## **Supplemental Information**

for

Observation of organometallic and radical intermediates formed during the reaction of methyl-

coenzyme M reductase with bromoethanesulfonate

Xianghui Li, Joshua Telser, Brian M. Hoffman, Gary Gerfen, Stephen W. Ragsdale

Fig S1. Kinetics of MCR<sub>BES</sub> radical decay determined by visible absorption spectral changes of MCR<sub>red1</sub> upon addition of BES in presence of CoBSH.

Figure S2. 35 GHz EPR spectra at 2 K of MCR<sub>red1</sub> in presence 1 mM CoB<sub>6</sub>SH after addition of BES. The spectra are normalized to give the same signal intensity for  $g_{\perp}$  of MCR<sub>ox1</sub>. CW EPR spectra, recorded at 35.011 GHz, 1 G modulation amplitude, and two different microwave power settings: 20 dB (~1 mW; orange trace), 30 dB (~0.1 mW, red trace), are shown, along with echodetected EPR spectra recorded at 34.851 GHz and two different repetition rates: 10 Hz (green trace), 50 Hz (blue trace); both used a Hahn spin echo sequence with:  $\pi/2$  pulse width = 40 ns; delay time,  $\tau = 600$  ns. Signals from the three primary EPR-active species, MCR<sub>red1</sub>, MCR<sub>ox1</sub>, and MCR<sub>BES</sub> radical are easily seen in the 35 GHz spectra. Also apparent is a weak signal from MCR<sub>red2</sub>, with  $g_{\perp} = 2.07$ . A small signal from adventitious Mn(II) in the  $g \sim 2.00$  region underlies the radical signal. EPR spectroscopy at 35 GHz and 2 K enhances Mn(II) signals; this one could be essentially invisible at X-band and 70 K.

Figure S3. Broad scan swept CW 35 GHz <sup>1</sup>H ENDOR spectra of MCR<sub>red1</sub> recorded at 2 K at a field position on the MCR signal (g = 2.177, upper trace) and on the radical signal (g = 2.002, lower trace). As seen also in Figure 5 (which uses random hopping of rf), the MCR spectrum exhibits signal from a strongly coupled <sup>1</sup>H (47); in this case, both  $v_{\pm}$  partners are observed. The radical signal exhibits much more severe baseline artifacts, however it is possible that there is <sup>1</sup>H hyperfine coupling of at least ~40 MHz, which would be consistent with the observation of hyperfine splitting by X-band EPR. Experimental conditions: microwave frequency, 35.010 GHz; modulation frequency, 2 G; microwave power, 20 dB (~100 µW); rf swept linearly from low to high frequency; 10 scans.





Figure S2. 35 GHz EPR spectra at 2 K of  $MCR_{red1}$  in presence 1 mM  $CoB_6SH$  after addition of BES.



Figure S3. Broad scan swept CW 35 GHz <sup>1</sup>H ENDOR spectra of MCR<sub>red1</sub> recorded at 2 K at a field position on the MCR signal (g = 2.177, upper trace) and on the radical signal (g = 2.002, lower trace).

