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Supplemental Figures 

 
Figure S1. Associations of Igo1 with Pbp1, Pbp4, Lsm12, and Dhh1 are Insensitive to RNAse A Treatment  

GST-Pbp1, GST-Pbp4, GST-Lsm12, GST-Dhh1, and GST were pulled down from lysates obtained from rapamycin-

treated (+ RAP; 0.2 µg ml-1; 2 hr) wild-type strains co-expressing Igo1-myc8. Lysates were either treated (+) or not 

treated (-) with RNAse A prior to the pull-down experiments. Cell lysates and GST pulldown samples were 

subjected to SDS-PAGE and immunoblots were probed with anti-myc or anti-GST antibodies. 

 
 

Figure S2. Igo1 and Igo2 Stabilize HSP26-lacZ mRNAs Following Inactivation of TORC1 

(A) Schematic view of the HSP26-lacZ reporter gene (used in B) illustrating 700 nucleotides of the HSP26 promoter 

region including the positions of the stress-response elements (STREs), the heat-shock-elements (HSEs; Chen and 

Pederson, 1993), and the inserted seven doxycycline-responsive tetO elements (tetO7). Nucleotide +138 of HSP26 is 

fused to the lacZ gene. Doxycycline treatment triggers binding of the chimeric tetR'-Ssn6 fusion protein to the tetO7 

region and consequently mediates transcriptional repression of the reporter gene. 

(B) Exponentially growing wild-type () and igo1∆ igo2∆ () cells harboring the doxycycline-repressible reporter 

and expressing the chimeric tetR'-Ssn6 protein were treated with rapamycin (0.2 µg ml-1) at time 0. After 2 hr, cells 

were treated with doxycycline (DOX; 15 µg ml-1) and grown for additional 2 hr in the continuous presence of 

rapamycin. HSP26-lacZ transcript levels were determined via northern blot analysis, quantified by PhosphorImager 

analysis, and expressed as relative level of HSP26-lacZ mRNA per rRNA (arbitrarily set to 100% for both strains for 

the values at the 2 hr time point of the rapamycin treatment; the relative HSP26-lacZ transcript levels were 3-fold 

higher in wild-type than in igo1∆ igo2∆ cells at this time point). In control experiments, addition of doxycycline 

prior to the rapamycin treatment fully abolished the HSP26-lacZ induction in wild-type and igo1∆ igo2∆ cells (not 

shown). The calculated half live of the HSP26-lacZ mRNA was 104 min (± 7 SD; n = 3) and 36 min (± 4 SD; n = 3) 

in rapamycin-treated wild-type and igo1∆ igo2∆ cells, respectively. 
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Figure S3. The 5'-3' mRNA Decay Pathway Targets Specific mRNAs in igo1∆ igo2∆ Mutants 

(A) Loss of Dhh1 or Ccr4 suppresses the defect of igo1∆ igo2∆, but not that of rim15∆ cells, in rapamycin-induced 

HSP26, SOL4, and DCS2 mRNA expression. Transcript levels were determined by northern blot analysis in wild-

type (WT) and mutant strains prior to (0) and following a 1-hr or 2-hr rapamycin treatment (RAP; 0.2 µg ml-1). 

(B) HSP26-LacZ transcript levels prior to and following rapamycin treatment. Transcript levels of HSP26-lacZ and 

SSB1 were determined by northern blot analysis in wild-type (WT) and indicated mutant strains prior to (0) and 

following a rapamycin treatment (RAP; 0.2 µg ml-1) of 1 hr or 2 hr. Bar graphs show the relative level of HSP26-

lacZ mRNA per rRNA (arbitrarily set to 1.0 for exponentially growing wild-type cells). 

 
Figure S4. HSP26 mRNA Fractionates with Polyribosomes on Sucrose Gradients in the Absence of Igo1/2 

The top trace shows the UV absorbance profile at 254 nm of a cell extract of rapamycin-treated (2 hr; 0.2 µg ml-1) 

wild-type yeast after sedimentation on a 7 to 50 % linear sucrose gradient. Nearly identical profiles were obtained 

from rim15∆ and igo1∆ igo2∆ cell extracts (not shown). Aligned below are northern blots performed on total RNA 

isolated from the indicated (1-7) sucrose gradient fractions of wild-type (WT), rim15∆, and igo1∆ igo2∆ cell extracts 

(all harvested after a 2-hr rapamycin treatment). The relative levels of HSP26 input mRNA (set to 100% for wild-

type cells) were 18% and 32% for rim15∆ and igo1∆ igo2∆ cells, respectively. The positions of the 80S monosomes 

and polyribosomes are indicated. HSP26 mRNA was quantified by PhosphorImager analysis and the percentage of 

HSP26 mRNA in the indicated sucrose gradient fractions is indicated at the bottom of each panel. 



 

- 4 - 

 

Figure S5. Relative Distribution of HSP26 mRNAs Among Cytoplasmic Foci 

(A, B) Wild-type (WT) and indicated mutant strains co-expressing the PB-marker protein Dcp2-RFP (A) or the 

EGPB/SG-marker protein Pab1-RFP (B), as well as HSP26-U1A mRNA and the U1A-GFP binding protein were 

harvested following glucose limitation (i.e. following growth for 48 hr in batch cultures). Bars represent (in a total of 

100 cells) the ratio between the intensity of HSP26 mRNA-coupled GFP signal in cytoplasmic foci that co-stained 

with Dcp2-RFP (A) or Pab1-RFP (B) and that detected in foci devoid of the corresponding RFP signal. This ratio 

was set to 1.0 for wild-type cells. Data represent averages (n = 3), with SDs indicated by the lines above each bar. 

The GFP signal in each HSP26 mRNA-containing cytoplasmic focus was calculated as the mean intensity within the 

region of the focus multiplied by its area, after subtraction of the mean background intensity of a nearby area of 

comparable size. Within an experiment, exposure settings were identical. Notably, loss of Xrn1, like loss of Igo1/2, 

strongly shifted the relative distribution of HSP26 mRNAs among cytoplasmic foci towards Dcp2-RFP-positive PBs 

and the effects of loss of both Igo1/2 and of Xrn1 appeared to be additive (A). As expected, loss of Dhh1 enhanced, 

while loss of Xrn1 or of Igo1/2 reduced, the relative amount of HSP26 mRNAs in Pab1-RFP-positive EGPBs/SGs 

(B). 
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Supplemental Tables 

Table 1.  Strains Used in This Study 

Strain Genotype Source Figure/Table 

BY4741 MATa; his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 Euroscarf 1B, E, F, 2A, C, D, 4, 

5A-C, 6A-D, S3, S4, 

S5A, Table3 

BY4742 MATα; his3Δ1, leu2Δ0, lys2∆0, ura3Δ0 Euroscarf  

YFL033C MATa; rim15∆::kanMX4 [BY4741] Euroscarf 1E, F, 2A, C, D, 5A-C, 

6B-D, S3, S4 

YNL157W MATa; igo1∆::kanMX4 [BY4741] Euroscarf 2A, C, D, 3B, 7A, C, S1 

YHR132W-A MATa; igo2∆::kanMX4 [BY4741] Euroscarf 2A, C, D 

CDV288-12A MATa; igo1∆::kanMX4, igo2∆::kanMX4 [BY4741] This study 2A, C, D, 4, 5A-C, 6B-D, 

S3, S4, S5A 

LC54 MATa; IGO1-myc13::kanMX4 [BY4741] This study 3A, Table 3 

MJA1709-8B MATa; rim15∆::kanMX4 IGO1-myc13::kanMX4 [BY4741] This study 3A 

NT255-1B MATa; leu2∆0::LEU2-TetR'-SSN6 [BY4741/2] This study S2B 

NT280-12D MATa; leu2∆0::LEU2-TetR'-SSN6 igo1∆::kanMX4, 

igo2∆::kanMX4 [BY4741/2] 

This study S2B 

YDL160C MATa; dhh1∆::kanMX4 [BY4741] Eursocarf 5A-C, S3A, S5A 

YAL021C MATa; ccr4∆::kanMX4 [BY4741] Euroscarf 5A-C, S3A 

NT205-1B MATa; xrn1∆::kanMX4 [BY4741/2] This study 5A-C, 6B-D, S3B, S5A 

MJA1602-3A MATα; rim15∆::kanMX4, dhh1∆::kanMX4 [BY4741/2] This study 5A-C, S3A 

MJA1600-10B MATα; rim15∆::kanMX4, ccr4∆::kanMX4 [BY4741/2] This study 5A-C, S3A 

MJA1621-10B MATa; igo1∆::kanMX4, igo2∆::kanMX4, dhh1∆::kanMX4 

[BY4741/2] 

This study 5A-C, S3A, S5A 

MJA1597-4D MATa; igo1∆::kanMX4, igo2∆::kanMX4, ccr4∆::kanMX4 

[BY4741/2] 

This study 5A-C, S3A 

NT205-1A MATa; rim15∆::kanMX4, xrn1∆::kanMX4 [BY4741/2] This study 5A-C, 6B-D, S3B 

NT206-7A MATa; igo1∆::kanMX4, igo2∆::kanMX4, xrn1∆::kanMX4 

[BY4741/2] 

This study 5A-C, 6B-D, S3B, S5A 

Y2864 MATα; gal1∆::HIS3, ade2-1, his3-11,15, leu2-3,112, trp1-1, 

ura3-1, can1-100 

Wang et al., 

2004 

2B 

CDV314 MATα; rim15∆::kanMX4 [Y2864] This study 2B 

CDV308-1B MATα; igo1∆::kanMX4, igo2∆::kanMX4 [Y2864] This study 2B 

yMK1344 MATα, his3-11, 15, leu2-3, 112, trp1-1, ura3-1, 

DCP1-GFP::G418, PAB1-RFP::NAT 

Hoyle et al., 

2007 

 

NT253-13B MATα; igo1∆::kanMX4, PAB1-RFP::NAT [BY4741/2] This study 7B 

NT169-9C MATa; PAB1-RFP::NAT [BY4741/2] This study 7D, S5B 

NT255-6B MATa; igo1∆::kanMX4, igo2∆::kanMX4, PAB1-RFP::NAT 

[BY4741/2] 

This study S5B 

NT298 MATa; dhh1∆::kanMX4, PAB1-RFP::NAT [BY4741/2] This study S5B 

NT301 MATa; xrn1∆::kanMX4, PAB1-RFP::NAT [BY4741/2] This study S5B 
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Table 2. Plasmids Used in This Study 

Plasmid Description Source Figure/Table 

YEplac181 2µ, LEU2 Gietz and Sugino, 1988  

pCDV1157 [YEPlac181] TDH3p-IGO1-HA3
  This study 1B 

pCDV1159 [YEPlac181] TDH3p-SIR4-HA3  This study 1B 

YEplac195 2µ, URA3 Gietz and Sugino, 1988  

pNB566 [YEPlac195] GAL1p-GST-RIM15  Wanke et al., 2005 1B 

pLC803 [YEPlac195] GAL1p-GST  This study 1B 

pCDV487 [YEPlac195] GAL1p-GST-RIM15-HA3 Pedruzzi et al., 2003 1B,C, D 

pIP779 [YEPlac195] GAL1p-GST-RIM15K823Y-HA3 This study 1C, D 

pGEX3 GST Smith and Johnson,1988 1C 

pLC1092 [pGEX3] GST-IGO1 This study 1C, D 

pLC1134 [pGEX3] GST-IGO1S64A This study 1C 

pVW1109 [pGEX3] GST-IGO2 This study 1C 

MJA1497 [pGEX3] GST-ENSA This study 1C 

MJA1498 [pGEX3] GST-ARPP-19 This study 1C 

YCplac33 CEN, URA3 Gietz and Sugino, 1988 2D 

pBG1805-IGO1-TAP GAL1p-IGO1-HA-6HIS-3C-ZZ Gelperin et al., 2005 Table 3 

pLC1427 [YCplac33] IGO1-myc8 This study 2D, 3B, S1 

pLC1430 [YCplac33] IGO1S64A-myc8 This study 2D, 3B 

pLC1429 [YCplac33] IGO2-myc8 This study 2D 

pMJA1481 [YEplac195] IGO1p-ENSA-myc8 This study 2D 

pMJA1482 [YEplac195] IGO1p-ARPP-19-myc8 This study 2D 

pUKC414 CEN, URA3, HSP26-lacZ Ferreira et al., 2001 5C, 6C 

pXL1633 CEN, HIS3, HSP26-lacZ This study 2D 

pCDV1082 YCpIF2-ADH1p-GST This study 3A, B, S1 

pMJA1655 YCpIF2-ADH1p-GST-PBP4 This study 3A, B, S1 

pMJA1654 YCpIF2-ADH1p-GST-PBP1 This study 3A, B, S1 

pMJA1656 YCpIF2-ADH1p-GST-DHH1 This study 3A, B, S1 

pMJA1657 YCpIF2-ADH1p-GST-LSM12 This study 3A, B, S1 

pCM242 CMVp(tetR'-SSN6)::LEU2 Belli et al., 1998 S2B 

pNT012 CEN, URA3, HSP26p::tetO7-HSP26-LacZ This study S2A, B 

pTG003 PRS315-DCP2-RFP Gill et al., 2006 6A, D, 7A, S5A 

pPS2037 PRS416-PGK1p-PGK1-U1A-PGK1 3’UTR Brodsky and Silver, 2000  

pNT003 PRS416-HSP26p-HSP26-U1A-HSP26 3’UTR This study 6A, D, 7C, D, S5 

pPS2045 PRS313-GALp-U1A(1-94)-GFP Brodsky and Silver, 2000  

pNT004 PRS413-ADH1p-U1A(1-94)-GFP This study 6A, D, 7C, D, S5 

pXL1632 [YCplac33] IGO1-GFP This study 7A, B 

pNT005 [YCplac33] IGO1-RFP This study 7C 
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Table 3. Proteins Identified in Igo1-TAP and Igo1-myc13 Pull-Down Experiments 

Protein1 Igo1-TAP Igo1-myc13 MW Function/Description 

Act1   41.7 Actin 

Ate1   57.9 Arginyl-tRNA-protein transferase 

Clu1   145.2 Component of  eIF3 

Hhf1/2   11.4 Histone H4 

Hrk1   85.7 Protein kinase implicated in activation of Pma1 

Hsc82   80.9 Cytoplasmic chaperone of the Hsp90 family 

Htb1   14.3 Histone H2B 

Igo1   18.0 Required for initiation of G0; target of Rim15 protein kinase 

Ilv6   34.0 Regulatory subunit of acetolactate synthase 

Lsm12   21.3 Sm-like protein; interacts with Pbp1/4; associates with ribosomes 

Mot2   65.4 Subunit of the CCR4-NOT complex 

Pbp1   78.8 Interacts with Pab1 to regulate mRNA polyadenylation 

Pbp4   19.9 Pbp1p binding protein 4; interacts with Lsm12 

Por1   30.4 Mitochondrial porin, outer membrane protein 

Psp2   65.6 Possible role in mitochondrial mRNA splicing 

Rim1   15.4 Role in mitochondrial DNA replication; binds single-stranded DNA 

Rps18A   17.0 Protein component of the small (40S) ribosomal subunit 

Rsp5   91.8 E3 ubiquitin-protein ligase 

Sec23   85.4 GTPase-activating protein; involved in ER to Golgi transport  

Sfp1   74.8 Transcription factor controlling expression of Ribi genes 

Ssa1/2   69.6 Hsp70 family member 

Ssa4   69.7 Hsp70 family member 

Ssb1/2   66.6 Hsp70 family member; ribosome-associated molecular chaperone 

Ssc1   70.6 Hsp70 family member; role in mitochondrial protein import 

Tef1   50.0 Translational elongation factor EF-1α 

1Proteins were identified by LC-MS-MS analysis of polypeptides in purified Igo1-TAP and Igo1-myc13 preparations (see   
 Experimental Procedures). Only proteins for which at least four peptides were identified and, in the case of Igo1-TAP, for  
 which the number of identified peptides was also at least four times higher than the number of peptides recovered with  
 an unrelated control (Gtr1-TAP) were included in the list. The preparations (i.e. Igo1-TAP and/or Igo1-myc13) in which  
 corresponding peptides were identified are indicated (). Proteins for which peptides were recovered in both Igo1-TAP and  
 Igo1-myc13 preparations are highlighted in bold. 
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Supplemental Experimental Procedures 

 
Proteome Chip Analyses 

Yeast proteome microarrays were prepared as previously described (Ptacek et al., 2005). Approximately 

4400 GST::His-tagged yeast proteins were overexpressed and purified by affinity chromatography and 

spotted in duplicate on a surface-modified microscope slide. The autophosphorylating kinases Pka2, Pkc-a 

and Cmk1 were added at defined locations to serve as both positive controls and landmarks for the 

identification of phosphorylation signals on the array. Common kinase substrates, such as myelin basic 

protein (MBP), histone H1, casein, polyGlu-Tyr, and a carboxyterminal domain (CTD) peptide containing 

three copies of the acidic CTD of RNA polymerase II were also included to exhibit the addition of kinase 

activity on the array. 

To determine the optimal amount of kinase to use for probing the proteome arrays, a dilution 

series (1:1, 1:2, 1:5, 1:10, and 1:20) of wild-type Rim15 and kinase-inactive Rim15KD was made in a total 

volume of 200 µl kinase buffer containing 2 µl [γ-33P] ATP and added to test arrays containing positive 

controls and common kinase substrates as described (Ptacek et al., 2005). Using the optimized conditions, 

proteome arrays were probed in duplicate with wild-type Rim15 and Rim15KD in 200 µl kinase buffer 

containing 2 µl [γ-33P]ATP in a humidified chamber at 30°C for 1 hr. Arrays were then exposed to X-ray 

film for 1, 3 and 7 days. Data analysis was performed as described previously (Ptacek et al., 2005). In 

short, substrate proteins that displayed reproducible signals higher than those of neighboring spots in at 

least three of the four spots were identified and then compared to the autophosphorylation control. Only 

those spots that were specifically phosphorylated in the presence of wild-type Rim15 were scored as 

positive substrates. The proteome arrays probed with Rim15KD exhibited signals identical to those 

obtained in the absence of protein kinase. 

 

Polysome Analyses 

Strains were grown in synthetic defined medium to mid-log phase and either treated, or not, with 

rapamycin for 2 hr. Cycloheximide (0.1 mg ml-1 final concentration) was added just prior to harvesting. 

Extracts (of 150 OD600 of yeast cultures) were layered onto 7-50% linear sucrose gradients and centrifuged 

at 35’000 rpm at 4°C for 210 min. Gradient analysis was performed using an ISCO UA-6 collector with 

continuous monitoring at A254nm. Manually collected fractions were used for RNA extraction as described 

(Gaillard and Aguilera, 2008). 
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