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Fig. S1. Relative preproinsulin expression in βERKO−/− islets (A) and GPERKO−/− islets (B) after E2 (10−8 M) treatment in vitro (n = 3–12 mice/group). Results are
expressed as mean ± SEM.
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Fig. S2. Metabolic characterization of PERαKO−/− mice. (A–D) Glucose tolerance (A) and corresponding area under the curve (B), fasting blood glucose (C), and
fed blood glucose (D) at 8 wk in PERαKO−/− and ERαlox/lox mice. (E–H) Glucose tolerance (E) and corresponding area under the curve (F), fasting blood glucose
(G), and fed blood glucose (H) at 24 wk in PERαKO−/− and ERαlox/lox mice (n = 6–20/group). Results are expressed as mean ± SEM.
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Fig. S3. ERα-mediated ERK1/2 phosphorylation and nuclear translocation. (A and C) MIN6 cells were treated with E2 (10−8 M) as indicated (A) or with E2 (10−8 M),
EDC (10−8 M), PPT (10−8 M), or PD 98059 (10−5 M) (C) for 5 min. Phosphorylation of ERK1/2 was determined by Western blot analysis with an antibody against
phosphorylated ERK1/2. (B) Localization of phosphorylated ERK1/2 in MIN6 cells after treatment with E2 (10−8 M), PPT (10−8 M), EDC (10−8 M), or E2 + PD98059
(10−5 M) for 5 min.
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Fig. S4. Inhibition of E2-induced ERK1/2 phosphorylation by PP1. (A) Localization of phosphorylated ERK1/2 in MIN6 cells treated with either E2 (10−8 M) or E2 +
PP1 (10−5 M). (B) Inhibition of E2-induced ERK1/2 phosphorylation by PP1 in MIN6 cells. Cells were treated with E2 (10−8 M) or PP1 (10−5 M) for 5 min before
Western blot analysis. (C and D) Inhibition of E2-induced preproinsulin gene expression (C) and rise in insulin concentration (D) by PP1 (10−5 M) in WT islets.
Mouse islets were treated with PP1 for 48 h before measurements of preproinsulin expression and insulin concentration. Results are expressed as mean ± SEM.
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Fig. S5. ERα-induced NeuroD1 nuclear localization. NeuroD1 predominant nuclear localization in the presence of E2 (10−8 M) or PPT (10−8 M) at 2.8 mM and
11 mM glucose in MIN6 cells (n = 3–6/group). Representative images of four independent experiments are shown. Arrows indicate cells with predominant
nuclear localization of NeuroD1.
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Fig. S6. E2-induced preproinsulin transcription does not involve direct binding of ERα to the insulin promoter. ChIP showing the recruitment of ERα to the
IGF1 gene sequence containing an ERE (A) or insulin promoter (B) after 24-h treatment with E2 (10−8 M) or vehicle (V) at 11 mM glucose in MIN6 cells. After
immunoprecipitation of ERα (HC20; Santa Cruz Biotechnology), real-time qPCR amplification of the IGF1 gene sequence containing an ERE and insulin pro-
moter were performed using Sybr Green (BioRad), as described in Materials and Methods. Results were normalized to vehicle 11 mM glucose and represent
mean ± SEM (n = 4–5/group). *P < 0.05.

Table S1. PCR primer sequences

Gene Forward primer Reverse primer Ref.

mERα 5′-TTGCCCGATAACAATAACAT-3′ 5′-GGCATTACCACTTCTCCTGGGAGTCT-3′ (1)
β-actin 5′-AGGTCATCACTATTGGCAAC-3′ 5′-ACTCATCGTACTCCTGCTTG-3′ (2)
mInsulin promoter 5′-GAAGGTCTCACCTTCTGG-3′ 5′-GGGGGTTACTGGATGCC-3′ (3)
mIGF-1 5′GCAGATAGAGCCTGCGCAATGGA-3′ 5′-GGCTGCTGATTTTCCCCATCGCT-3′ (4)
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