Supporting Information

Magic Angle Spinning NMR Analysis of β₂-Microglobulin Amyloid Fibrils in Two Distinct Morphologies

Galia T. Debelouchina^{1,2}, Geoffrey W. Platt^{3,4}, Marvin J. Bayro^{1,2}, Sheena E. Radford^{3,4}, Robert G. Griffin^{1,2}

> ¹Department of Chemistry and ²Francis Bitter Magnet Laboratory Massachusetts Institute of Technology Cambridge, MA 02139, USA

³Astbury Centre for Structural Molecular Biology University of Leeds, Leeds LS2 9JT, UK

⁴Institute of Molecular and Cellular Biology University of Leeds, Leeds LS2 9JT, UK

rgg@mit.edu

Figure S1: EM images of the a) LS fibrils and WL fibrils b) before pelleting and in 200 mM ammonium formate buffer (pH 3.6), and c) four weeks after pelleting in 50 mM ammonium formate buffer (pH 3.6). No evidence of other fibril forms is observed before or after pelleting. The scale bars represent 200 nm.

Figure S2: a) and b) NCACX and c) and d) NCOCX experiments obtained at 700 MHz, $\omega_r/2\pi = 12.5$ kHz with a U- β_2 m fibril sample. 3 ms DCP was employed for ${}^{15}N{}^{-13}C$ transfer, and RFDR mixing was used for ${}^{13}C{}^{-13}C$ transfer ($\tau_{mix} = 3.8$ ms). The labels correspond to a) N-CO, b) N-C α , c) N_i-CO_{i-1}, d) N_i-C α_{i-1} and N-C α correlations unless otherwise noted.

Figure S3: ¹⁵N-¹³C correlation experiments recorded with TEDOR mixing ($\tau_{mix} = 6.4 \text{ ms}$) and $\omega_r/2\pi = 12.5 \text{ kHz}$. (a) and b) 2- β_2 m fibril sample, data recorded at 500 MHz, c) and d)1,3- β_2 m fibril sample, data recorded at 750 MHz. The labels correspond to a) and c) N_i-CO_{i-1} and N-CO, b) and d) N-C\alpha and N_i-C α_{i-1} correlations unless otherwise noted.