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I. SPERM MODEL

The flagellum is modeled as a crane-like structure shown in Fig. 1. Three semi-flexible

rods, each consisting of Nf = 100 monomers of mass M , are arranged in a filamentous

structure with a triangular cross section.
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FIG. 1: The flagellum is modeled as three semi-flexible filaments that are connected by harmonic

springs of length ℓb (nearest neighbors) and ℓc (next-nearest neighbors) to form a crane-like struc-

ture. Bond lengths on the top filament (red) are varied to induce both dynamic and static bending.

The bond length ℓb between neighboring monomers and the distance between the parallel

filaments are identical. The filament length is kept nearly constant by a strong harmonic

potential

U =
1

2
K1(|∆ri| − ℓb)

2, (1)

between neighboring monomers, with spring constant K1, where ∆ri = ri+1 − ri are the

bond vectors. The bending stiffness of each filament is described by a curvature potential,

U = −Kb

∑

i

∆ri · ∆ri+1 (2)

with bending rigidity Kb. The filaments are connected by harmonic springs between nearest-

neighbor (bond length ℓb, spring constant K1) and next-nearest-neighbor (bond length ℓc =
√

2ℓb, spring constant K2) monomers with an interaction potential analogous to Eq. (1). All

spring constants are chosen much larger than the thermal energy kBT , so that the mean-

squared thermal fluctuations of the bond length are much smaller than the bond length

itself. More specifically, we chose the parameters M/m = 5, K1 = 50 000 kBT/ℓ2
b , and
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K2 = 5 000 kBT/ℓ2
b (elastic tail) or K2 = 50 000 kBT/ℓ2

b (stiff tail), and Kb = 500kBT/ℓ2
b .

A similar model has been employed to model the rotating helical flagellum of swimming

bacteria [1].

We determine the bending rigidity κ and the torsional rigidity J (assuming an elastic

energy E = 1/2 JΘ2 with torsion angle Θ) of the flagellum by calculating the energy for the

corresponding deformations. With the chosen interaction parameters, the flagellum adopts

an effective bending rigidity of κ/Lf ≈ 130kBT and a torsional rigidity J ≃ 10kBT to

J ≃ 100kBT for elastic and stiff tails, respectively.

II. MULTI-PARTICLE COLLISION DYNAMICS: PARAMETERS AND BOUND-

ARY CONDITIONS

In our multi-particle collision dynamics (MPC) simulations, appropriate length and time

scales of the sperm motion and of the fluid have to be chosen for three reasons: to achieve

low-Reynolds-number hydrodynamics, slow diffusion compared to swimming, and good com-

putational efficiency. We use the parameters λ/a = 0.05 (mean free path), α = 130o (collision

angle) and ρa3 = 10 (number density of fluid particles). These parameters yield a viscos-

ity η = 16.4
√

mkBT/a2. For driven systems and for systems containing active swimmers,

a global thermostat is used to keep the temperature constant. With a short bond length

ℓb = 0.5 a, the flagellum, embedded in the MPC fluid, behaves hydrodynamically like a

slender rod [2], see Sec. III.

To implement no-slip boundary conditions at the wall, we employ a combination of

bounce-back scattering of fluid particles at the wall during the streaming step (i.e. v → −v

for all particles hitting the wall) and virtual wall particles, which participate in the colli-

sion step for all collision cells overlapping with the wall. This method has been shown to

approximate no-slip boundary conditions very well [3], and is commonly employed [4].

In the resistive-force simulations, all monomers of head and flagellum interact with the

wall via a short-ranged Lennard-Jones potential, with an interaction range σ = ℓb/2.

For the simulations of sperm swimming in the bulk, we employ a cubic simulation box of

linear size S = 70 a. For the simulation of sperm motion near walls, we use a wall distance

of d = 50 a, with lateral size 75 a × 75 a. The wall distance equals the sperm length, which

is comparable to typical experimental situations [5].
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III. HYDRODYNAMICS OF SLENDER RODS IN MPC FLUIDS IN THE BULK

The flagellum behaves hydrodynamically like a slender, flexible rod [6]. In order to

verify that our model, consisting of three connected filaments, properly reproduces the

hydrodynamic properties of the flagellum, we determine the drag coefficients of the passive

structure with orientation parallel and perpendicular to the direction of motion, and compare

with analytical expressions [7] obtained from Stokes hydrodynamics.

Thin rods in a fluid have anisotropic friction coefficients, where the friction force perpen-

dicular to the rod, ~F⊥ is larger then parallel, ~F‖. We define the drag coefficients of a rod in

Stokes flow by

F‖ = γ‖v‖ , F⊥ = γ⊥v⊥ (3)

with the subscripts ‖, ⊥ denote the vector components parallel and perpendicular to the

rod, respectively. These friction coefficients are related to the diffusion coefficients D‖,⊥ via

the Stokes-Einstein relation

γ‖,⊥ =
kBT

D‖,⊥

(4)

It has not been possible so far to derive exact analytical results for the diffusion coefficients

of slender rods of finite length, but approximate expressions are available. Tirado, Martinez

and de la Torre [7] review some theoretical approaches. The different theories agree on a

logarithmic dependence on the aspect ratio,

2πηLrD‖

kBT
= ln(Lr/dr) + ν‖ (5)

4πηLrD⊥

kBT
= ln(Lr/dr) + ν⊥. (6)

where Lr is the rod length, and dr the rod diameter. Differences between theories are found

concerning the correction functions ν⊥/‖. A often-used approximation for 2 < Lr/dr < 30 is

ν‖ = −0.207 + 0.980dr/Lr − 0.133 (dr/Lr)
2 (7)

ν⊥ = 0.839 + 0.185dr/Lr + 0.233 (dr/Lr)
2 . (8)

To compare these results of slender body theory to those of mesoscale hydrodynamics, we

perform simulations to calculate γ⊥ and γ‖ of the connected three-filament structure in an

MPC fluid, as explained in Ref. [2]. For this purpose, the flagellum structure is localized in
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the center of a simulation box by a harmonic potential, and exposed to a constant flow. A

uniform flow field is imposed sufficiently far from the rod by assigning Maxwell Boltzmann-

distributed velocities, with an additional average velocity v̄ in the flow direction, to the

solvent particles in a layer of thickness a perpendicular to the flow direction. The friction

coefficients are determined by a calculation of the drag forces. The drag force is found to

be linear with v̄ at least up to v̄ ≈ 0.3
√

kBT/m. We chose v̄ = 0.1
√

kBT/m, well within

the linear regime for the remaining simulations.
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FIG. 2: Friction coefficients γ‖ and γ⊥ (in units of (kBTm/a2)1/2) as a function of scaled inverse

linear system size Lr/S. System size varies between S = 20 a and S = 100 a. Rod length is

Lr = 10 a.

Fig. 2 shows as an example the friction coefficients γ‖ and γ⊥ as a function of scaled

inverse linear system size Lr/S. To determine the friction coefficients at infinite dilution, we

fit a linear function to the data (see Fig. 2), and used the extrapolation to infinite system

size. The strong finite-size effects require large systems and limit the range of accessible

rod lengths. The largest simulated systems used are for rods with length Lr = 20 a with

S = 110 a, corresponding to 13 million MPC particles.

Fig. 3 shows that the agreement of simulations and theory is very good, and the logarith-

mic divergence with rod length is well reproduced [2]. The fit of γ‖ and γ⊥ in Fig. 3 results

in a rod diameter of dr ≈ 0.9 a. This is a very reasonable result, given the fact that MPC

cannot reproduce hydrodynamics on length scales smaller than the size a of a collision cell.
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FIG. 3: Friction coefficients γ‖ and γ⊥ (in units of (kBTm/a2)1/2) as a function of rod length Lr.

The solid line is a fit of the theory (Eqs. (5) and (6)) to the data of γ⊥, resulting in dr ≈ 0.9 a.

This value was then also used to plot γ‖. Points are results of finite-size fits, as described in the

text.

This result is also in good agreement with earlier simulation results for the total diffusion

coefficient of a rod [8].

The sperm flagellum has a diameter of 0.3µm, the typical sperm lengths are in the

range of 30µm to 60µm, so that sperm tails have characteristic aspect ratios Lr/dr ≃
100 . . . 200. For such relatively small aspect ratios, Eqs. (5), (6) together with Eqs. (7), (8)

imply γ⊥/γ‖ = 2[ln(Lr/dr) − 0.207]/[ln(Lr/dr) + 0.839], which leads to friction anisotropies

γ⊥/γ‖ = 1.61 . . . 1.66, smaller than 2, consistent with earlier observations [6, 9, 10]. For the

aspect ratio Lr/dr ≈ 50 of our sperm model, the theoretical estimate implies γ⊥/γ‖ = 1.56.

Thus, we use a friction anisotropy γ⊥/γ‖ = 1.5 in our resistive-force simulations.

IV. SPERM MOTION – SWIMMING VERSUS DIFFUSION

A sperm cell is a micrometer-size object, and therefore displays Brownian motion – both

without an with active beat of the flagellum. An estimate of the total diffusion constant

D = (D‖ +2D⊥)/3, can now be obtained easily by using the results of Sec. III, which imply

D =
kBT

3πηLr
[ln(Lr/dr) + 0.316] (9)
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For a the diffusion of rod-like particles of the length Lf of the flagellum (Lf/df ≃ 50)

in a MPC fluid with viscosity η = 16.4
√

mkBT/a2, this provides the diffusion constant

D ≃ 10−4a
√

kBT/m. The swimming velocity of a sperm is v ≃ 0.0034 ωLf = 0.017
√

kBT/m

for beat frequency ω = 0.1
√

kBT/ma2. With these parameters, the time needed to swim a

distance Lf/2 is about three orders of magnitude less than that needed by diffusion. Thus,

swimming strongly dominates diffusion in our simulations.

V. HYDRODYNAMICS OF SLENDER RODS IN MPC FLUIDS NEAR SUR-

FACES

Next, we verify the proper hydrodynamics of the flagellum beating near a plane wall. We

consider a rod which is dragged parallel to a wall at a constant distance h, with the force

perpendicular to the rod orientation.

The hydrodynamics of rods near walls has been studied within the Stokes approximation

in Ref. [11], and analytical expressions for the drag force have been derived. For a rod of

radius r pulled at constant velocity U , the drag force Fx per unit length was obtained to be

[11]

Fx/Lr = −4πηU/ ln
[

{h + (h2 − r2)1/2}/r
]

(10)

where h the distance of the rod axis from the wall. This result applies in the limit Lr ≫ h.

Similar to our simulations for the drag coefficients in the bulk, each monomer of a rod of

length L, with an orientation in the y-direction, is confined by a harmonic potential

V (x, z) = V0

[

(x − Ut)2 + (y − y0)
2 + (z − h)2

]

(11)

where h is the distance from a no-slip wall (at z = 0), and y0 is the initial monomer position.

The potential strength is V0 = 3.125 kBT/ℓ2
b . Due to the strong bond potentials, which keep

bond lengths essentially constant, the is equivalent to a harmonic potential for the center-

line of the rod. To mimic an infinitely long rod, we apply periodic boundary conditions in

x and y directions with a simulation box size Sx = Sy = S = L. A second no slip wall is

located at Sz = S.

The potential is moved at a constant velocity of U = 0.02
√

kBT/m in the x direction. The

no-slip boundary conditions with the wall at z = 0 cause the flow field to decay quickly in the
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FIG. 4: Drag force Fx/L per unit length (in units of kBT/a2), for velocity U = 0.02
√

kBT/m, at

distance h = 3a from a plane wall with no-slip boundary conditions, as a function of the scaled

inverse system size h/S. Symbols (red) show simulation data, the green solid line the expected

theoretical value, and the blue solid line the finite-size extrapolation. We estimate an error of the

extrapolated value of about 3%.

direction parallel to the wall. Nevertheless, finite-size effects are observed. We extrapolate

to infinite system size by assuming a h/S dependence, as shown in Fig. 4.

The resulting drag force Fx/L as a function of the distance from the wall is shown in

Fig. 5. The simulation results show excellent agreement with the theoretical expression

(10) for h & 2a, without any adjustable parameters. For smaller distances, the friction

coefficient continues to increase, but more weakly than the logarithmic divergence predicted

by Eq. (10). Note that no numerical instabilities occur.

We want to mention parenthetically that very good agreement of near-wall hydrodynamics

was obtained for rotating cylindrical colloids [12] and for translating spherical and rod-like

colloids [13] embedded in an MPC fluid.

Because in our sperm simulations, the average distance of the flagellum the wall is about

3 a, and the flagellum rarely comes closer to the wall than 1.5 a, we conclude that our
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FIG. 5: Drag force Fx/L per unit length (in units of kBT/a2), for velocity U = 0.02
√

kBT/m, as

a function of the distance h from a plane wall with no-slip boundary conditions. Symbols (red)

indicate simulation results obtained from finite size scaling, the blue solid line shows the theoretical

expression (10) without any adjustable parameters.

simulation approach captures near-wall hydrodynamics quantitatively.
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Movies

Movie S1. Unconstrained swimming behavior of a sperm cell with chirally asymmetric

shape. The sperm structure consists of a spherical head (red), a curved midpiece (yellow -

light blue) with preferred curvature c
(m)
0 Lm = 1, and a beating tail (dark blue - light blue).

A traveling sinusoidal deformation of the tail generates a forward thrust. The curvature

plane of the midpiece is tilted by an angle π/3 with respect to the beating plane. The

helical swimming trajectory is indicated by a pearl necklace of grey beads.

Movie S2. Movie of a symmetric sperm cell (MCE model) approaching a wall. The sperm

is released in the bulk fluid and swims on a straight trajectory until it reaches the wall. It

remains captured by the wall for the rest of the simulation. It should be noticed that the

beating plane is oriented parallel to the wall in the adsorbed state.

Movie S3. Movie of a chirally asymmetric sperm cell (MCE model) approaching a wall.

The sperm has a midpiece curvature of c
(m)
0 Lm = 1. The sperm is released in the bulk fluid

and swims on a helical trajectory until it reaches the wall. Here, it reorients itself and enters

a circular path, which it follows for the rest of the simulation (the trajectory is indicated by

a pearl necklace of grey beads). The beating plane is oriented perpendicular to the wall in

the adsorbed state.
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