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Linear Time-Invariant (LTI) Systems with De-
layed Inputs

We propose that the regulation of rhythmic biological pro-
cesses by the circadian signaling network may be described
by linear time-invariant (LTI) systems with delayed inputs.
Linear systems have the desirable property of maintaining
the period of oscillatory inputs. Therefore, circadian regu-
lation by LTI systems guarantees circadian rhythms in the
output process. Delayed inputs correspond to the unchar-
acterized pathways connecting the input variables, which
are measurements of CCA1 expression (a proxy for the cir-
cadian central oscillator) and the availability of light. The
output signal y represents measured aequorin (AEQ) lumi-
nescence data. A state-space representation of an LTI sys-
tem with delayed inputs uτ(t) and output y(t) is written
as

dx
dt

(t) = Ax(t) + Buτ(t), (1)

y(t) = Cx(t) + d (2)

where x ∈ Rn is the vector of n state variables, uτ(t) ∈ R2

is the delayed input vector∗, d ∈ R is a constant offset of
the measured output y(t), A ∈ Rn×n is the matrix of inter-
connections, B ∈ Rn×2 is the input matrix and C ∈ R1×n

is the output vector. Since y is the measurement of a sin-
gle state, C consists of a 1 in the first entry and 0’s in the
entries corresponding to the n− 1 hidden states. The time-
invariant property of this model class refers to the system
parameters A, B, C and d (and delays τCCA1, τlight) being
constant.

Remark 1. We assumed that regulation by clock-sensitive
and light/dark-sensitive pathways is independent. The as-
sumption is reasonable provided that we carefully distin-
guish between light/dark regulation mediated by the cir-
cadian clock and light/dark regulation not mediated by the
clock. While the availability of light is trivially independent
of the clock, the signal transduction pathway may not be.
Therefore, if τlight > 0, then the independence assumption
may not be appropriate.

Remark 2. Systems with delayed inputs may also be
thought of as infinite-dimensional systems. Suppose X(s)
is the Laplace transform of x(t), U(s) is the Laplace trans-
form of u(t) etc., then Eq. 1 may be written in the Laplace
domain (after rearrangement) as

X(s) = G(s)e−sτU(s), (3)

where G(s) = (sI − A)−1B is the transfer function corre-
sponding to a standard linear system (with no delays and
full state observability, i.e., C = I). As the exponential term
is a polynomial of infinite degree, it may be represented as
an infinite-dimensional linear system, or approximated by
a finite-dimensional system.

Remark 3. The provision of hidden variables (n > 1) leads
to degrees of freedom in the system matrices A and B. This
is due to the input-output invariance of transfer functions
with respect to similarity transformations: an arbitrary lin-
ear system ẋ = Ax + Bu, y = Cx has the transfer function
representation Y(s) = C(sI − A)−1BU(s). Applying a sim-
ilarity transformation T ∈ Rn×n such that x = Tz gives

ẋ = Tż = ATz + Bu

Taking Laplace transforms and noting that Y(s) = CTZ(s)
gives

Y(s) = CT(sI − T−1 AT)−1T−1BU(s)

= C(sI − A)−1BU(s),

as before. The degrees of freedom resulting from this in-
variance to similarity transformation may be fixed (for con-
venience) by writing the LTI system in the controller canon-
ical form

dx
dt

=



0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 . . . 0 1
a1 a2 a3 . . . an


x +


b11 . . . b1m

...
...

bn1 . . . bnm

 u,

(4)
where each ai, bij ∈ R.

∗The notation uτ(t) is shorthand for a vector of inputs u1, u2, . . . subject to distinct delays τ1, τ2, . . .. Since we consider two inputs, this amounts here

to uτ(t) =
[
uCCA1(t− τCCA1) ulight(t− τlight)

]T
.
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Model Identification

Systems Identification theory provides powerful tools for
the estimation of LTI systems from input-output data alone,
enabling also the provision of hidden variables. How-
ever, there have been no published algorithms which ap-
proximate the delays τ in addition to the system matri-
ces A and B in Eq. 1. Instead of estimating τ explicitly,
we pre-processed the input-output data to account for dif-
ferent choices of τ, conducted parameter estimation for
each choice, and compared the performance of the obtained
models†. This essentially reduces the estimation problem
to the basic no-delay case. Therefore, model identification
was a two-stage process, consisting of data preparation and
parameter estimation.

Parameter Estimation

The prediction-error method (PEM) (1) was used to esti-
mate the system matrices A and B and the constant offset
d for each choice of τ and n. PEM falls under the class
of indirect methods for systems identification, whereby
a discretized version of an LTI system is first computed,
before transforming it to a continuous-time representa-
tion. PEM requires that the input-output observations are
uniformly spaced in time and assumes a zero-order hold
(ZOH) intersample behavior. Estimation of d required a re-
parameterization of the LTI model class, as a constant offset
in the output signal cannot be treated by PEM. If we define

xd :=

(
x
d

)
, then equations 1 & 2 may be written as

ẋd =

(
A 0
0 0

)
xd +

(
B
0

)
u

y =
(

C 1
)

,
(5)

providing a structured re-parameterization whereby d can
be estimated as the initial condition for the last entry in xd.

Cytosolic-free Ca2+

In this section, we describe the derivation of an input-
delayed linear system model for the regulation of cytosolic-
free Ca2+ ([Ca2+]cyt). Our experimental observations of
[Ca2+]cyt exist in the form of bioluminescence measure-
ments of AEQ, a Ca2+-sensitive bioluminescent protein
which has been constitutively expressed in Arabidopsis.
The derivation procedure outlined here was also applied
to models of CAB2::luc expression and rhythmically ex-
pressed transcripts.

Pre-Processing the Input-Output Data

The target model output during model estimation was
taken to be the measured AEQ luminescence values ob-

tained from 10 day old seedlings measured for 2 days of
12L/12D cycles followed by 3 days of DD (Fig. S1B). Nor-
malized measurements of CCA1::luc luminescence in the
same conditions were used as the values for uCCA1. The
values were normalized by dividing all measurement val-
ues by the maximum value in 12L/12D cycles (Fig. S1A).
Normalization of the CCA1::luc luminescence data was
required to enable model simulation with contrasting
datasets (alternative photoperiodic conditions) which may
have different luminescent signal strengths. We were pre-
vented from using current literature mathematical models
of the Arabidopsis circadian clock for the CCA1 input, as
these models correspond to plants grown on agar media
containing 3% (w/v) sucrose (2–5). Our plants were grown
in the absence of exogenous sucrose to permit circadian os-
cillations of [Ca2+]cyt (6). ulight was set equal to 1 during
light and 0 during dark.

The sets of input-output triples (uCCA1, ulight, AEQ)
were formed for each combination of (τCCA1, τlight) with
τCCA1 = 0, 0.1, 0.2, . . ., 10 h and τlight = 0, 1, 2, 3, 4, 5 h. The
values of ulight were set as a binary sequence of 1’s and 0’s
corresponding to the experimental conditions of the out-
put estimation dataset, whilst reflecting the value of τlight
being used (Fig. S1A). As PEM uses zero-order hold in-
tersample behavior, the assignment of ulight for estimation
was exact. Since CCA1 expression is a continuous variable
(which correlates with the cell-averaged concentration of
CCA1 mRNA), it was more natural to use a first-order hold
intersample behavior (linear interpolation). As AEQ lumi-
nescence was measured at t = 1, 3, 5, . . . and PEM requires
ZOH, it was not possible to assign a change in the value of
ulight at light-dark or dark-light transitions unless τlight = 1,
3, 5, . . . also. To enable estimation of models with τlight be-
ing allowed to take any integer value, the mid-points lying
between successive values of AEQ luminescence were com-
puted by linear interpolation (AEQ is a continuous vari-
able which relates to the cell-averaged [Ca2+]cyt), and the
obtained interpolated values were appended to the estima-
tion dataset.

Model Selection

As the number of derived models was large, with many
combinations of τlight, τCCA1 and n considered, stringent
selection criteria were developed. Furthermore, for mod-
els with hidden variables (i.e., n > 1), it was possible to
describe the target output data with arbitrary closeness. As
such, it was important to seek a compromise between the
complexity of the model and the reproducibility of the tar-
get data. Each estimated model was analyzed by assessing
the predictability of all models with respect to alternative
datasets, or ’cross-validation’.

A cross-validation procedure was applied to evaluate
the wider applicability of the derived LTI models and to
therefore establish the most suitable choices of n, τCCA1 and

†Pre-specification of the delay vector τ is equivalent to the required pre-specification of the model order n. Appropriate values may be selected after
analyzing model performance.
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τlight. Input-output datasets (AEQ and CCA1::luc lumines-
cence) were collected in photoperiodic conditions which
contrasted with those used for model estimation: cycles
of 12L/12D before transfer to LL and cycles of long (16 h)
and short (8 h) photoperiods (Supplementary Figs. S1C,
S1E, and S1G). The ability of any given model to match
the experimental data was investigated by computing Pear-
son’s product-moment sample correlation coefficient be-
tween the measured data and the simulated output data
at the corresponding time points. For any vectors x ∈ RN

and y ∈ RN , the sample correlation coefficient r is defined
as

r(x, y) :=
N

∑
i=1

(
xi − x̄
||x− x̄1||2

yi − ȳ
||y− ȳ1||2

)
(6)

where x̄ ∈ R and ȳ ∈ R are the sample means of x
and y respectively, ||x||2 is the euclidian norm of x, and
1 ∈ RN is the vector (1, . . . , 1)T . For each of the wild-type
datasets available for estimation and cross-validation, rD
(12L/12D–DD), rL (12L/12D–LL), rLD (16L/8D) and rSD
(8L/16D) are defined accordingly to measure the correla-
tion between measured and simulated outputs. To quan-
tify the general model performance over each of the four
wild-type input-output datasets available, we defined a
weighted sample correlation rw as

rw := nDrD + nLrL + nLDrLD + nSDrSD (7)

where nk is the number of points in dataset k ∈
{D, L, LD, SD}.

2nd order models with τCCA1 near 5 h offered the best
predictive capability when comparing the cross-validation
measures rw of the different models. An optimal τCCA1 (i.e.,
a τCCA1 which had the highest rw) was chosen for each com-
bination of τlight and n (Fig. S2). The difference in perfor-
mance between 2nd and 3rd order models was very small
(Fig. S2D), which was confirmed by comparing the sim-
ulated outputs in each of the 4 photoperiods investigated
(Fig. S3). Therefore, n = 2 can be considered as a sufficient
minimal description of wild-type dynamical behaviors.

Isolation of Input Pathways

Through model estimation and cross-validation, it was pos-
sible to determine a minimal order (n = 2) and a narrow
range of durations for the uncharacterized pathway con-
necting CCA1 expression and [Ca2+]cyt (4.8 h . τCCA1 .
5.2 h; Fig. S2B), though it was not possible to distinguish
the duration of the light/dark input pathway, τlight. The
light/dark input pathway was isolated by simulating a mu-
tation in CCA1, achieved by setting uCCA1 = 0 through-
out, while leaving ulight as for the wild-type case. In this
way, the effect of different values of τlight could be seen
in any photoperiodic regime. The optimal-τCCA1 2nd order
models were simulated in 12L/12D cycles and compared
with the corresponding measurements of AEQ lumines-
cence in cca1-1 mutants (Fig. S4). The timing of the increase

in simulated AEQ luminescence in a cca1-1 mutant follow-
ing a dark-light transition was correlated with the value
of τlight (Fig. S4E). Since experimentally observed [Ca2+]cyt
increased immediately following a dark-light transition in
cca1-1 mutants (7) (Fig. S4E) , we reason that 0 h is the best
choice for τlight. Therefore, the candidate model estimated
with PEM (for n = 2, τlight= 0 h, τCCA1= 5.2 h) is

˙(
x1(t)
X2(t)

)
= A

(
x1(t)
X2(t)

)
+ B

(
uCCA1(t− 5.2)

ulight(t)

)
(8)

AEQ = x1 + 14087 (9)

where A =

(
0 1

−0.0313 −0.3252

)
, (10)

B =

(
2445.8 1083.4
−1187.3 −390.96

)
(11)

This latter candidate model was also simulated for a mu-
tation in CCA1 in the photoperiodic conditions used for
cross-validation, and compared with the corresponding
wild-type simulations (Fig. S4).

Mutation in the Hidden State Variable

The LTI state-space model class used to describe the circa-
dian and light/dark regulation of [Ca2+]cyt has only a sin-
gle output. Without loss of generality, we can chose the
observable output to be one of the state variables, with the
other n − 1 variables being hidden. The dynamics of hid-
den variables cannot be simulated, a consequence of the in-
variance of transfer functions to similarity transformations
(explained above). To enable further investigation of our
candidate 2nd order model, we constructed a generalized
form of the system matrices A and B which parameterized
the set of all equivalent state-space realizations.

Consider a similarity matrix T applied to a 2nd order
linear system ẋ = Ax + Bu such that x = Tx̂. In terms of
the arbitrary vector of state variables x̂, the system evolves
as

˙̂x = Âx̂ + B̂u (12)

where Â = T−1 AT and B̂ = T−1B are the generalized sys-

tem matrices. Suppose T =

(
1 0
t1 t2

)
(t1, t2 ∈ R) so that

the (measurable) first entry in the state vector is preserved
(i.e., x̂1 = x1), and A, B are in the canonical form of Eq. 4.
Then by a series of simple matrix computations, the gener-
alized system matrices may be written as

Â = T−1 AT =

 t1 t2
−t2

1 + a2t1 + a1

t2
−t2 + a2

 (13)

B̂ = T−1B =

 b11 b12
−b11t1 + b21

t2

−b12t1 + b22

t2

 (14)
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In this latter generalized system, the state vector is com-
posed of a variable representing AEQ (x1; AEQ shifted by
d luminescence units) and a variable X2 which is parame-
terized by the choice of t1 and t2. To simulate a mutation in
X2, we simply set it equal to 0 throughout, thus reducing
the model to a 1st order system

ẋ1 = t1x1 + b̂1u, (15)

where b̂1 is the first row of B̂. The dynamics of a simulated
x2 mutant therefore depends only on the choice of t1. Note
further that t1 also determines the stability of the system.

While it was not possible to determine a suitable
value for t1 (or t2) from the currently available experi-
mental data, it was possible to predict dynamical behav-
iors in system perturbations. A series of simulations of
Eq. 15 were carried out to obtain predictions of [Ca2+]cyt
in an x2 mutant. The system was simulated with t1 =
−0.01,−0.1,−0.25,−0.5 and -1, subject to the input signals
that were used previously for cross-validation (Fig. S6).
The most striking observations were: 1) if t1 was not chosen
to be sufficiently negative then unstable dynamics could be
observed as unbounded increases or decreases in simulated
AEQ, and 2) irrespective of the value of t1, there was a de-
layed increase in simulated AEQ following a dark to light
transition in 16L/8D (Fig. S6C).

The generalized LTI system (Eq. 12) was also used to
investigate the interactions between AEQ, X2, CCA1 and
light/dark. The internal structure of LTI systems with hid-
den states is not fixed, as similarity transformations can
re-structure the state variables while preserving the input-
output behavior. Using the second-order generalized sys-
tem to establish whether particular entries in A and B could
be zero, we found that no structural information could be
derived from our model. From Eq. 13, the (2,1) element of
Â is equal to zero provided‡

t1 =
a2

2
±

√
a2

2 + 4a1

2
, (16)

which is only possible if a2
2 + 4a1 ≥ 0. Using the param-

eter values of the candidate model (Eq. 8), we find that
a2

2 + 4a1 = −0.0195, implying that it is not possible to
choose t1 such that â21 is zero. Therefore, X2 is necessar-
ily regulated by [Ca2+]cyt. The (2,1) entry of B̂ is zero if and

only if t1 =
b21

b11
= −0.4855, while the (2,2) entry is zero if

and only if t1 =
b22

b12
= −0.3609. As it is possible to assign

t1 such that specific entries of B are zero, it is not possible
to determine properties of the input structure.

Bode Frequency Response Analysis

One of the main characteristics of LTI systems is that their
response to sinusoidal signals is a sinusoidal signal with
the same frequency.§ Only the amplitude of the output
with respect to the amplitude of the input (the gain) or the
phase of the output with respect to the phase of a periodic
input may change. Therefore, LTI systems can be charac-
terized through their frequency response, which is best vi-
sualized using Bode magnitude and phase plots.

Bode magnitude and phase analysis was conducted for
the pathways connecting CCA1 to [Ca2+]cyt and light/dark
to [Ca2+]cyt (Fig. 3A). The frequency-domain transfer func-
tion representation of the candidate model (Eq. 8) was ob-
tained by taking the Laplace transform, which yields

L{AEQ(t)} =
(

GCCA1(s)
Glight(s)

)
L{
(

uCCA1(t− 5.2)
ulight(t)

)
}, (17)

where

GCCA1(s) =
2445.8s− 391.9

s2 + 0.3252s + 0.0313
, (18)

Glight(s) =
1083.4s− 38.6

s2 + 0.3252s + 0.0313
(19)

From the frequency-domain representation, the magni-
tude of the frequency response represents the input-output
gain at each frequency and is obtained in dB units as
20 log |G(jω)|, where ω is the input frequency. The phase
angle of the frequency response is obtained as ∠G(jω) and
represents the phase difference between input and output
at each frequency.

LTI Model for Circadian and Light/Dark Regu-
lation of CAB2

The regulation of CAB2 expression shares some similarity
with that of [Ca2+]cyt, as it is both circadian-regulated and
sensitive to transitions between light and dark. To establish
the extent of these similarities from a dynamical systems
point of view, we derived an LTI model in the same way
as was done for [Ca2+]cyt. CCA1 expression was used as
a proxy¶ for circadian regulation subject to a delay τCCA1,
with a binary input variable representing the availability
of light. To form the complete input-output estimation
dataset, CAB2::luc luminescence was measured in Arabidop-
sis seedlings for 2 cycles of 12L/12D before transfer to DD
(Fig. S9A), and pre-processing was done exactly as for the
[Ca2+]cyt model (Fig. S1A) to implement varying τCCA1.

A first order model was able to describe the regulation
of CAB2 by the circadian clock and the light signaling net-
work in wild-type plants. Models of complexity up to 3rd

‡Also we must assume t2 6= 0, as otherwise the system would trivially decouple into two first order equations.
§This is particularly important as any signal can be decomposed into a sum of oscillating functions, namely sines and cosines using a Fourier series

decomposition.
¶The interpretation of a proxy is particularly important in this case, as CAB2 expression is not arrhythmic in cca1-1 loss of function mutants (8). We

do not claim that the resulting model provides predictive capabilities for mutant strains, though it may sufficiently represent wild-type dynamics in
terms of the transfer function from CCA1 expression to CAB2 expression.
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order were estimated from the 12L/12D–DD input-output
data, and performance assessed using a criterion analo-
gous to Eq. 7 with the 12L/12D–DD (Fig. S9A) and 16L/8D
(Fig. S9B) datasets. An optimal choice of τCCA1 (i.e., a value
of τCCA1 which maximized a correlation coefficient rw de-
fined for the two datasets) was chosen for each combination
of τlight and n (Fig. S9C). In the majority of cases, a nonzero
τlight reduced performance. Similarly to the [Ca2+]cyt reg-
ulation case, the optimal values of τCCA1 were all close to
0 h, indicating that the regulation of CAB2 by the circadian
clock does not involve a long pathway. A small increase
in rw performance was observed when increasing n from
1 to 3, though comparing simulations of the models indi-
cated the quantitative increase to be of little consequence
(Fig. S9); the optimal-τCCA1 (0.6 h) 1st order system with
τlight= 0 h was capable of reproducing the dynamics con-
tained within the available data. The resulting candidate
1st order model may be defined in the frequency domain
as:

L{CAB2(t)} =
(

GCCA1(s)
Glight(s)

)
L{
(

uCCA1(t− 0.6)
ulight(t)

)
}, (20)

where

GCCA1(s) =
2.0510

s + 0.6644
, (21)

Glight(s) =
1.2669

s + 0.6644
(22)

Linear Systems modeling of Microarray Data

Linear systems were derived for the set of transcripts which
exceeded the pMMC–β rhythmicity level 0.05 (9). Four mi-
croarray datasets were used for model construction, span-
ning a mixture of growth conditions (Table S2). Of these
four datasets, only three represent dynamics in which there
are variations in both CCA1 transcript abundance (input
signal representing the circadian clock) and light availabil-
ity: LDHC, LongLer and ShortLer. First order models
were estimated independently from the LDHC, LongLer
and ShortLer datasets before selecting the best model of
each transcript. A range of input delays were investigated
for the clock pathway (τCCA1= 0, 0.2, . . . , 8 h), though the
light input pathway was assumed to be fast (τlight= 0 h).
The best model was selected by the weighted correlation
coefficient rw defined above (Eq. 7), subject to comparisons
between each of the four microarray datasets in Table S2
and a corresponding simulation. The performance of op-
timal models derived from each of the three datasets used
for estimation, and the best combination of the three, is de-
picted in Fig. S10A as a cumulative distribution function.
Imposing a minimal model performance of rw > 0.75 re-
sults in the selection of 1083 models out of the 3503 con-
sidered. An illustration of model performance is presented

in Fig. S10B, with rw varying between 0.25 (bottom panels)
and 0.97 (top panels). To assess whether CCA1 is a good
gene to use as a proxy for the circadian oscillator, mod-
els were also estimated from TOC1 transcript abundance
data using the same method. Indeed, we found that TOC1-
driven models were outperformed by CCA1-driven models
in general (Fig. S10B).

Transcripts were classified as clock-dominated, co-
regulated or light-dominated, based on the difference in the
Bode magnitude of each input pathway. To ensure com-
parability, CCA1 transcript abundance data was normal-
ized by dividing all measured values by their correspond-
ing maximum value prior to model estimation, so that both
inputs were varying between 0 and 1. As first order mod-
els were used to model the transcript abundance data, the
Bode phase plot was identical for both input pathways. The
considered first order model is described by the equation

dx
dt

(t) = ax(t) + b1uCCA1(t− τCCA1) + b2ulight(t), (23)

where x is the single state variable. Therefore, the transfer
function representation is given by

X(s) = GCCA1(s)e−sτCCA1UCCA1(s) + Glight(s)Ulight(s)
(24)

where GCCA1(s) =
b1

s−a and Glight(s) =
b2

s−a .
To classify a transcript as either being clock/light-

dominated or co-regulated, we first computed the Bode
magnitude as 20 log |Gi(jω)| for i = CCA1, light. Next,
we computed the difference between the Bode magni-
tude of GCCA1 and Glight for each of the 1083 high-
performing (rw > 0.75) models (Fig. S10). Since for
the model of [Ca2+]cyt there was a difference of 7 dB at
ω = π

12 (corresponding to a period of 24 h; Fig. 3A)
and [Ca2+]cyt is regulated both by the circadian oscillator
and light, we chose to use 7 dB as a threshold for classify-
ing all transcripts. We defined a transcript as being clock-
dominated if 20 log |GCCA1(jω)|

|Glight(jω)| > 7 dB, light-dominated if

20 log |GCCA1(jω)|
|Glight(jω)| < −7 dB and co-regulated if −7 dB <

20 log
|GCCA1(jω)|
|Glight(jω)| < 7 dB.

Ecotype Variability in the Shape of the [Ca2+]cyt
Oscillation in 16L/8D Cycles

AEQ luminescence was measured in a number of Arabidop-
sis accessions under 16L/8D (Fig. S8A). While all acces-
sions had a broad peak in luminescence at mid-day, C24
(7) and WS (10) had an additional sharp peak immediately
after dawn. The early peak observed in WS (10) was not
present in WS (11). WS ecotypes contain a phytochrome D
(phyD) mutation (12), which may provide an explanation
for the variation in dynamics.
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Figure S1: Pre-processing the input-output data prior to model estimation.
(A,C,E,G) Relative CCA1::luc luminescence quantified for 10 day old Arabidopsis seedlings, where open red circles represent mean
average of photon counts per seedling cluster integrated for 800 s. In (A), the binary variable representing the availability of light
(light=1, dark=0) corresponding to the experimental photoperiodic conditions is represented by a solid blue line. (B,D,F,H) AEQ
luminescence quantified for 10 day old Arabidopsis seedlings, where open blue circles represent mean average of photon counts per
seedling cluster integrated for 1500 s. Bars on abscissa represent light availability; white indicates light, black indicates dark, dark
gray is subjective day in DD and light gray is subjective night in LL.
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Figure S2: Evaluation of the weighted cross-validation function for models of circadian regulation of [Ca2+]cyt.
Performance function rw expressed as a function of τCCA1, for (A) 1st, (B) 2nd, and (C) 3rd order models. Values of τlight are indicated
by different colors (see legend of (D)). (D) Summary of model performance for each combination of τlight and n, where bar heights
correspond to rw values for the best choice of τCCA1.
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Figure S3: Cross-validation of (A,C,E,G) 2nd and (B,D,F,H) 3rd order models of circadian regulation of [Ca2+]cyt.
Linear state-space model equations were solved numerically with MATLABTM’s ode23 solver (solid lines) (13). Simulation results were
compared with corresponding experimental data for (A,B) 12L/12D cycles before transfer to DD, (C,D) 12L/12D cycles before transfer
to LL, (E,F) 16L/8D cycles, and (G,H) 8L/16D cycles. For each τlight = 0, 1, . . . , 5, the models were simulated for the value of τCCA1
which had the highest value of rw, the weighted sum of sample correlation coefficients (see Fig. S2). Simulated model outputs have
been scaled to overlap with AEQ luminescence data (open circles) by finding the best linear scaling of the form aŷ + b, where ŷ is the
simulated output. The polyfit function in MATLABTM was used to evaluate a and b as minimizers of ∑Nd

i (y(i) − aŷ(i) − b)2 where y(i)

are the measured AEQ luminescence values, ŷ(i) are the corresponding simulated model output values and Nd is the number of data
values. Bars on abscissa represent light regime in each experiment/simulation. White indicates light, black indicates dark, light gray
is light in the subjective night and dark gray is dark in subjective daytime.
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Figure S4: Simulation of the response of [Ca2+]cyt to a mutation in CCA1.
(A) AEQ luminescence measured by photon counting imaging in 10 day old cca1-11 mutant Arabidopsis seedlings entrained to 16L/8D
cycles (open circles). Superimposed on the same plot are equivalent simulation results for AEQ luminescence obtained from optimal-
τCCA1 2nd order models for different choices of τlight (solid lines). These simulation results have been obtained after normalization,
which was performed to overlap with the measured data in the least-squares sense. The corresponding correlation coefficient values
are indicated in the associated legend. (B) AEQ luminescence measured in 10 day old cry1 mutant Arabidopsis seedlings entrained
to 16L/8D cycles (open squares), compared with simulation results for relative AEQ luminescence in wild-type (black line) and cca1
mutants (red line); these results were obtained using the optimal-τCCA1 model for τlight= 0 h. Wild-type and cca1 mutant simulations
are compared for (C) 12L/12D cycles before DD, (D) 12L/12D cycles before LL, (E) 16L/8D cycles, and (F) 8L/16D cycles, without
normalization. In all panels, cca1 mutants are simulated by setting uCCA1 equal to zero throughout. Linear state-space model equations
were solved numerically with MATLABTM’s ode23 solver (13). For each τlight = 0, 1, . . . , 5, the models were simulated for the optimal
choice of τCCA1, defined as the minimizer for the weighted sum of correlations with cross-validation test data, rw (Eq. 6). Bars on
abscissa represent light regime in each simulation. White indicates light, black indicates dark, light gray in (D) is light in the subjective
night and dark gray in (C) is dark in subjective daytime.
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Figure S5: Effects of photoreceptor mutations on the [Ca2+]cyt oscillation in 16L/8D cycles.
In all plots, AEQ luminescence is quantified for 10 day old seedlings entrained and imaged in 16L/8D cycles (100 µmol m−2 s−1). The
corresponding traces representative of the [Ca2+]cyt oscillation in (A) phyA-201, (B) phyB-9, (C) cry1, (D) cry2-1, (E) phyA-201phyB-5, (F)
cry1cry2, (G) phot1, and (H) phot1phot2 are shown; wildtype seedlings are represented by closed circles; the mutant line is indicated by
open circles. In all figures, open bars represent light, closed bars darkness. Luminescence values on the left hand side of the figure
indicate those of the wildtype, values on the right those of the mutant. Values are means, bars represent the standard error of the
mean, n = 3− 5.
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Figure S6: Simulation of a mutation in the [Ca2+]cytmodel hidden variable X2.
Simulations of (A) LD–DD, (B) LD–LL, (C) 16L/8D and (D) 8L/16D cycles reflect removal of the hidden variable X2, by solving the
first order equation ẋ(t) = t1x(t) + b11uCCA1(t− τCCA1) + b12ulight(t). t1 is the free parameter from a similarity transformation which
defines the family of mutant responses. b11 and b12 are the entries in the first row of the B matrix, estimated from wild-type data using
the pem prediction-error minimization function in MATLABTM (Systems Identification Toolbox) (1). The estimated model corresponds
to the case where τlight= 0 h, and τCCA1= 5.2 h. The CCA1-dependent pathway is assumed to be unaffected by the mutation, as the
wild-type data (Fig. S1 B,D,F,H) is used for these simulations. The first 24 hours of input data is cycled through 5 times to remove
transitory behaviors. Linear state-space model equations were solved numerically with MATLABTM’s ode23 solver (13). Bars on
abscissa represent light regime in each simulation. White indicates light, black indicates dark, light gray (B) is light in the subjective
night and dark gray (A) is dark in subjective daytime.

13



Time (h)
-8 0 8 16 24 32

A
E

Q
 L

um
in

es
ce

nc
e 

(p
ho

to
ns

 1
50

0s
-1

)

2000
3000
4000
5000
6000
7000
8000
9000

2000

4000

6000

8000

10000
Col-0
CCA1ox

Time (h)
-8 0 8 16 24 32

A
E

Q
 L

um
in

es
ce

nc
e 

(p
ho

to
ns

 1
50

0s
-1

)

6000

8000

10000

12000

8000

10000

12000

14000

16000Ler
gi-3

Time (h)
-8 0 8 16 24 32

A
E

Q
 L

um
in

es
ce

nc
e 

(p
ho

to
ns

 1
50

0s
-1
)

4000

6000

8000

10000

4000
6000
8000
10000
12000
14000
16000
18000

C24
toc1-1

Time (h)
-8 0 8 16 24 32

A
E

Q
 L

um
in

es
ce

nc
e 

(p
ho

to
ns

 1
50

0s
-1
)

4000

6000

8000

10000

12000

4000

6000

8000

10000

12000

14000
C24
ztl-1

Time (h)

Time (h)
-8 0 8 16 24 32

A
E

Q
 L

um
in

es
ce

nc
e 

(p
ho

to
ns

 1
50

0s
-1

)

0

5000

10000

15000

20000

0

10000

20000

30000

40000

Col-0
elf3-1

Time (h)
-8 0 8 16 24 32

A
E

Q
 L

um
in

es
ce

nc
e 

(p
ho

to
ns

 1
50

0s
-1
)

4000

6000

8000

10000

4000

6000

8000

10000

12000
Ler
co-2

A

C D

E F

B

Figure S7: Effects of mutations associated with the central oscillator and photoperiodic flowering time pathways on the [Ca2+]cyt
oscillation in 16L/8D cycles.
In these plots, AEQ luminescence is quantified for 10 day old seedlings entrained and imaged in 16L/8D cycles (100 µmol m−2 s−1).
The corresponding traces representative of the [Ca2+]cyt oscillation in (A) CCA1ox, (B) gi-3 , (C) toc1-1, (D) ztl-1, (E) elf3-1 and (F) co-2
are shown; wildtype seedlings are represented by closed circles; the mutant line is indicated by open circles. In all figures, open bars
represent light, closed bars darkness. Luminescence values on the left hand side of the figure indicate those of the wildtype, values on
the right those of the mutant. Values are means, bars represent the standard error of the mean, n = 3− 5.
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Figure S8: Ecotype variability in the shape of the [Ca2+]cyt oscillation in 16L/8D cycles.
AEQ luminescence quantified for 10 day old seedlings entrained and imaged in 16L/8D cycles (100 µmol m-2 s-1) for wild-type Col-
0, C24 and WS accessions, and cca1-11 null mutants. WS (10) is the wild-type control which corresponds to cca1-11 mutants. The
data in the graph are averages of two independent experiments. Data for two independent transformants of the cca1-11 null mutant
expressing AEQ, cca1-11/8 and cca1-11/9, is shown. In abscissa, open bars represent light, closed bars darkness. In the key and this
figure legend, bracketed numbers are bibliographical references which indicate the source of the measured ecotype.
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Figure S9: Identification and selection of CAB2 models.
(A) Model performance for optimal-τCCA1 as a function of model order (i.e., n=number of states) and τlight. (B,C) Linear state-space
model equations solved numerically with MATLABTM’s ode23 solver (solid lines) in (A) LD–LL and (B) 16L/8D cycles (13). For τlight
= 0, the models were simulated for the value of τCCA1 which had the highest value of rw. Comparisons are shown for models of
increasing complexity from the top panel (1st order) to the bottom panel (3rd order). Simulated model outputs were scaled to overlap
with CAB2::luc luminescence data (open circles) by finding the best linear scaling of the form aŷ + b, where ŷ is the simulated output.
The polyfit function in MATLABTM was used to evaluate a and b as minimizers of ∑Nd

i (y(i) − aŷ(i) − b)2 where y(i) are the measured
CAB2::luc luminescence values, ŷ(i) are the corresponding simulated model output values and Nd is the number of data values. Bars
on abscissa represent 16L/8D cycle light regime, white indicating light, black indicating dark and light gray indicating dark during
subjective day.
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Figure S10: Mathematical modeling of rhythmic transcripts from microarray data.
(A) First order delay linear systems estimated from three different datasets (LDHC, LongLer and ShortLer) and analyzed for perfor-
mance using rw. Selection of the best model for each transcript produces the combined model set. Each model set is expressed as a
cumulative density function of the model performance. A performance threshold of 0.75 was chosen as the cut-off value for further
analysis. (B) Simulation of a range of first order models with highest observed performance (top), followed by rw = 0.9, 0.75, 0.5 and
0.25 (bottom). The four tests which comprize the performance metric are arranged in columns: 12L/12D (left), 12L/12D–LL, 16L/8D
and 8L/16D (right). (C) Histograph of difference between the pathway magnitudes of high performance models (rw > 0.75). The
models are categorized as clock- or light-dominated if the difference exceeds 7 dB, and co-regulated otherwize.
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Figure S11: Gene Ontology analysis of transcript regulation classes.
The involvement of clock-dominated, co-regulated and light-dominated transcripts in biological processes that are over-represented
within the subset of circadian-regulated transcripts (with performance threshold rw > 0.75) was analysed. For each gene
ontology (GO) term, the number of genes observed in each of the 3 gene lists is shown and compared to the number of
genes expected in each list by chance. The web-based enrichment analysis tool EasyGo was used for the GO term analysis
(http://bioinformatics.cau.edu.cn/easygo/) (17).
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Table S1: Physiological processes in plants regulated by both the circadian clock and light.

Process
Regulatory System

Light Circadian
Expression of chlorophyll a/b binding protein (CAB) 18–20 21–23
Expression of catalase 2 (CAT2) 24 24
Nitrate assimilation 25, 26 26, 27
Carbon fixation 28, 29 30, 31
Leaf angle (legumes) 32, 33 34
Hypocotyl elongation 35, 36 37, 38
Shade avoidance 39 40
Stomatal aperture 41, 42 30, 43, 44
Photoperiodic control of flowering time 45–47 48–50
[Ca2+]cyt 7, 51–53 6, 7, 14

Table S2: Microarray experiments used for model construction.

Name Condition Age (d) Accession Media Reference
LDHC 12 h light at 22◦C and 12 h dark at 12◦C 7 Col-0 agar, no suc 54

LongLer 16 h light, 8 h dark at 22◦ 7 Ler agar, 3% suc 55
ShortLer 8 h light, 16 h dark at 22◦ 7 Ler agar, 3% suc 55

LL-LDHC Constant light at 22◦ (after transfer
from LDHC)

9 Col-0 agar, no suc 54

Table S3: Distribution of the transcripts according to dominant regulatory pathway. Transcripts are classified as co-
regulated if the difference in magnitude is less than 7 dB. The corresponding numbers of transcripts where oscillation
phase information is available for entrained 8L/16D and 16L/8D cycles are given in brackets.

Clock-dominated Co-regulated Light-dominated Total
All transcripts 1028 (719) 1937 (914) 358 (212) 3503 (1845)
rw > 0.75 455 (413) 507 (381) 121 (98) 1083 (892)

Table S4: Relationship between the dominant regulatory pathway and the rephasing of maximal expression between
8L/16D and 16L/8D. Data are expressed as the % of transcripts within each class that re-phase between 8L/16D and
16L/8D. Asterisks (**) indicate statistical significance at the 95% confidence

Clock-dominated Co-regulated Light-dominated All structures χ2 statistic
All transcripts 24.9% 55.6% 54.2% 43.4% 9.0× 10−4 ∗∗

rw > 0.75 17.6% 47.9% 54.6% 35.2% 6.2× 10−6 ∗∗
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