nearly linearly. When the last element in
the chain finally activates, it prevents any move from emerg-
ing by strongly inhibiting the Move module and begins a pro-
cess for generating a subgoal. (Technically, one NoMove unit

would have sufficed, but it was easier in practice to parame-
terize a chain of them.) The purpose of this inhibition is to
make the decision to generate a subgoal irrevocable. This stops
any later Move activation that would disrupt the subgoal gener-
ation process, or cause moves in the meantime that would make
the ultimately generated subgoal inappropriate for the resulting
configuration of the gameboard.

Once activation reaches the final timer module in the NoMove
timer chain, the Generate module is activated. This mod-
ule allows information about the current goal to flow through
SubgoalBufferGate, at the same time choking off informa-
tion about the current goal from flowing through SubgoalGate.
The purpose of this is to prevent a critical race condition.
The Generate signal is thus the analogue of a single clock
pulse in a synchronous digital circuit, triggering the neural
flip-flop formed by the following chain of modules: Subgoal,
SubgoalGate, SubgoalBuffer, SubgoalBufferGate. At
this point, a cascade of logic gates uses information about the
current subgoal and the current Sense configuration to deter-
mine which ball, if any, is above the ball to be moved under the
current goal, which ball is in the target position of the ball to be
moved, and which peg is able to hold moved blockers. These
three values then vote for appropriate subgoals in the Subgoal
module (i.e., to move to the free position any target-position
blocker, if present, and if not, then the source-ball blocker).

The successful generation of a subgoal will be signalled by
the elimination of the old Subgoal pattern, followed by the ac-
tivation of a new one. This process is detected in the sequence
of modules Compare and GenerateSuccess. Compare de-
tects activation in Subgoal, but only after it has been enabled
by CompareEnable. CompareEnable itself cannot be active
until the first goal pattern in Subgoal has been extinguished.
This subgoal generation process is ended as soon as a success-
ful generation is detected by Compare, which simply responds
to any significant activation in the Subgoal module. If desired,
we could implement a second subgoal-selection timer, since at-
tempting to push a subgoal might itself generate an impasse.
Expiration of this timer would indicate that there is no appro-
priate subgoal to generate. In this case, one of the search heuris-
tics implemented in Polk et al. (2002) could be used to select
a subgoal according to different logic than that encoded in the
logic-gate cascade, or a meta-level search could be initiated, as
in Soar. For the sake of limiting model complexity, however,
we focus on an extremely simple model that is capable of solv-
ing most Tower of London problems requiring five moves or
less (as is the case, to the best of our knowledge, in all em-
pirical studies involving performance by prefrontal patients and
Parkinson’s patients of more difficult problems).

1.8. Implemented algorithm
The following algorithm that the neural Tower of London

model carries out is a simplified form of that implemented in
the hybrid system in Polk et al. (2002), which used extra heuris-
tics to deal with difficult cases. The position numbers referred
to in the algorithm are illustrated in the goal configuration at
the bottom of Fig. 1. ‘Position 1’ refers to the only space on the
shortest peg, 2 denotes the bottom of the medium-height peg, 3
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IF THEN Strength

CurrentConfig Move
Pos1 = red = red_to_2 0.2

CurrentConfig Move
Pos1 = red = red_to_3 0.2

CurrentConfig Move
Pos1 = red = red_to_4 0.2

CurrentConfig Move
Pos1 = red = red_to_5 0.2

CurrentConfig Move
Pos1 = red = red_to_6 0.2

CurrentConfig Move
Pos1 = red = green_to_1 -1.0

CurrentConfig Move
Pos1 = red = blue_to_1 -1.0

CurrentConfig Move
Pos1 = red = red_to_1 -1.0

CurrentConfig PerceptualLogic
Pos2 = green
Pos2 = blue Green2Block = on

1.0

PerceptualLogic PerceptualLogic
Green2Block = on GreenBlocked = on 1.0

PerceptualLogic PerceptualLogic
Green2Block = on GreenBlocked = on 1.0

PerceptualLogic Move
GreenBlocked = on  = green_to_1 -1.0

IF THEN Strength

Goals GoalDecide
Pos1 = red = red_to_1 0.1

Goals GoalDecide
Pos2 = red = red_to_2 0.2

AboveSource Subgoal
 = green  = green_to_1 0.1

AboveSource Subgoal
 = green  = green_to_6 0.1

InTarget Subgoal
 = green  = green_to_1 0.1

InTarget Subgoal
 = green  = green_to_6 0.1

FreePosition Subgoal
 = 3  = red_to_3 0.2

FreePosition Subgoal
 = 3  = green_to_3 0.2

Subgoal Move
 = red_to_3  = red_to_3 0.2

FreePosition Subgoal
 = 3  = blue_to_3 0.2

Table 1: A subset of the productions implemented by the neural Tower of Lon-
don model. Those shown illustrate the basic computation of legal moves; per-
ceptual relationships (which balls are blocked); current goals; and subgoals in
the case that an impasse is reached.

denotes the space on top of 2, 4 denotes the bottom of the tall
peg, 5 denotes the space above 4, and 6 denotes the space above
5. The algorithm is as follows:

1. set a goal to move a ball to its final goal position (with
preference, in decreasing order, for moves to position 4,
then 5, then 2, then 6, then 3, then 1)

2. if the current goal is not achieved because some ball is
blocking the ball to be moved, set a subgoal to move the
blocking ball to the lowest position on the peg which is
neither the source nor the target of the current goal — if
there are two such pegs, pick one at random — then return
to step 2; otherwise, make the desired move;

3. as soon as a move is made, return to step 1.

Table 1 illustrates a set of symbolic productions that the neu-
ral model implements. Only a small subset of the total number
of productions are shown. All rules match in parallel, and the
strength factors in the righthand column determine which ones
fire when there is conflict between the outcomes of multiple
rules.

1.9. Performance of the model

Here we illustrate the performance of the model in one prob-
lem, simulated without noise for clarity’s sake, using a Runge-
Kutta(4,5) ordinary differential equation solver implemented in
Matlab. Timecourses of activation in most of the model’s com-
ponents are shown in Fig. 2. The problem, shown at the bottom
of Fig. 1, requires five moves for solution and therefore requires
that some balls be moved to positions other than their final, goal
positions. Thus it requires the internal generation of subgoals
for efficient solution.

The GoalDecide module can be seen to hold an election for
the first goal to control behavior. The goal ‘Red to 4’ wins at
approximately time 25 (labeled A in the figure — time units are
arbitrary; a fit to behavior would be required to define them, but
we speculate that milliseconds would be appropriate). ‘Red in
4’ is the most important unachieved goal according to the pref-
erence scheme for moving balls to the lowest possible positions.
This information is then transmitted through the GoalGate
module to the Subgoal module, which responds to it at label
B. (In the meantime, in order to prevent the premature gener-
ation of a subgoal in response to Move module inactivity, the
Start module inhibits the NoMove timer system.) The Sense
modules, like the Goal modules, are initialized at the beginning
of the simulation and excite potentially legal moves at the same
time as the Blocked modules compute which balls are blocked.
Finally, a winner, ‘Red to 4’ is selected at time point C, and the
corresponding unit in MoveGate is caused to rise to threshold,
achieving the move and wiping out the move-generating com-
mand in Move. At this point, the simulated environment causes
an update of the Sense modules (point D). These in turn extin-
guish any goal or subgoal activation patterns in the Goal sys-
tem or in Subgoal which represent goals to create the already
achieved environmental configuration (point E). This allows the
next most preferred goal to be retrieved and worked on, as can
be seen in Subgoal at point F. At no point is the local clock
circuit NoMove involved.

Now the next goal, ‘Blue to 2’ is selected. This is unachiev-
able, however, and causes an impasse that times out the NoMove
timer. This in turn generates a subgoal to remove an obstacle
(we trace the timecourses of a subgoal generation process at
the next impasse that will occur). Once a subgoal is selected
(‘Green to 5’, since Green is in the target position of the blue
ball and position 5 is free, at time point G), the first element
of the NoMove timer sequence begins to ramp up. When max-
imal activation finally reaches the last timer in the sequence,
the system times out a second time at time H. At this point, the
Generate module begins a new subgoal generation process.
This in turn enables testing for subgoal-generation success by
activating CompareEnable, while also allowing the informa-
tion about the current goal to filter into the subgoal compu-
tation modules through SubgoalBuffGate, at time I. Activa-
tion in Generate chokes off SubgoalGate so that information
about the new subgoal cannot propagate until the next genera-
tion process, at time J. It also wipes out the current Subgoal
pattern. Finally, the subgoal generation logic computes that the
ball above the green source ball is blue, at time K, and that the
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Figure 2: Time courses of activation in most modules of the neural Tower of London problem solver, with noise coefficients reduced to 0 for the purpose of
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lowest position on a peg which is neither the source nor the tar-
get of the goal is position 1 at time L. Subgoal responds to
this voting at time M with a goal to move blue to position 1.
The model continues on in this way until eventually solving the
problem in 5 moves, as shown in the sequence of gameboard
configurations that appear in the Move module trace: ‘red to 4’,
‘blue to 1’, ‘green to 5’, ‘blue to 2’, ‘green to 3’.

Averaged model performance over many different game con-
figurations is shown for similar models in Polk et al. (2002) and
Simen et al. (2004). Matlab code for this model is available at:
http://www.math.princeton.edu/∼psimen/SimenPolk TOL Code.tar.gz.

2. Cobweb diagram approach

In this section, we examine the mathematical details behind
a useful technique for neural cognitive model construction.

When examined closely, the vector field arrow-plot in Fig. 3
shows that upward velocities for input values greater than A
in Fig. 6 of the main article are extremely small if the system
output was recently near 0 (i.e., if it was near the lower stable-
equilibrium curve). By definition, they go to 0 on the curve
itself, and they change continuously as a function of position
in the graph. Thus there is a region near (A, 0) in Fig. 6 of the
main article where the system will move upward, but extremely
slowly. However, it is difficult to develop any sense, from look-
ing at the vector field, of how slowly it moves, nor of how slight
changes in the input strength affect this speed: the arrows are
too tiny. Speed, however, is the property that we would like to
control.

We can arguably get a better sense of the speed at which the
system is changing as a function of current input value and cur-
rent output value by using cobweb diagrams (Jordan and Smith,
1999). Cobweb diagrams are typically used to determine how
discrete-time difference equations evolve over a sequence of
time steps. A simple example of a difference equation is given
in Eq. 1:

yn+1 = f (yn). (1)

Cobweb diagrams that are equivalent to the phase-plane plots
in Fig. 7 of the main article are shown in Fig. 3.

Eq. 1 determines the evolution of a variable y by setting the
new value of y at time n + 1 equal to f (yn). If f is nonlinear,
it may be difficult to determine analytically what the behavior
of yn will be. Cobweb diagrams provide an efficient method for
visualizing this behavior. In a cobweb diagram, the x-axis rep-
resents the value of y at time step n, and the y-axis represents
yn+1. We can determine its value by plotting f (yn) as a func-
tion of yn. A 45◦ line through the origin is then used to transfer
the value yn+1 = f (yn) from the vertical axis to the horizontal
axis, so that yn+2 can be computed, and the process can repeat.
This transfer involves tracing from f (yn) horizontally to the 45◦

reference line, and then vertically down to the horizontal axis.
Evaluating f (yn+1) at the new position on the horizontal axis
is then equivalent to tracing vertically back up to f . To save
on tracing, we compress the last two steps, tracing from f (yn)
across to the reference line, and then up or down to f . The ef-
fect of applying this algorithm is to trace out a characteristic
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Figure 3: Top row: Cobweb diagrams for units with balanced (A) and strong
(B) recurrent connections to themselves. The rate at which a unit’s activation
approaches the nearest attractor is determined by the height of the stair steps
depicted. The shift of the activation function equals the weighted sum of inputs
from other units. (See appendix 2 on analyzing nonlinear dynamics with cob-
web diagrams.) Bottom row: equivalent phase plots of the system’s velocity
for parameterizations identical to the top row, with equilibrium curves plotted
as solid curves, and velocities plotted by arrows and shading (white corresponds
to positive, black to negative velocities).

sequence of stair-steps (or a cobweb) between f and the refer-
ence line.

In our case, however, the units of Eq. 24 in the main article
are defined in continuous time by differential rather than dif-
ference equations. Nevertheless, as we now demonstrate, the
dynamics of self-exciting units receiving constant inputs from
other units are accurately characterized by the self-excitation
cobweb diagrams of Fig. 3 (cf. Harth et al., 1970; Seung et al.,
2000; Wilson and Cowan, 1972). When interpreting these dia-
grams, we temporarily consider the continuous-time system de-
fined by dV/dt = −V + f (input) to be a discrete-time difference
equation (Eq. 2):

Vn+1 = f (input). (2)

This temporary assumption is equivalent to using Euler’s
method for approximating the derivative of a function, dx/dt ≈
[x(t + ∆) − x(t)]/∆, or x(t + ∆) = x(t) + dx/dt · ∆, with ∆ = 1:

V(t + 1) = V(t) + dV/dt · 1
= V(t) +

(
−V(t) + f (input)

)
= f (input). (3)

Of course, setting ∆ to 1 typically causes Euler’s method to
produce a terrible approximation of x(t + ∆). It is therefore
important to note that we are not making this discrete-time as-
sumption in order to approximate V(t + 1). We are doing it in
order to relate the height of the stair steps in a cobweb diagram
to the velocity of the continuous-time system at any point in
the x, y-plane. This relationship underlies a simple, graphical
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method for comparing the rates of change of a unit’s activation
under different levels of fixed input. All we will have to do is
count steps: wherever many small steps occur, we can be sure
that the system will change slowly; wherever a small number of
large steps occur, the system is guaranteed to change quickly.
Cobweb diagrams will therefore illustrate how we achieve con-
trol over latching speed and how interval timing can be achieved
with nonlinear units.

Before we can fully exploit cobweb diagrams however, it will
be useful to define an effective activation function, which is an
activation function that is shifted by the amount of input to a
unit from other units. If a unit’s activation function is f (x),
where f is a logistic sigmoid function with particular values
for β and λ (Eq. 24 in the body of the article), then we define
the effective activation function fδ(x) ≡ f (x + δ). This change
of variables allows the input to a unit through its recurrent, self-
excitatory connection (corresponding to x) to be separated from
the weighted sum of inputs from other units (corresponding to
δ). We refer to δ as the external input to the unit, and x as the
recurrent input.

Figure 4: Left-shifted effective activation function fδ (dashed curve) resulting
from an external input of magnitude +δ to a unit.

Now we apply cobweb diagrams and variable changes to the
analysis of self-exciting unit dynamics. In plot A of Fig. 3, two
different activation curves are shown. Each corresponds to a
different level of external input, in accordance with the follow-
ing principle: net excitation δ results in a leftward shift of the
activation function by δ; net inhibition −δ results in a rightward
shift of δ (see Fig. 4). A position on the horizontal axis therefore
represents only the recurrent input.

Assuming that the system begins with some output value V0
and that the weighted sum of inputs from other units is held
constant at δ, then we begin tracing out the stair-step trajectory
by starting at a point at height V0 on the vertical axis. We trace
horizontally to the reference line to find the input to the unit
from itself on the next ‘time step’ (making our temporary as-
sumption of discretized time). However, unlike in Eq. 1, the
reference must account for the fact that the recurrent connec-
tion strength may be different from 1, and therefore the input to
a unit from itself may require a reference line with slope greater

or less than 45◦. If the connection strength is 2, for example,
the reference line should map V0 on the vertical axis to 2 ·V0 on
the horizontal axis. Generally, then, if the recurrent connection
strength is w, the reference line has slope 1/w, relative to the
horizontal axis.

Now we trace vertically from the input at time step n = 1,
which is w · V0, to fδ(w · V0) in order to get V1. Then we trace
horizontally again to the reference line to find w · V1, and ver-
tically to get V2 = fδ(w · V1). By repeating this process, the
stair-step trajectory clearly converges to the correct attracting
value for V (the same value to which the continuous-time sys-
tem converges). However, the discrete-time assumption appears
to make the rate at which the attractor is approached in contin-
uous time difficult to ascertain by this method.

We can address this apparent difficulty by the following ge-
ometric argument. As with any system of autonomous dif-
ferential equations, when a small enough region in the dia-
grams is considered, the rate of change of V is nearly constant
within that region. In our case, such regions are usually large
enough to encompass several contiguous stair-steps; this fol-
lows from the fact that a given stair-step height is nearly con-
stant when the horizontal position at which the step begins is
shifted laterally, within a range of several step-widths. There-
fore, the time taken by V to travel the distance D is approxi-
mately D/(dV/dt) = D/step height.2 This means that the num-
ber of steps taken to cover the vertical distance D determines
(approximately) the time needed for the continuous-time sys-
tem to cover the same distance.

The only case in which the stair-step heights change rapidly
over a small horizontal range is in plot B of Fig. 3. There, sud-
den increases in the stair step height occur for input levels that
shift the sigmoid so that it is nearly tangent to the reference line
(these are input levels that are important for our discussion of
latching). In these cases, a single step can take the discrete-time
system nearly to its attractor from a range of different vertical
starting points. Since different starting points necessarily imply
different durations of travel to get within some small distance
ε from the attractor, the step-counting method for computing
transit-time becomes inaccurate for very large steps (i.e., with
height on the order of 1). This is essentially a form of roundoff

error. However, for our purposes, any step that is large enough
indicates activation change that is so rapid that it can be consid-
ered effectively instantaneous. We can therefore assume that the
number of steps in a trajectory fairly accurately represents the
time required for the continuous-time system to cover a given
vertical distance. Thus we can safely infer the transit-time of a
continuously evolving activation simply by counting steps.

We can now assess the effects of different levels of input and
different strengths of recurrent self-excitation on a unit’s dy-
namics. Fig. 3 contrasts two different parameterizations of a
self exciting unit. In plot A, the recurrent weight is small rela-
tive to the slope of the activation function at its midpoint (which
is λ/4). In plot B, the weight is large relative to this slope. The

2If the continuous-time system has a time constant τ, then this becomes
(Dτ)/step height).
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cobweb diagrams in these plots show that weak and strong self-
excitation, respectively, result in qualitatively different behav-
ior.

With weak self-excitation, activation exponentially ap-
proaches an equilbrium value, so that the unit continues to act
like a low-pass filter. With ‘balanced’ self-excitation that per-
fectly compensates for the unit’s leak, activation that ramps
nearly linearly up or down at a controllable rate is possible
(depicted in plot A). With strong self-excitation, depicted in
plot B, hysteresis occurs: approximately all-or-none activation
levels and memory in the form of reverberating activation are
possible. Furthermore, we can create arbitrarily small bottle-
necks between the sigmoid and the reference line in order to
produce arbitrarily slow changes in activation, thereby effec-
tively changing the time constant of Eq. 24 of the main arti-
cle. Finding bottlenecks that are small enough to achieve slow
latching is the key to building models with closed-loop, self-
cancelling connection patterns. Finally, when recurrent excita-
tion precisely equals λ/4, a unit becomes a perfect integrator of
its inputs. Thus a constant input δ will produce a linear increase
in activation whose slope depends on δ. This provides the basis
for our approach to interval timing, in which a drift-diffusion
process rises to a threshold value on average at a time T after
starting at time 0. Here T = threshold/drift, drift is determined
by δ, and the threshold is fixed (Simen, 2008; Simen and Balci,
in review).

For a strongly self-exciting unit, the connection strength and
the bias term β together define the level of input activation that
will trigger a threshold-crossing detection response. If the level
of excitation required to shift a strongly self-exciting unit’s ac-
tivation function past the leftmost bifurcation point is A, and the
desired activation of the input unit that should trigger a thresh-
old crossing detection is y0 < 1, then the weight w between the
input unit and the threshold unit should be w = A/y0. An-
other important point is that if the input level is y, then the
threshold applied to y that is defined by a given weight w is
A/w. (This is true for a deterministic version of the system
— with noise, simulations suggest that threshold values are ap-
proximately normally distributed about these values; this may
therefore be considered to be a neural network implementation
of the normally distributed threshold model of response times
in Grice, 1972).

Finally, we note that self-excitation diagrams represent the
continuous-time dynamics of a unit accurately only when its in-
puts from other units are not changing too rapidly. If inputs are
always rapidly changing, then a weakly self-exciting unit will
continue to act as a low-pass filter, though with increased gain
at low frequencies and a smaller upper frequency cutoff than
it would have without self-excitation. A strongly self-exciting
unit, on the other hand, will react more unpredictably to a net in-
put that has strong, high-frequency components. In such cases,
self-excitation diagrams are not particularly useful.
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