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Here we present detailed calculations to back up claims made in the text. We start with a table of
contents and a glossary of symbols, so that the reader can quickly find a section referred to in the text and
comprehend all of the mathematical symbols therein. Note that the derivations assume that the reader has
a level of mathematical sophistication that is not assumed in the main text.
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Glossary
Variable Definition
2P Myosin with both light chains phosphorylated
1P Myosin with one light chains phosphorylated
0P Myosin with neither light chains phosphorylated
HMM Heavy meromyosin, a double-headed fragment of myosin
n General state vector, whose ith entry (ni) is the probability that a molecule is in state i
A General rate constant matrix, relating the vector n to its time rate of change
S The number of states in a generic model
Ato Rate constant matrix for single ATP turnover experiments
S Eigenvector matrix of Ato

Λ Eigenvalue matrix of Ato

λi The ith eigenvalue of Ato

Ai The amplitude of the ith exponential in the simulated F (t)
f Relative fluorescence vector, the ith entry gives the relative fluorescence of state i
F Relative fluorescence signal from the single turnover experiments
Ass Rate constant matrix for steady-state ATP turnover experiments
VATP Steady-state rate of ATP turnover (both generally and for the 2P model)
V 1P

ATP Steady-state rate of ATP turnover for the 1P model
k ATP hydrolysis rate vector, the ith entry gives the steady-state ATPase rate of state i
p Generic vector of parameters for a kinetic model
p∗ Generic vector of parameters for a kinetic model that optimizes the fit to generic data
kx One of a variety of rate constants (e.g. ks) defined in various figures.
Km A constant, defined as Km = (kT + kd)/ka (see manuscript Fig. 2 for rate constant definitions)
σ Standard deviation
∆95 95% confidence interval
∆99 99% confidence interval
a1 A constant, defined as a1 = 1/(1 + k2/k3) (see Fig. 4 of text for rate constant definitions)
a2 A constant, defined as a1 = 1/(1 + k′

2/k′

3) (see Fig. 4)
keff

a Effective attachment rate for the 1P model, keff
a = a1ka + (1 − a1)k

∗

a (see Fig. 4)

keff
d Effective detachment rate for the 1P model, keff

d = a2kd + (1 − a2)k
∗

d (see Fig. 4)

K1P
m A constant, defined as Km = (a2kT + keff

d )/keff
a (see Fig. 4)

r1, r2 Switching rates for the actin-associated model
Vmax The maximum value of VATP

KM Michaelis-Menten constant from a fit to steady-state ATPase (roughly equivalent to Km)
nind Probability the actin-independent state in a simple model (see Fig. 7)
nact Probability the actin-dependent state in a simple model (see Fig. 7)
Nh The total number of myosin heads in the simple model (see Fig. 7)
ℓi One of two rates of a double exponential fit to F (t) for the 2P model
Ai One of two amplitudes of a double exponential fit to F (t) for the 2P model
ℓ1P
i One of two rates of a double exponential fit to F (t) for the 1P model
A1P

i One of two amplitudes of a double exponential fit to F (t) for the 1P model
Aad

to Rate constant matrix for heads in the actin-dependent role
Fad Fluorescence contribution from heads in the actin-dependent role
Anb

to Rate constant matrix for heads in the non-/weak-binding role
Fnb Fluorescence contribution from heads in the non-/weak-binding role
D mean squared difference between F (t) and double exponential fit
N number of points sampled in F (t)
∆t time between fluorescence sampling in F (t) measurements
T overall time of fluorescence sampling
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1 A 2P model with role-switching during weak binding

In the main text, we assume that the two heads of myosin are fixed in their roles once one of the heads is
weakly interacting with actin. Here, we consider the case where the heads may switch roles when weakly
bound to actin (see Fig 1).
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Figure 1: The model for doubly phosphorylated (2P) myosin with role switching during weak-binding. Each
head is labeled “A” or “B.” The darker head adopts an actin-dependent role and, after binding to actin, may
hydrolyze ATP through the actin-dependent pathway (kT ); the lighter head adopts a non-/weak-binding
role, and must hydrolyze ATP at its basal rate (kn). The heads switch roles while unbound with rate ks,
and while weakly bound with rate k′

s. Here, we show that assuming k′

s = 0 has little effect on the results of
the model.

In this model, which we call the “alternative” 2P model, we consider the general kinetic scheme shown in
Fig 1. As in the 2P model in the text (which we call the “original” 2P model), each head of myosin adopts
a non-equivalent role. In particular, if one head assumes an actin-dependent role, it may bind to actin and
hydrolyze ATP through the actin-dependent pathway at rate kT . While that head is in the actin-dependent
role, its partner head assumes a non-/weak-binding role, where myosin hydrolyzes its ATP only at its basal,
actin-independent rate, kn. The heads switch roles while detached from actin at rate ks. In the alternative
2P model, unlike the original 2P model, the heads may switch roles while weakly bound to actin at rate k′

s.

Parameter estimates (data from Rovner et al. 2006)
Original 2P model Alternative 2P model

Parameters ∆95 ∆95

ks (s−1) 1 · 10−4 ± 0.1 0-0.22 4 · 10−4 ± 0.1 0-0.22
k′

s (s−1) 0 – 8 · 10−4 ± 0.45 0-0.9
kT (s−1) 4.5 ± 0.4 3.8-5.3 4.5 ± 0.4 3.7-5.5
kn (s−1) 0.11 ± 0.04 0-0.17 0.11 ± 0.04 0-0.17
Km (µM) 24 ± 4 17-34 23 ± 5 16-36

The alternative 2P model fits the data as well as the original model, where role switching is not allowed
while weakly bound (fits not shown). The best fit parameters, and indeed their sensitivity ranges (e.g. the
95% confidence interval ∆95, see Section 3) are nearly identical for the two models (see Table 1). Therefore,
the conclusions of the paper (that the two heads have distinct roles and switch these roles slowly, and that
smooth muscle may be activated by a phosphorylation dependent equilibrium between active and inactive
states) are independent of whether role switching occurs during weak binding or not. For simplicity, we
assume that it does not, because we may then neglect the parameter k′

s.

2 Fitting Procedure

In this section, we describe our fitting procedure for each of the various models. As the basic process is the
same for each, we first consider a generic kinetic model, and refer to a particular model at the end.

Assuming that myosin can exist in an arbitrary number of states (S), we define the probability of finding
a molecule in the ith state at time t as ni(t). Assuming that all reactions in solution are either first order or
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pseudo first order, the rate of change of this state vector is

dn

dt
= An (2.1)

where A is an S × S matrix of rate constants that depends on the experimental conditions.
In an open system, where mass leaks out, it can be shown that the matrix A is invertible, and consequently

the steady-state solution to Eq. 2.1 is trivial. Alternatively, in a closed system, where mass is conserved,
it can be shown that the matrix A is not invertible, and consequently Eq. 2.1 has a non-trivial steady-
state solution. If the chemical reaction network is fully connected, meaning that there is a particular set
of chemical transformations with non-zero reaction rates that connects any two states in the network, this
steady-state is unique (1).

2.1 Single ATP turnover

Single ATP turnover experiments represent open systems, since as fluorescent ATP is hydrolyzed, those
myosin heads are no longer detectable and so leave the system. The matrix of rate constants for these
experiments, Ato, is therefore invertible. We may then write the following solution to the differential equation
Eq. 2.1:

n(t) = S exp(Λt)S−1n(0) (2.2)

where S and Λ are the standard eigenvector and eigenvalue matrices of Ato, respectively.
Eq. 2.2 provides an expression for the probability of finding myosin in any of its S possible states, but

the experimentally measured quantity is fluorescence. We therefore define a relative fluorescence vector, f ,
whose ith entry fi is the relative fluorescence of the ith state (normalized such that the initial fluorescence
is 1). Then, the fluorescent signal may be written as

F (t) = S exp(Λt)S−1n(0) · f (2.3)

thus, given a matrix of rate constants Ato, an initial condition vector n(0) and a relative fluorescence vector
f , we may predict the decay of fluorescence as a function of time, F (t). Note that we may rewrite Eq. 2.3
as the sum of S exponentials

F (t) =
S
∑

j=1

Aje
−λjt

where λj is the jth eigenvalue, and the sum of all of the Aj ’s is one. Note that some of the Aj ’s may be
negative or greater than 1. In our simulations, given a set of rate constants, we derived the appropriate
matrix of rate constants Ato and used Eq. 2.3 to fit the single turnover data of Ellison et al. (2) and Rovner
et al. (3). This fitting procedure is described in detail later in this section.

2.2 Steady-state ATPase

Steady-state ATPase experiments represent closed systems, since the concentration of myosin remains con-
stant throughout the experiment. Consequently the matrix of rate constants for these experiments, Ass is
not invertible. Thus, for any fully connected reaction network (as all of the models considered here are), we
have a unique solution to the steady-state of Eq. 2.1

Assnss = 0

and the solution is
nss = null(Ass)

In steady-state ATPase experiments, the rate of ATP turnover is measured indirectly by the concentration
of hydrolysis products. We may define a vector, k, whose ith entry gives the rate of the particular hydrolysis
product formation from state i. Then, the ATPase rate, VATP is

VATP = null(Ass) · k (2.4)
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Note that often, for a specific model, simplifications of this equation may be made; however, we used the full
Eq. 2.4 for our numerical fits. In our simulations, given a set of rate constants, we derived the appropriate
matrix of rate constants Ass and used Eq. 2.4 to fit the steady-state ATPase data of Rovner et al. (3), Ellison
et al. (4). We now describe this fitting procedure.

2.3 Numerical optimization of fit

Given a reaction scheme, we may write symbolic expressions for the matrices Ato and Ass, as well as for the
vectors f , n(0) and k. Then, using Eq. 2.3 and Eq. 2.4, we can solve for the fluorescent decay for the ATP
turnover experiments, and the measured steady-state ATPase rate at various actin concentrations. However,
the single ATP turnover data are presented as parameters of a double-exponential fit to the fluorescent decay
curves, rather than the fluorescent decay curves themselves (2, 3). Thus, in order to fit the data, we must
convert the modeled fluorescent decay curve into a double exponential. To perform this conversion, we used
a double exponential to fit to the simulated fluorescent decay curve (Eq. 2.3).

We used a Nelder-Mead simplex algorithm (matlab’s fminsearch function) to find the double exponential
that minimized the least-squared error to the simulated fluorescent decay curve. We used a slightly higher
number of points than reported in the data (our simulated data were sampled at ≈ 30 Hz for 30 seconds), in
order to ensure that the best-fit exponentials varied as smoothly as possible (an important factor in numerical
optimization is that objective functions are smooth). Therefore, given a set of parameters p, we can generate
a fluorescence decay curve and fit that curve with a double exponential. Comparing the parameters of this
best-fit double exponential from the model to those measured in experiment (2, 3), and concurrently fitting
the steady-state ATPase curves using Eq. 2.4, we may determine a scalar χ2 value for the parameter set p.
Then, we may use an optimization algorithm to find the specific parameter set, p∗, that minimizes the χ2

value.
We used a Nelder-Mead simplex algorithm (Matlab’s fminsearch function) to find the optimum parameter

set p∗. We ensured that the fits converged to the optimum solution by finding each optimum at least twice
from initial random seeds. Note that each function evaluation (i.e. each calculation of χ2 for a given
parameter set p) requires an optimization since the best double exponential fit must be found, so that
these optimizations are rather time-intensive. Thus, we also use simple models that do not require the first
optimization to further support our conclusions from the full model (see Section 6).

2.4 Calculating matrices of rate constants

A detailed description of determining rate constant matrices for arbitrary chemical reaction networks is
available elsewhere (e.g. 1). Here, we limit ourselves to the specific example of the HMM-2P model (see Fig.
2 of the main text for the model and definitions of the various rate constants) as the basic principles are the
same for all models.

To derive an expression for Ato, the rate constant matrix for the single ATP turnover experiments, we
consider a fluorescent ATP molecule bound to one of myosin’s two heads. Here, we consider head A (see
text Fig. 2). As the labeling of the heads is arbitrary, we need not consider head B separately, and therefore
it is sufficient to consider only head A.

We must label the states in which head A may exist while bound to fluorescent ATP. First, it could be in
the actin-dependent role while bound to actin. We define the probability that head A is in this state to be
n1. Second, it could be in the actin-dependent role while unbound from actin. This probability is defined as
n2. Third, it could be in the non-/weak-binding role while head B is unbound from actin, with probability
n3. And finally, it could in the non-/weak-binding role while head B is bound to actin, with probability n4.
Note that we have simply numbered the states in text Fig. 2 in a clockwise manner, starting from the lower
left.

Looking at, say, state 2, we may write a differential equation relating the rate of change of the probability
that a head A is in state 2 to the probability that head A is in that and the other three states:

dn2

dt
= kdn1 − (ka[A] + kn + ks)n2 + ksn3 (2.5)
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we may do the same for all other states, and get the following matrix in Eq. 2.1:

Ato =









−(kT + kd) ka[A] 0 0
kd −(kn + ka[A] + ks) ks 0
0 ks −(ks + kn + ka[A]) kd + kT

0 0 ka[A] −(kn + kT + kd)









Note that the detachment rate for state 4 is larger than the detachment rate for state 1, since hydrolysis of
head B’s ATP results in detachment.

To derive an expression for Ass, the rate constant matrix for steady-state ATPase experiments, rather
than keeping track of the fluorescent ATP, we keep track of the myosin head (since a head binds multiple
ATP molecules). Again, we keep track of head A. We use the same state numbering scheme as for single
ATP turnover. Now, however, when we look at state 2, we find

dn2

dt
= (kd + kT )n1 − (ka[A] + ks)n2 + ksn3 (2.6)

Note that, compared to the similar expression for ATP turnover (Eq. 2.5), the detachment rate from state
1 is increased. This difference arises because in single turnover, ATP hydrolysis and subsequent release of
hydrolysis products causes the molecule to cease being fluorescent, while the molecule is always detectable
in steady-state ATPase. Similarly, when the molecule in state 2 hydrolyzes ATP, it leaves the system in the
turnover experiments, but not the steady-state ATPase experiments. Thus, we derive the following matrix
for steady-state ATPase experiments

Ass =









−(kT + kd) ka[A] 0 0
kd + kT −(ka[A] + ks) ks 0

0 ks −(ks + ka[A]) kd + kT

0 0 ka[A] −(kT + kd)









Note that all of the rows sum to the zero vector, indicating that Ass is not invertible, as expected.
We also need expressions for f , n(0) and k in order to fit the 2P model to a data set. We assume that,

since mant d-ATP (or fluorescent ATP) or hydrolysis products are in the binding pocket for all states in the
single ATP turnover model, f is simply a vector of ones, as all states are equally fluorescent. We assume
that at the beginning of the single ATP turnover experiment all myosin is unbound from actin, and half of
the molecules have head A in the actin-dependent role. Finally, the rate of ATP hydrolysis vector, k, for
the turnover model can be determined directly from Fig. 2 in the manuscript. Thus we have

f =









1
1
1
1









n(0) =









0
1
2
1
2
0









k =









kT + kn

2kn

2kn

kT + kn









3 Sensitivity analysis

In order to estimate parameters from a numerically optimized fit to data, one must have some idea of the
error associated with each parameter given by the optimization. There are a variety of different ways to
estimate this error. Perhaps the most accurate estimate is achieved by performing a series of optimizations
keeping one parameter fixed and using the optimization algorithm to determine the values of the remaining
variables that minimize the chi squared error between model and data. As the fixed parameter is varied
over some range, a curve of minimum chi square value as a function of that parameter value is generated,
with a minimum at the optimum value (the result of the global optimization, See Figs. 2 and 3). One may
then estimate standard deviation (σ), 95% (∆95) and 99% (∆99) confidence intervals. Note that, while we
make every effort to ensure the optimization converges at each point, this convergence is not guaranteed.
Therefore, in section 6, we introduce simplified models that support the conclusions of the full numerical
optimization.

6



0 0.2

0

10

20

30

0 2 4 6
rate (s   )-1

χ
2

0 20 40
Concentration (   M)μ

χ
2

20

0

10

30

0 2 4
rate (s   )-1

χ
2

Concentration (   M)μ

χ
2

0 50 100
0

20

40

60

0

20

40

60

0 0.2

a)

b)

Figure 2: Sensitivity analysis for 2P myosin. Plots of goodness-of-fit (χ2) as a function of the reduced
parameters (ks, kn, kT and Km). Each point in these plots represents an optimization with a single reduced
parameter (say, ks) fixed at the given value, while the remaining parameters (kn, kT and Km) are varied
to optimally fit single turnover and steady-state ATPase data. These plots allow us to determine a 95%
confidence interval (by finding the intersections with the bottom horizontal line) and a 99% confidence
interval (by finding the intersections with the top line). a) The data of Rovner et al. (3) were fit with the
2P model. b) The data of Ellison et al. (4) and Ellison et al. (2) were fit.

3.1 Sensitivity of reduced parameters in the 2P model

We performed a sensitivity analysis on the parameters of the 2P model. We found, however, that the
parameters ka and kd could vary over many orders of magnitude. Indeed, values of kd = O(10−3) and
kd = O(108) both can fit the data (p > 0.05, chi square test). However, the model is sensitive to the
combination of parameters Km = (kT + kd)/ka. Thus, we report this value, and the error associated with
it. The reason for this parameter insensitivity is discussed in Section 6.

In Table 1, we estimate standard deviation (σ), a 95% confidence interval (∆95) and a 99% confidence
interval (∆99). We estimate the standard deviation as one quarter of the size of the 95% confidence interval.
This estimate assumes that the distribution is Gaussian, which is approximately correct over small intervals,
but questionable over larger ones (see Fig. 2).
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2P Model Confidence Intervals
Rovner et al. 2006 Ellison et al. 2000, 2003

Parameters σ ∆95 ∆99 σ ∆95 ∆99

ks (s−1) 0.11 0-0.22 0-0.26 0.02 0-0.09 0-0.15
kT (s−1) 0.4 3.8-5.3 3.7-5.7 0.4 2.3-3.5 2.2-3.8
kn (s−1) 0.04 0-0.17 0-0.19 0.02 0.08-0.14 0-0.15
Km (µM) 4 17-34 15-38 8 30 − 64 25-74

3.2 Sensitivity of reduced parameters in the 1P and 2P models

We performed a sensitivity analysis on the parameters of the 1P and 2P models simultaneously (see Fig. 3).
Like in the 2P model, we found that some parameters (ka, kd, k∗

a, k∗

d, k2, k3, k′

2 and k′

3) could vary over
many orders of magnitude. Again, we found that the model is sensitive to combinations of parameters (see
Section 6). In particular, the parameters a1 = 1/(1 + k2/k3), a2 = 1/(1 + k′

2/k′

3), Km = (kT + kd)/ka and

K1P
m = (a2kT +keff

d )/keff
a . Where the effective attachment rate (keff

a ) is defined as keff
a = a1ka +(1−a1)k

∗

a

and the effective detachment rate (keff
d ) is defined as keff

d = a2kd +(1−a2)k
∗

d. Thus, we report these value,
and the error associated with them.
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Figure 3: Sensitivity analysis of the reduced parameters of the 1P and 2P models. Plots of goodness-of-fit
(χ2) as a function of the reduced parameters (ks, kn, kT , a1, a2, Km and K1P

m ). Each point in these plots
represents an optimization with a single reduced parameter (say, ks) fixed at the given value, while the
remaining parameters (kn, kT , a1, a2, Km and K1P

m ) are varied to optimally fit single turnover and steady-
state ATPase data for both 1P and 2P myosin. These plots allow us to determine a 95% confidence interval
(by finding the intersections with the bottom horizontal line) and a 99% confidence interval (by finding the
intersections with the top line). The data of Rovner et al. (3) were fit with the 2P and 1P models.

Note that in these fits, we may define a 68% confidence interval, which defines an equivalent standard
deviation. When the curves are clearly non-Gaussian (e.g. a1, see Fig. 3), this method provides a more
accurate estimate of standard deviation than estimates based on one quarter of the size of the 95% confidence
interval. In all other cases, however, both estimation techniques agreed.
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1P Model Confidence Intervals
Parameters σ ∆95 ∆99

ks (s−1) 0.1 0-0.2 0-0.26
kT (s−1) 0.5 3.8-5.8 3.5-6.4
kn (s−1) 0.05 0-0.19 0-0.2
Km (µM) 7 15-41 14-48
a1 0.14 0.22-1 0-1
a2 0.14 0.15-1 0.42-1
K1P

m (µM) 9 14-48 12-60

4 Actin-dependent 2P models

Numerical optimization of our kinetic model for doubly-phosphorylated (2P) myosin shows that the two heads
have distinct roles (actin-dependent and non-binding) and they switch these roles slowly. This conclusion
is largely based on the observation that single ATP turnover data is well-fit by double exponentials of
approximately equal magnitude. Our model assumes that these two roles exist whether or not actin is
associated with myosin. Here, we consider two alternate models where actin is required to determine the
roles. We will show that these models are inconsistent with steady-state ATPase and single ATP turnover
data (2–4).

4.1 The actin-associated model

In the first alternate model, which we call the actin-associated model, the two heads while detached are
indistinguishable and equally likely to attach to actin. It is only upon attachment to actin that the roles of
the two heads are determined. In particular, the first head to bind assumes the actin-associated role, while
the other head assumes the weak/non-binding role. Upon release of hydrolysis products and subsequent
rebinding of ATP, the myosin molecule must not completely detach from actin or else the model becomes
the model presented in the main text, with ks → ∞ (see Fig. 2 of main text). Therefore, upon release
of hydrolysis products and binding of a fresh ATP molecule, myosin does not fully detach, and the actin-
associated head may perform additional productive ATP hydrolysis cycles. Consequently, the non-/weak-
binding head remains sterically inhibited from undergoing a productive cycle. This model is sketched in
Fig. 4b.

Numerical optimization of the fit of this model to the single ATP turnover and steady-state ATPase data
of Rovner et al. (3), generates best fits that are significantly different from the data (p < 0.001). The model
also differs significantly from the data of Ellison et al. (4) and Ellison et al. (2) (p < 0.001). The major
difference between the model and the data is that the model predicted a Km about an order of magnitude
too small (see Fig. 5). For this model, we can derive a simplified model that explains why the Km is too
small, and why this model cannot fit the data (see Section 4.3). We therefore reject this model.

4.2 The double head binding model

In the second model, which we call the double head binding model, the two heads while detached are
indistinguishable and equally likely to attach to actin. Like the actin-associated model, the first head to
bind assumes the actin-associated role, while the other head assumes the weak/non-binding role. However,
in this model, the second head may then assume an actin-associated role. Intermolecular strain may affect
the rates of the heads differentially, depending on their relative position (5, 6). Thus, the lead head might
hydrolyze ATP slowly, while the rear head hydrolyzes ATP quickly in an actin-independent manner. This
model is sketched in Fig. 4a.

Using numerical optimization to fit this model to the single ATP turnover and steady-state ATPase
data of Rovner et al. (3), generated best fits that were significantly different from the data (p < 0.01). In
particular, although the model could fit the steady-state ATPase data, and the rates of the single turnover
data, it was unable to fit both simultaneously (see Fig. 5). The model also differed significantly from the
data of Ellison et al. (4) and Ellison et al. (2) (p < 0.001), especially the steady-state ATPase (see Fig. 5).
Furthermore, we expect that the binding of the second head should accelerate the ATP hydrolysis rate of
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Figure 4: Sketches of the two actin-dependent 2P models. In each model, while detached from actin, the
two heads are indistinguishable, and may assume an actin-dependent role, where ATP may be hydrolyzed
through the actin-dependent pathway with rate constant kT , with equal likelihood. a) In the double head
binding model, after the first head assumes an actin-dependent role, the second head may also assume an
actin-dependent role. The presence of intermolecular strain changes the actin-activated ATPase rate from
kT to kL

T for the lead head and kr
T for the rear head. b) In the actin-associated model, after ATP hydrolysis,

myosin does not fully detach from actin. Thus, once a particular head strongly binds, it is more likely than
its partner head to assume the actin-dependent role in a subsequent interaction. Neither the double head
binding nor the actin associated model can fit the single ATP turnover and steady-state ATPase data of
Rovner et al. (3) or the single ATP turnover and steady-state ATPase data of Ellison et al. (4) and Ellison
et al. (2).

the rear head (kr
T ) and slow the ATP hydrolysis rate of the lead head (kL

T ). Thus, if this model were correct,
we would expect the singly bound ATPase rate (kT ) to be intermediate between those values (kL

T and kr
T ).

The optimum values do not support this conclusion. Therefore, we reject this model.

4.3 Simplifications of the actin-associated model

While numerical optimizations are a useful way of testing complex models, it is very hard to guarantee
that the optimum fit is found. Thus, if a given model does not fit the data, we must face the criticism
that the optimum fit was simply not found by the optimization. While we may minimize the probability
that unfound optima exist by running numerous optimizations from random seeds and ensuring that each
optimum is found many times, we may not entirely eliminate this alternative unless we can show that the
model is incapable of fitting the data. Here, based on some plausible arguments, we present a simplified
model for the actin-associated model to show why it cannot fit the data, supporting the result from numerical
optimization. Based on this result, we may confidently reject the actin-associated model.

We make two assumptions that simplify the model considerably. First, we note that if the rate of actin
dissociation from the first bound state, k1

d, is large compared to the actin-activated ATP turnover rate kT ,
then the two heads will switch roles quickly (see Fig. 4b). Since the single turnover data implies that the
heads switch roles slowly, we assume that k1

d is small compared to kT . Second, if this model is to explain the
single ATP turnover data, then a single head must go through numerous ATP hydrolysis cycles per binding
event. Therefore, we assume that the rate of unbinding from the second bound state, k2

d, must be less than
the transition rate to the first bound state kb (see Fig. 4b). Therefore, we expect that both k1

d and k2
d are

small when compared to the sum kb + kT .
In addition to the assumption that the dissociation rates are small, we assume that the ATP hydrolysis

rate of the bound head is so much greater than that of the unbound head (kn) that kn can be neglected.
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Figure 5: The actin-dependent models do not fit steady-state and single turnover ATPase experiments. Solid
lines are the best-fits from the actin-associated model; dashed lines are the best-fits from the double head
binding model. a) The data of Rovner et al. (3) b) The data of Ellison et al. (4) and Ellison et al. (2)

Given these assumptions and using the techniques outlined in the Section 2, Fitting Procedure, we may write
a few important analytic expressions.

First, we must find an expression for the rate that the heads switch roles (kswitch in our simplified model
of head-head interactions in Section 5). In the actin-associated model, kswitch is half the rate at which a
bound head unbinds, since half the time that same head will subsequently rebind, and therefore not switch
its role. In general, however, a bound head unbinds at two rates (i.e. the unbinding rate is the sum of two
exponentials), which we call r1 and r2, that may be written

r1,2 =
kb + kT + k1

d + k2
d

2
∓
√

(kb + kT + k1
d + k2

d)2

4
− (kT + k1

d)(kb + k2
d) + kbkT

If we take the limit of small k2
d, k2

d, we find that r1 → 0 and r2 → kb + kT . Since, at small k1
d and k2

d,
we expect the switching rate to approach zero (i.e. be much smaller than kb + kT ), the amplitude of the
exponential with rate r1 must be dominant at small k2

d, k2
d. Thus, expanding the expression for r1 in a Taylor

series, we find

2kswitch = r1 =

(

kb

kb + kT

)

k1
d +

(

kT

kb + kT

)

k2
d + O

(

k1,2
d

(kb + kT )

)

With our assumption that k1
d, k2

d ≪ kb + kT , we may neglect the higher order terms. Since this switching
rate must be slow (the 95% confidence interval ∆95 = 0.06-0.3s−1, see Section 5), we assume that it is less
than 0.3s−1.

kswitch ≈
(

kb

kb + kT

)

k1
d

2
+

(

kT

kb + kT

)

k2
d

2
< 0.3s−1 (4.1)

Then, using an eigenvalue calculation to find the rates, and then performing a Taylor expansion in actin
concentration keeping only the linear terms (see the reduced model in Section 6), we can find a relation for
the slope of the faster actin-dependent rate (ℓ1) in the double-exponential fit:

− dℓ1

d[A]
=

kT ka

k1
d + kT

≈ 0.15 ± 0.05s−1µM−1 (4.2)
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where the numeric value comes from a best-fit to the turnover data of Rovner et al. (3) (points read off a
digital PDF of their Fig. 5a).

Finally, we may fit the steady-state turnover data to an equivalent Michaelis-Menten curve. We start
by using the general equation of Section 2 (Eq. 2.4). Then, defining Vmax as the limit of this equation as
[A] → ∞, we find

Vmax =
kT (kb + k2

d)

kb + k2
d + kT

= 4.8 ± 0.6s−1 (4.3)

where the numeric value comes from the measurements of Rovner et al. (3). We note that, in a Michaelis-
Menten curve, the initial slope is dVATP /d[A] = Vmax/KM . Thus, we may determine KM from this initial
slope and Vmax, which gives the following expression:

KM =
k1

dk2
d + kT k2

d + kbk
1
d

ka(kb + k2
d + kT )

=
Vmax

ka

(

k2
d

kb + k2
d

+
k1

d

kT

)

= 32 ± 10µM (4.4)

where, again, the numerical values come from a Michaelis-Menten fit to steady-state ATPase data (3).
Therefore, if the data are to be explained with the actin-dependent complex model, then we must pick

rate constants such that the four constraints, Eq’s 4.1 – 4.4 are satisfied.
However, any choice of parameters that satisfies Eq’s 4.1 – 4.3 and our assumptions deriving them, is

inconsistent with Eq 4.4. In particular, assuming that k1
d, k2

d ≪ kT + kb, we may rearrange Eq. 4.3 to be

Vmax

kb + k2
d

≈ kT

kb + kT

and, plugging this expression into Eq. 4.1, we have

1

2

[

k1
d

(

Vmax

kT

− k2
d

kb + kT

)

+ k2
d

Vmax

kb + k2
d

]

≈ Vmax

2

(

k1
d

kT

+
k2

d

kb + k2
d

)

< 0.3s−1

from Eq. 4.2, we may write
ka ≥ 0.15 ± 0.05s−1µM−1

so that, combining the previous two expressions, we may write

Vmax

ka

(

k1
d

kT

+
k2

d

kb + k2
d

)

<
0.6

0.15 ± 0.05
µM

which is the expression for KM in Eq. 4.4

KM < 4 ± 1.5µM

which, even assuming the maximum value, is significantly different from the measured value, KM = 32±10µM
(Student’s t-test, p < 0.001).

Thus, we see that if the model fits the single ATP turnover data of Rovner et al. (3), the model becomes
unable to fit the steady-state ATPase data. In particular, it binds too strongly to actin, leading to an overly
low KM . These predictions are consistent with the numerical fits.

5 Slow switching rate arguments

In the main text, and in Section 3, we use numerical optimizations to argue that the rate of role switching ks

must be slow in both the 2P and 1P models. One problem with numerical optimization is that it is unclear
what aspects of the data determine parameter values. Thus, in some cases, small systematic errors can lead
to wildly incorrect parameter estimates. In this section, we use various simplifications to identify the aspects
of the single ATP turnover data that determine the switching rate. We show that several independent
aspects of the data (e.g. signal amplitude and signal rates) all point to slow switching. Thus, we conclude
that in order to explain single ATP turnover measurements of Rovner et al. (3) and Ellison et al. (2) the
slow switching is unavoidable.
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5.1 Small actin approximations

Here, we show that the behavior of the kinetic models at small actin concentrations implies slow switching.
In particular we use the methods described in Section 2 to show that the fluorescence in the 2P model decays
according to the equation

F (t) = A1e
λ1t + A2e

λ2t + A3e
λ3t + A4e

λ4t (5.1)

where λi is the ith eigenvalue of the matrix Ato defined in that section. The four eigenvalues satisfy the
following relation (e.g. that det(Ato − λiI) = 0):

[−(kn + ka[A] + ks + λi) ((ks + kn + ka[A] + λi)(kn + kT + kd + λi) − ka[A](kd + kT )) + · · ·
k2

s(kn + kT + kd + λi)
]

(kT + kd + λi) + · · ·
−ka[A] [kd ((ks + kn + ka[A] + λi)(kn + kT + kd + λi) − ka[A](kd + kT ))] = 0

which is quartic in λi, and so in general has no analytic solution. However, when the concentration of actin
approaches zero, we may solve explicitly for the exponential rates λi:

lim
[A]→0

λ1 = −kn

lim
[A]→0

λ2 = −kn − 2ks

lim
[A]→0

λ3 = −kd − kT

lim
[A]→0

λ4 = −kd − kT

Additionally, at the other extreme, as [A] becomes large we find lim[A]→∞ λ1 = −kT and lim[A]→∞ λ2 = −kn.
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Figure 6: One demonstration of why the 2P model requires slow role switching. At low actin concentrations,
we predict that the faster, actin-dependent rate approaches −(kn +2ks), while the slower, actin-independent
rate approaches −kn (see text for derivation). We may then estimate the switching rate, ks, as half the
extrapolated difference between the two curves at [A] = 0. From the experimental curves (Rovner et al. (3),
left and Ellison et al. (4), right)) it is clear that ks is small.

The steady-state ATPase measurements allow us to estimate kT ≈ 4.5s−1 for measurements from the
Trybus lab (3) and kT ≈ 2.6s−1 for measurements from the Cremo lab (2, 4). We also expect that kn ≈ 0.1s−1

(3), an order of magnitude smaller than kT . We note that ℓ1, the measured actin-dependent rate, starts
from a small value and approaches −kT . We further note that ℓ2, the measured actin-independent rate,
remains small at all actin concentrations. Thus, assuming that the parameters of the double exponential fits
(e.g. the rates ℓ1, ℓ2 and amplitudes A1, A2) relate simply to the parameters of the full model (Eq. 5.1), we
may identify the two rates ℓ1 = λ1 and ℓ2 = λ2. Thus, if we extrapolate back to [A] = 0, we may estimate
ks = (ℓ1 − ℓ2)/2. This procedure provides an estimate of ∆95 = 0-0.2s−1 for both preparations of HMM-2P,
in reasonable agreement with the full numerical fit. As ℓ1 and ℓ2 clearly approach each other closely at small
actin concentrations (see Fig. 6), ks must be small, supporting the conclusion of the numerical optimization.
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5.2 Signal amplitudes

Here, we show that having roughly equal signal amplitudes for the two non-equal rates of ATP turnover
implies slow role switching. We also provide an explanation for why the data of Ellison et al. (2) imply a
small but non-zero rate, while that of Rovner et al. (3) can be explained with zero switching rate.

Here, we take a more simplistic view of single ATP turnover than previously. In this simple model, we
may exactly determine how switching rate affects signal amplitude. We then argue that, since the more
complex model shares many of the features of the simple model, the results of the simple model hold for the
more complex one.

+

Figure 7: A simple model that demonstrates how roughly equal amplitudes in the double-exponential fit to
fluorescence decay implies slow role switching. We assume two populations of heads. One (nind) hydrolyzes
ATP through the actin-independent pathway at rate kind. The other (nact) hydrolyzes ATP through the
actin-dependent pathway at rate kind +kact[A]. The heads switch roles at rate kswitch. We show that, in this
model, single ATP turnover fluorescence is the sum of two exponentials, and that the amplitudes of these
exponentials are equal only if kswitch is small.

We assume that two populations of heads exist. One population hydrolyzes ATP in an actin-independent
fashion, at rate kind (presumably, this rate is similar to kn). There are Nhnind heads in this population,
where Nh is the total number of heads in the population. The other population hydrolyzes ATP at an actin-
dependent fashion, that may be written as kact[A] + kind, at low actin concentrations. There are Nhnact

heads in this population. Heads move from one population to the other at a rate kswitch (presumably, this
rate is similar to ks). The kinetic scheme is sketched in Fig. 7. We now show that this model predicts a
fluorescence decay curve that is the sum of two exponentials and that the amplitudes of these exponentials
are strongly dependent on switching rate. Finally, we show that given the measured amplitudes, this model
predicts a switching rate kswitch that is in good agreement with the switching rate of the full model ks.
Thus, we argue that the equality of the signal amplitudes implies slow switching.

In general, this simple kinetic scheme results in the following system of differential equations (see Eq. 2.1):

d

dt

[

nind

nact

]

=

[

−(kind + kswitch) kswitch

kswitch −(kact[A] + kind + kswitch)

] [

nind

nact

]

provided that kact[A] 6= 0, this equation is readily solved (see Eq. 2.2):
[

nind

nact

]

= S

[

eλ1t 0
0 eλ2t

]

S−1

[

nind(0)
nact(0)

]

where λ1 and λ2 are the eigenvalues of the matrix of rate constants and S is the matrix of eigenvectors.
Since the proportion of myosin with fluorescence bound, ntot, is equal to the relative fluorescence F (t), we

wish to find a scalar expression for ntot = nact+nind, given that nind(0) = nact(0) = 0.5. It is straightforward
to see that the required expression is:

F = S

[

1 0
0 0

]

S−1

[

0.5
0.5

]

·
[

1
1

]

eλ1t + S

[

0 0
0 1

]

S−1

[

0.5
0.5

]

·
[

1
1

]

eλ2t

and so the general form of the solution is

F = A1e
λ1t + A2e

λ2t = A1e
ℓ1t + A2e

ℓ2t

a double exponential. Where we use the notation used in the main text, where the first equation (with λi

and Ai) relates to the eigenvalue calculation above; while the second equation (with ℓi and Ai) relates to the
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double exponential fit to fluorescence. We may then calculate these amplitudes (A1 and A2) and exponents
(ℓ1 and ℓ2) for arbitrary kind, kact[A] and kswitch.

The eigenvalues are:

ℓ1 = kswitch

[

−
(

1 +
kind

kswitch

+ x

)

+
√

1 + x2

]

ℓ2 = kswitch

[

−
(

1 +
kind

kswitch

+ x

)

−
√

1 + x2

]

where x = kact[A]/2kswitch.
The matrix S is

S =





− 1√
1+a2

1

− 1√
1+a2

2

a1√
1+a2

1

a2√
1+a2

2





where a1 = x −
√

1 + x2, a2 = x +
√

1 + x2. The matrix S−1 is

S−1 =





a2

√
1+a2

1

a1−a2

√
1+a2

1

a1−a2

−a1

√
1+a2

2

a1−a2
−
√

1+a2

2

a1−a2





The amplitude A1 is then

A1 =
1

2
− 1

a1 − a2
=

1

2
+

1

2
√

1 + x2

and the amplitude A2 is

A2 =
1

2
+

1

a1 − a2
=

1

2
− 1

2
√

1 + x2

5.2.1 Data comparisons

Ellison et al. (4) report amplitudes of A1 = 0.618 ± 0.068 and A2 = 0.382 ± 0.068 at 5µM actin. We may
use these measurements to estimate x:

x =
kact[A]

2kswitch

= 4.24 ± 1.73

Ellison et al. (2) measured −ℓ2, the faster, smaller amplitude rate, as a function of actin concentration. At
small [A], this rate is linear in [A]. We measured the slope of this line from a PDF of their Fig. 6, and found:

− dℓ2

d[A]
= kact = 0.042 ± 0.01µM−1s−1

The actin concentration on which our estimate of x is based is 5µM. Thus, we estimate kswitch to be

kswitch =
0.042 ± 0.01 · 5
2 · 4.24 ± 1.73

s−1 = 0.025 ± 0.013s−1

and thus a 95% confidence interval is ∆95 = 0-0.051s−1. From the full model fits to the data, we found
a best-fit value of ks = 0.063s−1 and a 95% confidence interval of ∆95 = 0-0.09s−1. These values are in
reasonable agreement.

Rovner et al. (3) only report a single amplitude for 2P myosin, but they report a larger amplitude for
the faster rate (0.57) than for the slow rate (0.43). The simple model here predicts that the amplitude of
the faster rate should never be greater than that of the slower rate. In Section 6, we introduce a simplified
model that explains how this situation can occur. Regardless, in order to get a non-zero rate of switching,
we need an estimate of signal amplitudes where the amplitude associated with the slower rate is larger. We
therefore assume that the amplitude measurements of Ellison et al. (4) apply also to these data.

15



Rovner et al. (3) measured −λ2 and found the rate to be linear in [A] at small [A]. We measured the
slope of this line from a PDF of their Fig.5a, and found:

− dℓ2

d[A]
= kind = 0.15 ± 0.05µM−1s−1

Since we use the amplitude measurements of Ellison et al. (4), we use our previous estimate of x but now
note that [A] = 10µM. Thus, we estimate kswitch to be

kswitch =
0.15 ± 0.05 · 10

2 · 4.24 ± 1.73
s−1 = 0.18 ± 0.06s−1

and thus a 95% confidence interval is ∆95 = 0.06-0.3s−1. From the full model fits to the data, we found
a best-fit value of ks = 1 · 10−4s−1 and a 95% confidence interval of ∆95 = 0-0.22s−1. These values are
in reasonable agreement. This good agreement seen for both data sets suggests that the simplified model
provides a reasonable approximation of the more complex model.

In the simplified model, the amplitudes of the two exponential rates in the fit to fluorescence provide
an estimate for switching rate. The closer the faster amplitude is to 50%, the slower the switching rate.
Alternatively, as this amplitude becomes smaller than 50%, the faster the switching rate must be. As Ellison
et al. (4) report a faster amplitude smaller than 50%, we expect a non-zero switching rate; since Rovner
et al. (3) report a faster amplitude greater than 50%, we cannot rule out a zero switching rate. Thus, we
expect the switching rate to be slower for the data of Rovner et al. (3), another prediction that is supported
by the data.

Here, we have shown two aspects of the double-exponential fits to the single ATP turnover fluorescence
decay curves that necessitate a slow switching rate. First, the close approach of the two rates at low actin
concentrations implies that switching must be slow. Second, the rough equality of the signal amplitudes
implies that role-switching must be slow. Thus, we may understand and have confidence in the results of
the numerical optimization.

6 Simplified models

In the text, we introduce relatively complex models for doubly (2P) and singly (1P) phosphorylated HMM.
In particular, for the single ATP turnover experiments, comparison of the model with the data requires
two optimizations: first, the predicted fluorescent-time curve is fit with a double exponential, and second,
experimental data are fit with the parameters of this exponential fit. Besides making each optimization
computationally intensive, these nested optimizations lead to slow convergence.

Here, we introduce simplified models for both 2P and 1P HMM that do not require a double exponential
fit. The first, which we call the “analytical fit” model, requires minimal assumptions, fits the data and
predicts parameter values as well as the full model, but is still quite complex. The second, which we call the
“reduced” model, requires two extra assumptions in addition to those of the analytical fit model, doesn’t
fit the data or predict parameter values quite as well as the full or analytical fit model, but is very simple.
Taken together, these simple models confirm the conclusions of the full model and allow us to understand
the results of the full model. In particular, the reduced model provides an intuition for parameter values
and explains parameter sensitivity in the full model.

6.1 The analytical fit model for 2P myosin

In the numerical optimization of the full model for 2P myosin (Fig. 2a), we found that the rate at which
myosin’s two heads switch their roles, ks, had to be small in order to explain the data. Here, we assume
that this rate is precisely zero. While this assumption may not be correct, it allows us to write (relatively)
simple expressions for the single ATP turnover experiments.

6.1.1 The fluorescence decay curve in single ATP turnover

Given that ks = 0, we may consider the heads in an actin-dependent role separately from heads in the
non-binding role. So, for example, a head in the actin-dependent role turns over ATP at a rate kn while
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unbound, and at a rate kT while bound. It binds to actin with rate ka[A] and unbinds from actin at a rate
kd. Using the methods described in Section 2, Fitting Procedure, we may write the following differential
equation (Eq. 2.1)

dn

dt
= Aad

to n

where n is vector of length 2. The first entry, n1, is the probability that a myosin head is in the actin
dependent role, has fluorescent ATP in its binding site and is unbound. The second entry, n2, is the
probability that a myosin head is in the actin dependent role, has fluorescent ATP in its binding site and is
bound to actin (presumably myosin is weakly bound in this state). The matrix Aad

to depends on the various
rate constants, and, using the methods described in Section 2, we may write

Aad
to =

[

−(kn + ka[A]) kd

ka[A] −(kT + kd)

]

Still following the methods described in Section 2, we may solve this equation by determining the eigen-
values and eigenvectors of this matrix. Then, we may assemble these into a function made up of the sum of
exponentials. Thus, for the actin-dependent heads we may write an expression for fluorescence (Fad) as a
function of time

Fad(t) = A1e
λ1t + A2e

λ2t

where the exponential rates are the eigenvalues

λ1,2 =
−(kn + kd + kT + ka[A]) ±

√

(kT + kd − kn − ka[A])2 + 4kdka[A]

2
(6.1)

and the amplitudes may be determined from the eigenvectors and the initial condition vector. We assume
that the initial condition vector n(0) can be written as

n(0) =

[

1/2
0

]

that is, at the start of the experiment, half the heads are in the actin dependent role and have fluorescent ATP
in their binding sites, and none of these heads are bound to myosin. With this assumption, the amplitudes
are

A1,2 =
1

4
± kT + kd + ka[A] − kn

4
√

(kT + kd − ka[A] − kn)2 + 4kdka[A]
(6.2)

Similarly, for the non-/weak-binding heads, since actin turnover occurs at the rate kn whether myosin is
bound to actin or not, the rate constant matrix for non-binding heads, Anb

to , is

Anb
to =

[

−(kn + ka[A]) kd + kT

ka[A] −(kn + kd + kT )

]

So, the expression for fluorescence for the non-binding heads (Fnb) as a function of time is

Fnb(t) = A3e
λ3t + A4e

λ4t

where the exponential rates are the eigenvalues

λ3,4 =
−(2kn + kd + kT + ka[A]) ± (kd + kT + ka[A])

2

And the amplitudes are

A3,4 =
1

4
± 1

4

Since A4 = 0, we have the particularly simple expression

Fnb(t) =
1

2
e−knt
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Thus, since the overall fluorescence (F ) is the sum of the non-binding and actin-dependent fluorescence, the
overall fluorescence is the sum of three exponentials

F (t) = A1e
λ1t + A2e

λ2t +
1

2
e−knt

we can compare the predictions of this model with those of the full, optimized model by looking at these
eigenvalues and amplitudes. We find excellent agreement (see Fig. 8), perhaps unsurprisingly, as the optimal
switching rate is quite slow (see Table 1 in main text). However, both in the full model and in the calculations
above, we find that the fluorescence decay is the sum of three (or more) exponentials. As these curves
are well-fit by double exponentials (2–4), we must find a double-exponential approximation of this triple
exponential.
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Figure 8: Amplitudes and rates for fluorescent decay. Amplitudes and rates from the exact solution (thick,
gray lines) of the model with optimal parameters derived from a fit to the data of Ellison et al. (4) and
Ellison et al. (2) in a, and from Rovner et al. (3) in b. Amplitudes and rates from the analytical fit model
(thin, black lines), using the same parameters. The agreement is good. Note that there are three primary
exponentials and that one has negative amplitude.

6.1.2 Fitting fluorescence decay with a double exponential

Here, we find an analytic expression for the rates and amplitudes of the double exponential fit to fluorescence
decay. In order to do so, we assume that the amplitude and rate of the second exponential in the double
exponential fit (A2 and ℓ2, respectively) reflect the turnover rate of non-binding heads (e.g. A2 = 0.5 and
ℓ2 = −kn). Thus, we focus on the following problem: what exponential A1 exp(ℓ1t) “optimally” fits the
double exponential A1e

λ1t + A2e
λ2t? To answer this question, we must define precisely what defines an

optimal fit.
Let us assume that we wish to minimize the mean squared error between the fluorescence decay curve

F (t) = A1e
λ1t + A2e

λ2t + 0.5e−knt and the double exponential fit f(t) = A1 exp(ℓ1t) + 0.5e−knt. Exper-
imentally, the fluorescence is sampled at regularly occurring time points. Thus, we wish to minimize the
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mean-squared difference (D) of the N measurements:

D ≡ 1

N

N
∑

i=1

(F (ti) − f(ti))
2

Since time is measured at regular intervals (∆t), and assuming we measure fluorescence over some time T ,
we may write N = T/∆t. Further, assuming that ∆t is small, we may make a continuum approximation:

D =
∆t

T

N
∑

i=1

(F (ti) − f(ti))
2 ≈ 1

T

∫ T

0

(A1e
λ1t + A2e

λ2t −A1 exp(ℓ1t))
2dt

We may reasonably assume that T is large, as most experimental measurements continue until fluorescence
decays to its baseline value (3). Thus, in order to find the optimal fit, we must find the extrema of D as a
function of A1 and ℓ1:

∂D

∂A1
=

1

T

(

−A1

ℓ1
+

2A1

λ1 + ℓ1
+

2A2

λ2 + ℓ1

)

= 0

∂D

∂ℓ1
=

A1

T

(A1

2ℓ2
1

− 2A1

(λ1 + ℓ1)2
− 2A2

(λ2 + ℓ1)2

)

= 0

We can solve for A1:

A1 =
2ℓ1A1(λ2 + ℓ1) + 2ℓ1A2(λ1 + ℓ1)

(λ1 + ℓ1)(λ2 + ℓ1)
(6.3)

Using this equation, we may obtain the following cubic equation for ℓ1:

A1(λ2 + ℓ1)
2(λ1 − ℓ1) + A2(λ1 + ℓ1)

2(λ2 − ℓ1) = 0

which, being a cubic equation, can be solved analytically, providing an expression for the best-fit rate, ℓ1, in
terms of the amplitudes and rates that we may calculate using Eqs. 6.1 and 6.2. Then, we may use Eq. 6.3
to determine the best-fit amplitude, A1. These expressions constitute the analytical fit model.

Note that this model predicts that the faster, actin-dependent rate is the sum of two exponentials. One
of these exponentials, the slower one, has an amplitude greater than 1/2, the other has a small, negative
amplitude. Taken together, we predict that when we fit these curves with a single exponential, the best-fit
amplitude should be greater than 1/2. As the fluorescence curve is fit with this single exponential plus
the slower one (of amplitude 1/2 and rate −kn), we predict that the faster exponential can have a larger
amplitude than the slower one. Thus we may explain why the amplitude of the faster exponential in the
best-fit to the data of Rovner et al. (3) is greater than 1/2, even though in Section 5 our simplified model
predicts that the faster exponential has a maximum value of 1/2.

The analytical fit model avoids the numerical fit of a double exponential to the fluorescence decay in
the full model, which increases simulation speed and optimization convergence. However, this speed comes
at a cost: we must assume that ks ≡ 0 and must make a continuum approximation for the fluorescence
data. The optimum parameter values and their sensitivity ranges calculated with this method compare well
to those calculated from the full optimization (see Fig. 9). Thus, we may be confident that our numerical
optimization converged to the optimum value in the full model, and that our assumptions of negligible ks

and continuous fluorescence data are justified. However, the model is still quite complex.

6.2 The reduced model for 2P myosin

If we make a few simplifying assumptions motivated by the ATP turnover data of Rovner et al. (3) for
expressed heavy meromyosin (HMM), we may derive an especially simple model, which we call the reduced
model. This model allows us to understand parameter sensitivity and provides estimates for the parameters
of the full model. We may then understand the results of the numerical optimization that, by themselves,
provide little intuition about the system. Furthermore, as convergence is hard to demonstrate in numerical
optimization, this simple model provides additional support to the conclusions of the full and analytical fit
models.
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Figure 9: Parameter estimates and sensitivity analysis from the full model (dots) and the various approxima-
tions (analytic fit, solid black, reduced, dashed black). The analytic fit model provides an excellent estimate
of optimum parameters and their error. The reduced model provides a good estimate. a) Fits from the
steady-state and single turnover ATPase data of Rovner et al. (3). b) Fits from the data of Ellison et al. (4)
and Ellison et al. (2). Note that we did not fit the reduced model to the data of Ellison et al. (4) and Ellison
et al. (2), because the assumption of a linear single ATP turnover rate as a function of actin concentration
does not apply.

Single ATP turnover from Rovner et al. (3) for both doubly (2P) and singly (1P) phosphorylated HMM
were collected at low actin concentrations, such that the faster exponential rate for the fluorescence fit (ℓ1)
increases approximately linearly as the actin concentration increases. Based on this observation, we may
perform expansions in [A]/Km for the exponential rates and amplitudes, where Km = (kd +kT )/ka. Keeping
only first order terms (i.e. the linear terms) and assuming kT ≫ kn, we may write

λ1 ≈ −kn − kT [A]

Km

A1 ≈ 1

2
+

kT

2(kT + kd)

[A]

Km
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and

λ2 ≈ −(kT + kd) −
kd[A]

Km

A2 ≈ − kT

2(kT + kd)

[A]

Km

Next, we make the simplifying assumption that |A2| << |A1|. This assumption is not quite correct,
though at small actin concentrations it is reasonable (see Fig. 8). We then obtain the following relations:

ℓ1 ≈ −kn − kT [A]

Km

A1 ≈ 1

2

ℓ2 ≈ −kn A2 ≈ 1

2

The general equation for steady-state ATP turnover (Eq. 2.4) in the 2P model may be written simply as

VATP = kn +
knKm + kT [A]

[A] + Km

= kn +
kn + kT [A]/Km

[A]/Km + 1

which, assuming kT ≫ kn and that [A]/Km ∼ O(1) (since the actin concentrations in the steady-state
ATPase experiments were much larger than in the single ATP turnover experiments (3)), reduces to

VATP ≈ kT [A]

[A] + Km

a Michaelis-Menten equation.
There are two important results from these equations. First, the simple model is a good approximation

to the full model (see Fig. 10). Second, the simple model is specified by three parameters, kn, kT and Km.
The former result allows us to understand the relationship between the data and the parameters. The latter
result allows us to understand parameter sensitivity.

From the reduced model, we see that the ATP turnover rate kT is approximately equal to the maximal
steady-state ATPase. We may estimate this value by fitting a Michaelis-Menten curve to these data. Rovner
et al. (3) performed this fit and found kT ≈ 4.8 ± 0.6s−1. This value agrees well with the results of the full
model, kT = 4.5 ± 0.4s−1.

The reduced model predicts that the slower actin-independent exponential ℓ2 should equal kn. The single
turnover data give kn = 0.11 ± 0.034s−1 (average of data from Fig. 5b of (3)). This value agrees well with
the results of the full model, kn = 0.11 ± 0.04s−1.

Finally, the reduced model predicts two ways to estimate Km. First, the Michaelis-Menten fit to the
steady-state ATPase data, where Rovner et al. (3) report Km = 32±10µM . Second, kT divided by the slope
of the actin-dependent rate ℓ1, which is (4.8 ± 0.6s−1)/(0.15 ± 0.05s−1µM−1) = 32 ± 11µM . In agreement
with this value, the full model fits give Km = 23 ± 5µM . Thus, the reduced model allows us to easily
estimate the various parameters (kT , kn and Km), and provides a check to ensure that the numerical fits are
reasonable.

The full model is fully specified by five parameters, kn, kT , ks, kd and ka. However, the reduced model
has three parameters, kn, kT and Km, and assumes that ks = 0. Thus, since the reduced model fits the
data of Rovner et al. (3) reasonably well, we expect the full model to be relatively insensitive to ka and
kd, depending rather on Km = (kT + kd)/ka. Indeed, we find that the full model is so insensitive to these
parameters, that they may vary over several orders of magnitude (e.g. fixing kd = 1 · 106s−1 or kd = 0.01s−1

both generate curves that fit the data). Conversely, the full model gives well-defined estimates for each of
the reduced parameters.

6.3 The analytical fit model for 1P myosin

The model for HMM-1P is more complex than that of HMM-2P, so that simply assuming small ks does not
result in analytic results. Thus, in order to circumvent the numerical double-exponential fits in the HMM-1P
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Figure 10: Approximations to the full model. The full model (thick line), the analytic fit model (thin line)
and the reduced model (dashed line) are shown, along with data. The same parameters are used for all
simulations. The analytic fit model is an excellent approximation of the full model. For the single ATP
turnover experiments, the reduced model is a good approximation at small actin concentrations. a) For the
data of Rovner et al. (3), the reduced model is an adequate approximation. b) For the single turnover ATP
turnover data of Ellison et al. (4), the reduced model is a poor approximation, as actin concentrations are
not small.

model, we must make an additional assumption. We assume that the equilibrium between the folded and
extended conformations occurs very rapidly compared to the other rates. Note that there is no apparent
reason for this assumption to be true, we therefore justify it by the fact that it leads to a simple model, and
the fact that that model fits the data as well as the full model.

Making the rapid equilibrium assumption, the probability of being in the unfolded state while detached
(a1) is

a1 =
1

1 + k2/k3

Similarly, the probability of being in the unfolded state while weakly bound (a2) is

a2 =
1

1 + k′

2/k′

3

These expressions allow us to write an equivalent attachment rate, keff
a , the probability of being in the

unfolded conformation times its attachment rate plus the probability of being in the folded conformation
times its attachment rate:

keff
a = a1ka + (1 − a1)k

∗

a

similarly, the effective detachment rate, keff
d is

keff
d = a2kd + (1 − a2)k

∗

d
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With these expressions, we may use precisely the same methods as for the 2P analytic-fit model to derive
a 1P analytic-fit model. Additionally, when we evaluate the general equation for steady-state ATP turnover
(Eq. 2.4) in the 1P model, we find

V 1P
ATP =

2a1knK1P
m + a2(kT + kn)[A]

K1P
m + [A]

where K1P
m = (a2kT + keff

d )/keff
a . This model fits the data well (not shown), and the optimum parameter

values and their sensitivity ranges calculated with this method compare well to those calculated from the
full optimization (see Fig. 11). Thus, we may be confident that our numerical optimization converged to the
optimum value in the full model, and that our assumptions of negligible ks and continuous fluorescence data
are justified.

6.4 The reduced model for 1P myosin

Here we derive a very simplified version of the 1P myosin model that we call the reduced model. As with
the 2P reduced model, we may use the reduced HMM-1P model to understand results of the numerical
optimization and to support the conclusions of the full and analytical models.

Following the derivation of the reduced 2P model, we get

ℓ1P
1 ≈ −a1kn − a2kT [A]

K1P
m

A1P
1 ≈ 1

2

ℓ1P
2 ≈ −a1 + a2

2
kn A2P

1 ≈ 1

2

and

V 1P
ATP ≈ a2kT [A]

K1P
m + [A]

a Michaelis-Menten equation.
These equations are a good approximation of the full model (see Fig. 11). Together, this model and the

2P reduced model are specified by 6 parameters: a1, a2, K1P
m , kT , kn and Km. As with the 2P reduced

model, these results will allow us to understand the relationship between the data and the parameters, and
to understand parameter sensitivity.

The ATP turnover rate is approximately equal to the maximal steady-state ATPase rate. In the 2P
reduced model, we found this value to be kT . In the 1P reduced model, it is a2kT . Thus the ratio of these
maximal rates, V 1P

max/Vmax should be a2. Rovner et al. (3) measured these values, and found V 1P
max/Vmax =

3.1 ± 0.4/4.8 ± 0.6 = 0.65 ± 0.12. Numerical optimization of the full model found a2 = 0.71 ± 0.14, in
agreement with this value.

We may estimate a1 either through the slower actin-independent rate ℓ1P
2 or through the faster actin-

dependent rate ℓ1P
1 . Since the slower actin-independent rate has a large error, perhaps the best estimate

of a1 is the ratio of the y-intercepts of the actin-dependent rates as a function of actin: lim[A]→0 ℓ1P
1 =

−a1kn = −0.084± 0.09s−1. As kn = 0.11± 0.04s−1 from the 2P reduced model, we predict a1 = 0.76± 0.86,
in reasonable agreement with the results from numerical optimization. Note that we expect this parameter
to be variable, since even the more accurate estimation method is uncertain.

As with the 2P reduced model, there are two ways to estimate K1P
m , the Michaelis-Menten fit to steady-

state ATPase, and a2kT divided by the slope of the actin-dependent rate, ℓ1. Rovner et al. (3) report a
K1P

m = 26± 9µM . The second method gives 3.1± 0.4/0.10± 0.02µM = 31± 7µM . Both of these estimates
agree with the result from numerical optimization: K1P

m = 26 ± 9µM .
The full 1P model is fully specified by eleven parameters, k2, k3, k′

2, k′

3, k∗

d, k∗

a, kn, kT , ks, kd and ka.
There is, additionally, the constraint that mass/energy must be conserved, so we have 10 free parameters.
However, the reduced model has six parameters, a1, a2, K1P

m , kn, kT and Km, and assumes that ks = 0.
Thus, since the reduced model fits the data of Rovner et al. (3) reasonably well, we expect the full model
to be relatively insensitive to k2, k3, k′

2, k′

3, k∗

a, k∗

d, ka and kd, depending rather on a1 = 1/(1 + k2/k3),
a2 = 1/(1+k′

2/k′

3), K1P
m = (a2kT +a2kd+(1−a2)k

∗

d)/(a1ka +(1−a1)k
∗

a) and Km = (kT +kd)/ka. Again, the
full model gives well-defined estimates for each of the reduced parameters while the individual parameters
are variable.
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Figure 11: Parameter estimates and sensitivity analysis from the full 1P and 2P myosin model (dots) and the
various approximations (analytic fit, solid black, reduced, dashed black). The analytic fit model provides an
excellent estimate of the optimum parameters and their error. The reduced model provides a good estimate.
The data are from Rovner et al. (3).

7 Asymmetric model, an alternate model for 1P myosin

We might not expect a phosphorylated head to behave identically to an unphosphorylated head. In particular,
since unphosphorylated myosin is thought to be more flexible than phosphorylated (7), we might expect
that, say, if the unphosphorylated head is in the weak-binding role, it might form the inhibited complex.
Alternatively, when it is in the strong-binding role, the molecule would not have the freedom to adopt the
inhibited state. The model is shown in Fig. 12a. We refer to this model as the “asymmetric” model, due
to the asymmetric appearance of the kinetic scheme, as opposed to the symmetric appearance of the kinetic
scheme when either head may form the inactive, folded conformation with equal probability. We therefore
refer to this latter model the “symmetric” model.

The best-fit parameters for this model were determined with optimization. The fit is shown in Fig. 12b.
Like the symmetric model, the asymmetric model fits the data well (p < 0.05). Thus, we conclude that this
model is consistent with the data.

Note that both the symmetric and asymmetric models predict that activity in smooth muscle is modulated
by a phosphorylation-dependent equilibrium between the inactive, folded conformation and the extended,
active conformation. The symmetric model, however, assumes that this equilibrium is independent of the
role (e.g. weak-/non-binding or actin-dependent) of the phosphorylated head; while the asymmetric model
assumes that the equilibrium only occurs when the phosphorylated head assumes one of those roles. Func-
tionally, it would therefore appear in some assays that, in the symmetric model, singly phosphorylated (1P)
myosin is a uniform population of partially active molecules. Alternatively, in the asymmetric model, since
role switching is slow, 1P myosin would appear to be a non-uniform population of fully active and mostly in-
active molecules. In a recent paper, we concluded that our mechanical data for single phosphorylated myosin
were consistent with exactly these two mechanisms: a uniform population of partly active, or a non-uniform
population of active and inactive molecules (8). Here, in addition to showing that the two heads of myosin
adopt non-equivalent roles over long time scales, we have provided mathematical detail to this statement,
and show that these detailed mathematical models are consistent with biochemical data. Further, based on
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Figure 12: The asymmetric model fits the data of Rovner et al. (3) for 2P and 1P myosin. a) A sketch
of the model. The molecule forms the folded (inactive) conformation only when the phosphorylated head
assumes the actin-binding role. Thus, since role switching is slow, 1P myosin is either partially active (if
the phosphorylated head assumes the actin-binding role) or fully active (if the phosphorylated head assumes
the non-/weak-binding role). b) Like the symmetric model, where 1P myosin may form the folded state
irrespective of the role of the phosphorylated head, the asymmetric model fits (p > 0.5) the single ATP
turnover and steady-state ATPase data of Rovner et al. (3).

the detail, we may design experiments to distinguish the two.
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