Supporting Information

Whitehouse et al. 10.1073/pnas.0913058107

Fig. S1. Targeted disruption of neighbor of Breast cancer 1 (Brca1) gene *Nbr1*. (*A*) Schematic representation of Nbr1 targeting strategy. Boxes represent exons 4b–11 of *Nbr1*. Hashed exons are lost in the targeted allele. NEO, neomycin; TK, thymidine kinase; RI, *EcoRI*; RV, *EcoRV*. (*B*) Correct 5' arm homologous recombination was confirmed in two embryonic stem cell clones using an exon/intron 5 probe (as shown in *A*) for Southern hybridization analysis of *EcoRI*-digested genomic DNA. (*C*) Subsequent mice were genotyped by PCR (600 bp; exon6/7 wild-type allele, 492 bp; neo). (*D*) Schematic representation of Nbr1, p62, and truncated Nbr1 (trNbr1) protein domain structure. PB1, Phox and Bem1p domain; ZZ, zinc binding; CC, coiled coil; LIR, LC3-interacting region 1; UBA, ubiquitin-associated domain. Drawn to scale. (*E*) Western blot analysis of Nbr1 and trNbr1 expression in osteoblasts from homozygous Nbr1^{tr/tr} mice (tr/tr) or wild-type (Wt) mice showing ~120 kD full length and 17 kD truncated protein. Actin, loading control. Quantification of Western blots shows that both proteins are expressed at similar levels.

Fig. 52. Nbr1^{tr/tr} bone shows properties of mature lamellar and not woven bone, as shown by parallel alignment of the collagen fibers. Histological sections of 8-mo-old (A) wild-type and (B) Nbr1^{tr/tr} femurs photographed under polarized light. (Magnification: 20×.)

Fig. S3. Histomorphometry analysis of osteoclast parameters and cell-signaling pathway perturbation in osteoclast precursors from Nbr1^{tr/tr} mice and agematched controls. White bars, wild-type mice; black bars, Nbr1^{tr/tr} mice; *x* axis, age of animals (months). (A) OcS, osteoclast surface. (*B*) ES, eroded surface. (*C*) Mean erosion depth. Differences between the genotypes were assessed using Student's *t* test. Error bars represent SEM (n = 3; *P < 0.05). (*D*) Receptor activator for nuclear factor kappa B ligand (RANK-L)–induced ERK1/2 and p38 MAPK activation in isolated wild-type (Wt) and Nbr1^{tr/tr} osteoclast precursor cells (OC). (*E*) Osteoclast differentiation assays. Coculture of primary calvarial osteoblasts (OBs) from WT or Nbr1^{tr/tr} mice with macrophage colony stimulating factor–dependent bone marrow (BM) cells from WT or Nbr1^{tr/tr} mice on dentine slices as indicated. The number of tartrate resistant acid phosphatase (TRAP) +ve osteoclasts (OC; *Left*) and percent resorption (*Right*) were quantified after 7 and 10 d, respectively. The data represent the mean \pm SD of four representative dentine slices. (*F*) RT-PCR analysis confirms endogenous *Nbr1* expression in primary murine osteoclast (OC) cultures.

Fig. 54. (A) Proliferation curves for calvarial-derived osteoblasts (OB) and murine embryonic fibroblasts (MEF) from wild-type and Nbr1^{tr/tr} mice. The data represents the mean \pm SD of triplicate representative wells for each time point (**P* < 0.05). (*B*) Quantitative RT-PCR analysis of OB marker gene expression in calvarial-derived osteoblast cultures from Nbr1^{tr/tr} mice (blue) and Wt (red) mice during a 21-d time course of in vitro osteoblast differentiation. CBFA1/Runx2; Atf4; Nbr1; AP, alkaline phosphatase; OC, osteocalcin. Relative expression of each gene was normalized to β -actin and levels at day 2, and wild-type expression is set as 1 (*y* axis). The data represent the mean \pm SD of triplicate representative wells.

Fig. S5. Ex vivo analysis suggests that canonical Wnt and NF- κ B pathways are unaffected in Nbr1^{tr/tr} mice. (*A*) Western blot analysis showed no difference in levels of NF- κ B pathway components after RANK-L stimulation in osteoclasts from wild-type (wt) or homozygous Nbr1^{tr/tr} mice. (*B*) NF- κ B mobility shift assay of nuclear extract from MEF from wild-type (wt) or homozygous Nbr1^{tr/tr} mice showed no difference in TNF α -induced NF- κ B nuclear accumulation. (*100-fold excess of nonradiolabeled probe shows NF- κ B band specificity.) (*C*) β -catenin levels are equivalent in mTNF α -treated osteoblasts from wild-type (wt) or homozygous Nbr1^{tr/tr} mice (β -actin, loading control). Quantitation shows levels of protein compared with that of untreated wild-type cells.

Fig. S6. Ex vivo analysis of downstream p38 MAPK effectors in osteoblasts showed no effect on protein levels by Nbr1 truncation. Wild-type (Wt) and Nbr1^{tr/tr} osteoblasts (OB) were serum starved to activate the p38 MAPK pathway and analyzed for changes in levels of heat shock factor protein 1 (HSF1) and heat shock protein 72 (Hsp72). Levels are normalized to β-actin and are equivalent.

Table S1.	Summary of bone mine	eral density (BMD) and bone-are	a measurements from t	femurs and calvariae of age-
matched 3	- and 9-mo-old Nbr1 ^{tr/tr}	mice and wild-type controls		

	Genotype	3 mo old	P value	9 mo old	P value
Total BMD (mg/cm ³)	Wt	515.65 ± 30.08	$5.59 imes 10^{-5}$	533.17 ± 77.14	2.52×10^{-5}
	tr/tr	814.44 ± 81.03		1,055.79 ± 83.41	
Trabecular BMD (mg/cm ³)	Wt	38.43 ± 24.40	2.25×10^{-4}	73.71 ± 20.42	2.07×10^{-5}
	tr/tr	416.76 ± 161.18		837.9 ± 171.54	
Cortical BMD (mg/cm ³)	Wt	894.07 ± 40.68	$4.22 imes 10^{-6}$	906.95 ± 122.56	1.2×10^{-3}
	tr/tr	1,125.22 ± 23.74		1,233.55 ± 15.71	
Total bone area (mm ²)	Wt	2.37 ± 0.14	1.11×10^{-4}	2.80 ± 0.29	10.4×10^{-5}
	tr/tr	3.18 ± 0.22		4.00 ± 0.09	
Trabecular bone area (mm ²)	Wt	1.05 ± 0.07	$3.04 imes10^{-4}$	1.27 ± 0.13	9.21×10^{-5}
	tr/tr	1.44 ± 0.10		1.80 ± 0.04	
Cortical bone area (mm ²)	Wt	1.31 ± 0.07	$9.45 imes 10^{-5}$	1.55 ± 0.15	$9.48 imes 10^{-5}$
	tr/tr	1.77 ± 0.12		2.21 ± 0.05	

Differences between the genotypes were assessed using Student's t test (n = 5).

PNAS PNAS