
Timing, timing, timing: Fast decoding of object information from intracranial field 

potentials in human visual cortex 

 

Hesheng Liu1,3, Yigal Agam1, Joseph R. Madsen2, Gabriel Kreiman1,4,5 

 
1Department of Neuroscience and Ophthalmology, Children’s Hospital Boston, Harvard 

Medical School 
2Department of Neurosurgery, Children’s Hospital Boston, Harvard Medical School 
3Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital 
4Center for Brain Science, Harvard University 
5Swartz Center for Theoretical Neuroscience, Harvard University 

 

Correspondence: gabriel.kreiman@tch.harvard.edu 

 

SUPPLEMENTARY MATERIAL 

1. Supplementary Methods 

2. Supplementary Tables 

3. Supplementary Figures 

4. See also Supplementary Web Figures at: 

http://klab.tch.harvard.edu/resources/timing_timing_timing/index.htm 

 



1. Supplementary Methods 

 

Stimulus presentation 

Subjects were presented with contrast-normalized grayscale photographs of 

objects from 5 different categories: “animals”, “chairs”, “human faces”, “fruits” and 

“vehicles” (Figure S1). Throughout the text, the physiological responses to the different 

object categories are denoted by different colors. In 4 subjects, there were also 2 

additional object categories: “artificial Lego objects” and “shoes”. For consistency across 

subjects, here we describe only the responses to the 5 categories that were common to all 

subjects (none of the conclusions about selectivity, invariance and latencies would be 

altered upon addition of those extra categories but there would be more selective 

electrodes in Table S1. Images were presented on a laptop computer (using the MATLAB 

Psychophysics toolbox (Pelli, 1997)). Images were shown in pseudo-random order. 

Within each category, there were 5 different exemplars. A key aspect of visual 

recognition involves combining selectivity with invariance to object transformations. To 

assess the robustness to object changes in the physiological responses, each exemplar was 

shown in one of 5 possible transformations: (1) 3 degrees size, “default” viewpoint, (2) 

1.5 degrees size, “default” viewpoint, (3) 6 degrees size, “default” viewpoint, (4) 3 

degrees size, ~45 degree depth rotation with respect to the “default” viewpoint, (5) 3 

degrees size, ~90 degree depth rotation with respect to the “default” viewpoint. In the 

case of faces, the “default” viewpoint was a front view; for the other categories, the 

“default” viewpoint is defined by the images in Figure S1B. An example of these 5 

different transformations for one exemplar object is shown in Figure S1C. Each image 

was presented for 200 ms and was followed by a 600 ms gray screen. In order to ensure 

that the subjects were paying attention to the object presentation, they performed a one-

back task, indicating whether an exemplar was repeated or not (regardless of the object 

transformations) by pressing one of two pre-assigned mouse buttons. There were 60 

image presentations per block and the first 2 presentations in each block were discarded 

from analyses to avoid potential non-stationary transient effects. Images were repeated 



multiple times; the exact number of times depended on the subject’s fatigue. We only 

analyzed data where we had at least 5 repetitions per image and where each recording 

session was at least 5 minutes long (session duration statistics: min=7 mins, max=40 

mins, average=19.6±7.9 mins; number of sessions statistics: min=1, max=7, 

average=2.6±1.6). Data from all sessions for a given subject were pooled together for 

analyses. 
 

Data Analyses 

Data preprocessing  

We followed the procedures in (Kreiman et al., 2006) to reduce the impact of 

potential electrical and movement artifacts. The raw data was digitally filtered between 1 

Hz and 100 Hz (4-pole Butterworth filter). We computed the power spectrum of the 

intracranial field potential (IFP) signal for each electrode (Press et al., 1996). Electrodes 

that showed evidence of electrical noise (such as sharp peaks at 60 Hz or harmonics) 

were excluded from further analyses. In order to remove potential movement artifacts, we 

computed the overall distribution of the total IFP power in all trials for each electrode 

(regardless of object category or transformation) and excluded from further analyses 

those trials where the power was more than 4 standard deviations from the mean in at 

least 3 electrodes.  

 

Electrode localization  

To localize the electrodes on the brain surface, we integrated the anatomical 

information of the brain provided by Magnetic Resonance Imaging (MRI) and the spatial 

information of the electrode positions provided by Computer Tomography (CT).  MR 

images were usually acquired several weeks before the intracranial electrode implantation 

and CT images were acquired ~1-2 days after the implantation. The 3-D brain surface 

was reconstructed for each subject. An automatic parcellation was performed using 

Freesurfer (Dale et al., 1999; Fischl et al., 2004). This brain parcellation contains 80 

regions in each hemisphere (Table S2 and (Desikan et al., 2006)). A preliminary co-

registration of CT and MRI was implemented using SPM (Ashburner and Friston, 1997; 



Ashburner and Friston, 2000). The co-registration was then fine-tuned using Freesurfer. 

In the final stage, we recorded the Talairach coordinates of the electrodes and determined 

the brain region for each electrode according to the parcellation. Based on these 

coordinates, the electrodes were superimposed on the reconstructed brain surface for 

visualization purposes in the Figures. We report Talairach coordinates for the example 

electrodes and Talairach coordinates statistics for each brain region in Table S2. 

Coordinates for each one of the 912 electrodes are available upon request. In all the 

figures and tables that discuss electrode positions throughout the text, we pooled together 

locations in the right and left hemispheres (except when reporting Talairach coordinates 

in Table S2). 

 

Classifier analysis  

Classifier input. Previous studies of IFP data focused on computing average responses 

over large number of presentations (e.g. (Fell et al., 2001; McCarthy et al., 1999; Privman 

et al., 2007)). This averaging approach occludes the challenges due to the intrinsic 

variability in the data. Furthermore, the brain must be able to extract information about 

the visual world in real time. Therefore, a single-trial analysis provides a more realistic 

description of the encoding and decoding of visual information. We used a statistical 

learning approach (Hung et al., 2005; Vapnik, 1995) to read out from the IFP signals, on 

a single-trial basis, information about the visual stimulus presented to the subjects. Let 

 represent the IFP signal recorded from electrode u (u=1,…,Nelec) on trial r 

(r=1,…,Nrep) where t denotes the time from stimulus onset, Nelec is the number of 

electrodes and Nrep is the number of repetitions. We define the IFP response over a time 

interval T as 

€ 

u
rsT =u

rfT (x) . The function f allows us to quantitatively compare different 

possible neural codes (see “Neural codes” below and Figure S3). Unless stated otherwise, 

throughout the text we refer to the “IFP response”, fT(x), defined as the range of the signal 

(max(x)-min(x)) in the interval T. The default T was [50;300] ms with respect to stimulus 

onset. Figure S3 compares the results for different definitions of the interval T and the 

function fT(x). The classifier approach allows us to consider each electrode independently 



(Figures 1, 4 and Figures S1-S3) or to consider the encoding of information by an 

ensemble of multiple electrodes (Figures 2, 3, 5, 6 and Figures S4, S5 and S7). For a 

population of Nelec electrodes, we assumed independence and constructed a population 

vector by concatenating the responses of each electrode: 

€ 

rST = 1
r sT ,...,Nelec

r sT[ ]. We 

considered ensembles consisting of data from multiple electrodes recorded 

simultaneously in one subject or ensembles consisting of data taken from a pool of 

electrodes across subjects (Carmena et al., 2003; Hung et al., 2005a; Santhanam et al., 

2006) (see “Feature Selection” below).  

For a given repetition, in addition to the physiological response , we define an 

indicator variable  that denotes the label of the object presented to the subject. Unless 

stated otherwise, the results shown throughout the manuscript correspond to binary 

classification between a given object category and the other object categories. In this 

case, =+1 for the given category and =-1 for the other object categories.  In the case 

of multiclass problems (when  can take more than 2 possible values), we use a one-

versus-all approach (Hung et al., 2005; Rifkin and Klautau, 2004). In Figure 1D, 1I and 

4B), we show the distribution of responses for those trials with =+1 (e.g. “fruits” in the 

example in Figure 1D) and those trials with =-1 (“rest”). We also build an ROC curve 

(e.g. Figure 1E, Figure 1J, Figure 4B insets), showing the proportion of correct 

detections (PCD, y-axis) as a function of the probability of false alarms (PFA, x-axis) for 

different thresholds on the distributions shown in Figures 1D, 1I and 4B (Green and 

Swets, 1966; Kreiman et al., 2000). 

The input to the classifier consisted of the example pairs . Importantly, 

the data were divided into two non-overlapping sets, a training set and a test set. The 

division into a training set and test set depended on the specific question being asked (see 

“Separation of train/test data” below for details). The classifier was trained to learn the 

map between the physiological signals and the labels. The performance of the classifier 

was evaluated by comparing the classifier predictions on the test data with the actual 

labels for the test data. Throughout the text, we report the proportion of test repetitions 



correctly labeled as “Classification Performance”. In the case of binary classification, the 

chance level is 50% and is indicated in the plots by a dashed line. In the case of 

multiclass problems (e.g. Figure S4B), the chance level is 20% (5 categories). The 

maximum classification performance is 100% both for binary classification and 

multiclass classification.  

 

Classifiers. Unless stated otherwise, we used a Support Vector Machine (SVM) classifier 

with a linear kernel (Cristianini and Shawe-Taylor, 2000; Hung et al., 2005b; Vapnik, 

1995). Results for other machine-learning classifiers are presented in the Supplementary 

Web Material. For a linear kernel, the classifier boundary can be expressed as 

€ 

c(S) = sign w •S[ ]where the vector S denotes the ensemble response as defined above, 

the weights w are learnt during training and the dot indicates a dot product. An example 

of the discrimination of data from two different categories using a linear classifier is 

shown in the Supplementary Web Material. The classifier finds a line (a hyperplane in 

higher dimensions) that will separate the two classes of data. The SVM algorithm finds 

this line by minimizing the “margin” between the classification boundary and the data 

(Cristianini and Shawe-Taylor, 2000; Vapnik, 1995). We chose to use a linear SVM 

because it is known to show good performance while the results remain relatively easy to 

interpret. We also explored several other classifiers. In the Supplementary Web Material, 

we compare the classification performance values for a the linear SVM against the 

classification performance values of an SVM classifier with a Gaussian Kernel or a 

Nearest Neighbor classifier (Bishop, 1995). Overall, the performance for the different 

classifiers that we examined was quite similar.  

 

Separation of train/test data. In all cases, the training and test data were separated to 

avoid overfitting. The way of separating the data into a training set and a test set depends 

on the specific question asked in each analysis. In Figures 1 through 3 in the main text, 

we randomly chose 70% of the responses for each object category to train the classifier 

and used the remaining 30% of the responses to test the classification performance. This 



analysis evaluates the selectivity in the data across categories by assessing whether the 

responses in single trials during some of the repetitions (70%) are sufficiently reliable to 

support discrimination of the object categories in the remaining 30% of the data. In 

Figures 4 through 6, the training data consisted of the responses to one of the 5 possible 

object transformations and the test data corresponded to the responses to the other object 

transformations. There are  possible combinations. For simplicity, throughout 

the text, we show only the classification performance when training on the IFP responses 

to the default viewpoint and size and testing on the responses to the other 4 

transformations. The classification performance results for the other possible train/test 

combinations were similar. This analysis evaluates the degree of invariance to changes in 

the objects’ scale and rotation.  

 

Neural codes. As noted above, the function f allows us to quantitatively compare 

different decoding schemes through . We considered several different 

possible definitions for f (always restricted to the interval T; Figure S3A): (i) total power 

of the IFP signal, (ii) range of the IFP signal (default throughout the text), (iii) power in 

the (0,10] Hz frequency band, (iv) power in the (10,20] Hz frequency band, (v) power in 

the (20,50] Hz frequency band, (vi) power in the (70;100] Hz frequency band. We 

observed that there was more selectivity in the high gamma frequency band (Figure S3A; 

71 to 100 Hz) . We also considered several different possibilities for the interval T=[tb,ta] 

where the parameter tb could be 50, 100 or 200 ms after stimulus onset and the parameter 

ta could be 200, 400, 600 or 800 ms after stimulus onset (Figure S3B-C). Unless stated 

otherwise, throughout the text we report the classification performance for code (ii) 

above (signal range) in the window T=[50;300] ms with respect to stimulus onset. The 

time window from 50 to 300 ms was chosen so as to account for the approximate 

minimum latency of the neural responses (Richmond et al., 1983; Schmolesky et al., 

1998) while remaining within the average saccade time (Rayner, 1998). 



Given the high temporal resolution of our recordings, we were particularly 

interested in estimating how fast we could decode category information (Figure 3B, 6B 

and Figure S7). For this purpose, we considered windows of size τ (τ = 25, 50 or 100 

ms). In each window, we computed the IFP signal range and we assessed the 

performance of the classifier as described above by moving the individual windows from 

0 to 800 ms after stimulus onset (we also show the performance using the signal power in 

each window in the Supplementary Web Material).  

 

Null hypothesis. In order to assess the probability that a given classification performance 

level could be achieved by chance, we defined the null hypothesis by randomizing the 

object category labels and repeating the same analysis. We performed 100 iterations for 

each electrode. The distribution of classification performance values under the null 

hypothesis for all electrodes is shown in (Figure S2A). Throughout the text, we use a 

threshold criterion of 3 standard deviations from the null hypothesis for statistical 

significance.  

 

Feature selection . The classifier analysis approach outlined above can be applied to 

any number of electrodes. We defined neural ensembles in several different ways. In 

some cases, we analyzed neural ensembles by drawing the electrodes according to their 

location (e.g. Figure 2, Figure 5B, Figure S5). In other cases (Figure 3B, Figure 6B, 

Figure S4, Figure S7), we selected electrodes by performing a simple feature selection 

step: for each electrode, we computed the ratio of the variance across categories to the 

variance within categories, rv, which is also the measure used in ANOVA tests (Keeping, 

1995). For each subject, electrodes were sorted based on their rv values and the ensemble 

was formed by selecting the electrodes with the higher rv values in each subject. The 

feature selection step was performed using only the training data.  

 

Identification versus categorization. The analyses in the text correspond to 

categorization performance. When asking about the category presented in each trial, the 



indicator variable  only depends on the category of the object present in the image and 

not on the particular exemplar. We compared the classification performance for 

categorization against the performance for identification where  denoted the identity of 

the specific exemplars within the preferred category (Supplementary Web Material). 

Except for the indicator variable, the other steps of the classifier analysis were the same 

as the ones described above for categorization. The training data consisted of 70% of the 

repetitions of each exemplar and the test data consisted of the remaining 30%. We also 

considered arbitrary categories defined by randomly drawing exemplars from all 

categories (Supplementary Web Material). 

 

Other statistical analyses   

Reproducibility across repetitions. We assessed the degree of reproducibility in the IFP 

responses across multiple repetitions of the same images, For each electrode and each 

exemplar object, we considered the time course of the IFP signal between 0 and 800 ms 

in each repetition after resampling with a 20 ms rolling average window. We computed 

the Pearson correlation coefficient between the resampled IFP signals for every pair of 

repetitions for each exemplar. To assess the statistical significance of these Pearson 

correlation coefficients, we computed their expected distribution according to a null 

hypothesis defined by performing 500 random shuffles of the object labels. The results of 

these analyses are shown in the Supplementary Web Material. 

  

Selectivity based on ANOVA. The key analyses in the current manuscript involve 

assessing the performance of a statistical classifier in single trials (see main text and 

“Classifier analysis” above). We also performed a one-way analysis of variance 

(ANOVA) on the IFP responses. For example, in the case of assessing visual selectivity 

(Figure 1), we asked whether the variance in the responses across object categories was 

significantly larger than the variance in the responses within object categories. The IFP 

response was defined as the signal range (maximum – minimum) in the [50;300] ms 

interval with respect to stimulus onset. The ANOVA results were consistent with the 



single electrode statistical classifier results (Supplementary Web Material). Throughout 

the text, we report the results from the statistical classifier because they provide a more 

rigorous quantitative approach and a stricter criterion for selectivity, they allow 

considering ensembles of electrodes in a straightforward way and they provide a direct 

measure of performance in single trials.  

 

Latency based on ANOVA. As described above, we used the classifier approach to 

determine the earliest time point when we could discriminate among the object categories 

in single trials (Figure 3B and Figure 6B). In addition, we used a point-by-point ANOVA 

test across object categories to define the latency of the physiological responses (Thorpe 

et al., 1996). We defined an electrode to be “selective” if there were selncons=25 

consecutive time points where the ANOVA test yielded p<0.01. The latency was defined, 

for the selective electrodes, as the first time point where latncons=10 consecutive time 

points yielded an ANOVA p<0.01 (Figure 6A). The latencies are reported in Figure 3A 

and Figure 6A. The dependency of the latency on selncons, latncons and p is shown in Figure 

S6B-C. To assess the statistical significance of the latencies reported in the text, we 

randomly shuffled the object categories and repeated the point-by-point ANOVA tests. 

With the parameters above (selncons=25 and p<0.01), there was no selective electrode in 

1000 iterations. 

 

Identification versus categorization, another look. In order to assess whether category 

selectivity could be explained by selectivity to particular exemplars within a category, we 

rank ordered the responses to all the individual exemplars (e.g. Figure 1C). As a null 

hypothesis, we assumed that the distribution of rank orders across categories was uniform 

and we assessed deviations from this null hypothesis by randomly assigning exemplars to 

categories in 10,000 iterations. The p values quoted in the text for this analysis indicate 

the odds that m exemplars from any category would rank among the top n best responses.  



2. Supplementary Tables 

 

Table S1: Location of selective and invariant electrodes 

We report here the number of electrodes from each area where we recorded from at least 

10 electrodes. The areas and the “area code” numbers correspond to the parcellation maps 

in (Dale et al., 1999; Fischl et al., 2004) (see “Electrode localization” above and Table 

S2). Because there were other areas with < 10 electrodes which are not included in this 

table, the sum of the number of electrodes reported for each lobe (column labeled “Sum”) 

is somewhat less than the total number of electrodes in that lobe (column labeled 

“Total”). The column labeled “Fract” is the ratio of “Sum”/ “Total”. An electrode was 

defined as selective if the classification performance was more than 3 standard deviations 

from the null hypothesis; see Experimental Procedures and Supplementary Methods). 

Examples of the responses from selective electrodes are shown in Figure 1 and Figure 

S1D-G. “% sel” refers to the percentage of selective electrodes with respect to the total 

number of electrodes in each area. “inv scale” and “inv rotation” indicate the number of 

electrodes that showed invariance to scale and rotation respectively based on a 

classification performance beyond 3 standard deviations of the null hypothesis mean 

when extrapolating across object scales or rotations (see Experimental Procedures and 

Supplementary Methods and an example electrode in Figure 4). The “% inv scale” and 

“% inv rotation” refer to the percentage of electrodes that showed invariance to these two 

transformations with respect to the number of selective electrodes in each area. We only 

report these percentages in the table when there were at least 5 selective electrodes (those 

columns are bolded). Data from the right and left hemispheres were pooled in this Table.  

 

Table S2: List of areas and codes 

To localize the electrodes on the brain surface, we integrated the anatomical information 

of the brain provided by Magnetic Resonance Imaging (MRI) and the spatial information 

of the electrodes provided by Computer Tomography (CT).  For each subject, the 3-D 

brain surface was reconstructed and then an automatic parcellation was performed using 



Freesurfer (Dale et al., 1999; Fischl et al., 2004). This brain parcellation contains 80 

regions in each hemisphere (Desikan et al., 2006). This table lists the code, name and 

abbreviation for each of these 80 regions in each hemisphere. These area code numbers 

and abbreviations are used throughout the text and figures. We also computed the 

Talairach coordinates for each one of the 912 electrodes. Here we show some basic 

statistics about the Talairach coordinates for the electrodes in each brain region. This 

should be taken only as a rough approximation because it is not clear that computing 

means, standard deviations, and similar operations are valid in Talairach space. The 

number of electrodes in this Table is 890 instead of 912; there were 22 electrodes for 

which we could not obtain reliable Talairach coordinates. 

 



3. Supplementary Figures  

 

Figure S1: Stimulus presentation scheme and further examples of selectivity in 

intracranial field potentials 

A. Grayscale images were presented for 200 ms, with a 600 ms gray screen in between 

images. Subjects were instructed to fixate and performed a one-back task indicating 

whether the same object was repeated (regardless of changes in scale or viewpoint). 

Image order was pseudo-randomized. B. Objects belonged to one of 5 possible 

categories. Here and throughout the manuscript, each category is indicated by a separate 

color (red=animals, green=chairs, blue=faces, black=fruits, yellow=vehicles). There 

were 5 exemplar objects per category. These images show the “default” viewpoint for 

each exemplar. The duration of each session depended on clinical constraints and subject 

fatigue (min duration = 7 min., max duration = 40 min, mean=19.6±7.9 mins). In many 

cases we were able to record several sessions per subject (min=1, max=7, 

mean=2.6±1.6). Results were consistent across sessions; throughout the manuscript we 

merged the responses across all sessions for each subject. C. Each object was presented 

in one of 5 possible transformations, illustrated here for only one object. There were 3 

depth rotations (0, ~45 and ~90 degrees) at the same scale and 3 scales (visual angles of 

1.5 degrees, 3 degrees and 6 degrees) with the same rotation for each object. D-G 

Examples of visual responses from four electrodes (in different subjects). The format and 

conventions are the same as the ones in Figure 1A. The gray rectangle indicates the 

image presentation time and the electrode positions are indicated by the arrows in the 

small insets. Electrode locations: (D) left medial temporal (Talairach coordinates: -12.1 -

58.3 -7); (E) right posterior subtemporal (Talairach coordinates: 48.3 -44.5 -19.3); (F) 

right posterior temporal (Talairach coordinates: 38.0 -62.0 15.0); (G) right posterior 

subtemporal (Talairach coordinates: 43.4 -51.3 -13.1). 

 

Figure S2: Classification performance values under the null hypothesis and 

summary of selective responses 



A. In order to assess whether a given classification performance value was statistically 

significant or not, we compared the values against those obtained from the null 

hypothesis. The null hypothesis states that there is no statistically significant difference 

across the different object categories. The performance level under the null hypothesis 

was obtained by randomly shuffling the object categories (n=100 iterations for each 

electrode) and repeating the same training/testing procedure used with the real data. Here 

we show the distribution of classification performance values obtained under the null 

hypothesis (bin size=0.01). The multiple green vertical dashed lines indicate 1 through 5 

standard deviations. Throughout the text, we used  3 standard deviations from the null 

hypothesis as a threshold for statistical significance. B. Proportion of selective electrodes 

that responded to 1, 2, 3, 4 or 5 categories. C. Proportion of selective electrodes that 

responded to each one of the 5 categories. D. Overall distribution of classification 

performance values for the selective electrodes. The vertical dashed lines indicate chance 

level (50%) and the statistical significance threshold (see A). The vertical arrow shows 

the mean of the distribution and the two other arrows indicate the examples shown in 

Figure 1A and 1F. E. Distribution of classification performance values for the rotation-

invariant electrodes (same format as in D). The object transformation is illustrated for one 

exemplar image on the top. The vertical dashed lines indicate the chance classification 

performance value and the significance threshold used throughout the text. The arrows 

indicate the mean of the distribution and the position of the example shown in Figure 4 in 

the main text. Bin size = 0.02. F. Distribution of classification performance values for the 

scale-invariant electrodes. We emphasize that in both E and F, the classifier was trained 

using the IFP responses to images at one scale and rotation and its performance was 

tested using IFP responses to images at different rotations (E) or scales (F). The 

classification performance values on the x-axis therefore reflect the degree of invariance 

in the neural responses to scale and rotation changes in the images. 

 

Figure S3: Neural codes and classifier input  



Classification performance for different IFP response definitions. The inset on the top 

shows the definition of the analysis windows [tb,ta] where the times are defined with 

respect to the image onset. A. Comparison among different IFP response definitions: total 

power, range and power in different frequency bands. The y-axis shows the relative 

number of selective electrodes with respect to the values reported in the text (which 

correspond to the range in the [50;300) ms window. The high gamma frequency band (71 

to 100 Hz) yielded a higher number of selective electrodes. B. Relative fraction of 

selective electrodes as a function of ta, the end time for the analysis window (for a fixed 

tb=50 ms). C. Relative fraction of selective electrodes as a function of tb, the start time for 

the analysis window (for a fixed ta=800 ms; see Supplementary Methods for details).  

 

Figure S4: Decoding the activity of neural ensembles 

Classification performance using an ensemble of 11 electrodes. For each subject, one 

electrode was chosen based on the rank of rv values. rv is the ratio of the variance across 

categories divided by the variance within categories (see Supplementary Methods and 

(Hung et al., 2005; Kreiman et al., 2006)). rv was computed using only the training data. 

A. Binary classification performance. The colors correspond to different object 

categories. The horizontal dashed lines denote the chance performance value of 50% and 

the significance threshold value. Next to the chance level line we show the range of 

classification performance values obtained after randomly shuffling the object category 

labels (100 iterations). B. Multiclass classification performance. Here the chance level is 

20% (5 object categories). C. Scale invariance. The classifier was trained with the neural 

responses obtained upon presenting objects at the default scale (3 degrees) and rotation; 

we tested the classifier’s performance with the neural responses obtained upon presenting 

objects at half size or twice the size. The classification performance values reported here 

show the average between the two scale transformations. D. Rotation invariance. The 

classifier was trained with the neural responses obtained upon presenting objects at the 

default rotation (Figure S1) and scale; we tested the classifier’s performance with the 

neural responses obtained upon presenting objects at 45 and 90 degrees rotation. The 



classification performance values reported here show the average between the two 

rotations. Electrodes were selected based on the rv values (ratio of the variance across 

categories to the variance within categories) using only the training data (see 

Supplementary Methods).  

 

Figure S5: Location analysis 

In contrast to Figure S4, here the electrodes forming the neural ensemble were chosen 

based on the electrode location, randomly sampling to obtain a total of 10 electrodes in 

each location. Only locations with ≥10 electrodes were used in this analysis. The 

locations are separated by lobes: each row of subplots corresponds to a different brain 

lobe. The color and other conventions follow Figure S4. The location names and codes 

are shown in Table S2.  The areas that showed the highest classification performance 

values from this figure are shown in Figure 2 and 5B in the main text. There are three 

bars for each location and category: (i) training and testing on the IFP responses to 

different repetitions of the images at the default scale and viewpoint; (ii) training the 

classifier on the IFP responses to the default scale and viewpoint and testing its 

performance with the responses to rotated images; (iii) training the classifier on the IFP 

responses to the default scale and viewpoint and testing its performance with the 

responses to scaled images.  

 

Figure S6: Definition of latency and parameter/location dependencies 

A. We followed the definition of latency used in (Thorpe et al., 1996). At each time 

point, we computed a one-way ANOVA on the IFP signals across object categories. For 

the example electrode shown in the top part (from Figure 1F), we show the point-by-

point p values in the bottom figure (in log scale). An electrode was defined as “selective” 

if there was a period of selncons = 25 consecutive time points (bin size = 2 ms at BWH and 

3.9 ms at CHB) with p<0.01. The response latency was defined as the first time point 

where latncons 10 consecutive points yielded p<0.01. The latency for this electrode is 

indicated by an arrow and the shaded area shows the interval of consecutive points where 



p<0.01. The y-axis was cut at log(p)=-6 for graphic purposes; the log(p) values between 

~200 and ~300 ms were below -6. The distribution of latency values for all the selective 

electrodes is shown in Figure 3A in the main text. B, C. Dependence of the mean latency 

across all selective electrodes on selncons, latncons and p-value threshold. The horizontal 

dashed line shows the mean value reported in the text (the mean of the distribution in 

Figure 3A which corresponds to the parameters indicated by the arrow in the fifth subplot 

in B and the second subplot C). The color corresponds to the p value thresholds (red: 

0.05, green: 0.01, blue: 0.005, black: 0.001). The error bars correspond to one SEM of the 

corresponding distribution across electrodes. D. The distribution of latencies shown in 

Figure 3A in the main text includes all the selective electrodes. Here we show the mean 

latencies for those electrodes in each location where there were at least 5 selective 

electrodes. The horizontal dashed line indicates the mean value reported in the main text. 

The numbers in parenthesis indicate the “area code” for each location. The location 

names, codes and Talairach coordinates are indicated in Table S2. Frontal lobe locations 

are shown in white, occipital lobe locations in gray and temporal lobe locations are 

shown in black (there was no location with >5 selective electrodes in the parietal lobe). 

Error bars represent SEM. 

 

Figure S7: Fast decoding of object category 

Classification performance as a function of time from stimulus onset. Each color 

corresponds to an object category (red=animals, green=chairs, blue=faces, 

black=fruits, yellow=vehicles). Here the classifier was trained using individual 

bins of size τ (A, D. τ=25 ms, B, E. τ=50 ms, C, F. τ=100 ms). We used the range of the 

IFP signal in each bin (in the Supplementary Web Material we show results using the 

power of the IFP signal in each bin). In A-C, we use the responses to the default scale 

and position to train and test the classifier’s performance (using different repetitions for 

training and testing). In D-F, we show the dynamics of decoding performance when 

extrapolating across scales and rotations. The classifier was trained using the responses to 

the objects at the default scale and rotation and its performance was evaluated with the 



responses to the rotated images (solid line) or the scaled images (dashed line). The 

horizontal dashed lines denote the chance performance value of 0.5 and the significance 

threshold value (note that this threshold is different from the one in Figure S2A because 

we are using a much smaller window here). The vertical dashed lines mark 100 ms 

intervals to facilitate visualizing the dynamics of the responses. The average across all the 

categories in part A is reported in Figure 3B in the main text and the average across all 

categories in part D is reported in Figure 6B in the main text. 
 

Figure S8: Responses to all objects/transformations for the electrode in Figure 4  

A. Expanding on the presentation in Figure 4, here we show the IFPs of the same 

electrode to all the objects (each row corresponds to a separate object) and 

transformations (each column corresponds to a separate transformation). The top row 

shows an example of the transformations for only one of the objects. Columns 2 and 3 

correspond to two scaled versions (visual angle of 1.5 degrees and 6 degrees respectively) 

of the standard image (visual angle of 3 degrees) and columns 4 and 5 correspond to two 

rotated versions of the original image (~45 and 90 degree rotation). Object category is 

indicated by the response color. The strong response and invariance across objects and 

transformations shows that the results are not due to selectivity or robustness for one 

particular exemplar object only. B. Average response to each object and transformation. 

Same data as in part A, showing a single response value for each electrode (signal range 

in the interval from 50 to 300 ms).   
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TABLE S1

Frontal Lobe
F-

OperInf F-TriInf F-Mid F-Sup F-Marg F-Orb
P-

PreCen
F-
SubCen Total* Sum Fract

Area code 6 8 9 10 11 20 26 30
Total electrodes 34 33 49 23 16 54 34 24 298 267 90%
Selective 2 1 5 2 0 1 2 1 22 14 64%
% sel 6% 3% 10% 9% 0% 2% 6% 4% 7%
inv scale 2 1 1 1 0 1 1 0 7 7 100%
% inv scale 20% 32%
inv rotation 1 1 2 1 0 1 1 0 8 7 88%
% inv rotation 40% 36%

Occipital Lobe O-Inf O-Mid O-Par Total* Sum Fract
Area code 14 15 69
Total electrodes 21 18 14 74 53 72%
Selective 18 4 1 26 23 88%
% sel 86% 22% 7% 35%
inv scale 11 3 0 14 14 100%
% inv scale 61% 54%
inv rotation 13 4 0 17 17 100%
% inv rotation 72% 65%

Tempotal Lobe T-LTFus
T-

MTLing
T-

MTPhip T-IT T-MT T-STLat T-Pole Total* Sum Fract
Area code 17 18 19 31 32 34 43
Total electrodes 24 29 27 88 117 80 51 423 416 98%
Selective 9 6 7 16 9 3 7 58 57 98%
% sel 38% 21% 26% 18% 8% 4% 14% 14%
inv scale 5 2 5 9 0 1 5 27 27 100%
% inv scale 56% 33% 71% 56% 0% 71% 47%
inv rotation 6 4 5 9 8 3 3 38 38 100%
% inv rotation 67% 67% 71% 56% 89% 43% 66%

Parietal Lobe

Gparietal
inferiorA
ngularpa

rt

Gparietal
inferiorS
upramar
ginalpart

Gpostce
ntral

Gprecun
eus Total* Sum Fract

Area code 22 23 25 27
Total electrodes 28 36 22 14 117 100 85%
Selective 1 3 1 0 5 5 100%
% sel 4% 8% 5% 0% 4%
inv scale 1 0 0 0 1 1
% inv scale 20%
inv rotation 1 0 0 0 1 1 100%
% inv rotation 20%



TABLE S2

Are
a 
Cod
e

Area 
abbreviation Area name Talairach coordinates (LEFT HEMISPHERE) Talairach coordinates (LEFT HEMISPHERE)

means std mins maxs medians n means std mins maxs medians n
0 U-UNKN Unknown

1 U-CCL Corpus-callosum 0 0
2 T-IAvg G-and-S-insula-only-average 0 0
3 P-CingIst G-cingulate-Isthmus 0 [-2 -46 6] [0 0 4] [-3 -46 3] [-1 -46 9] [-2 -46 6] 2
4 P-CingMain G-cingulate-Main-part 0 [2 -41 27] [2 16 11] [-0 -75 15] [7 -30 48] [2 -33 25] 7
5 O-Cuneus G-cuneus [2 -68 12] [0 0 0] [2 -68 12] [2 -68 12] [2 -68 12] 1 [1 -70 13] [0 4 4] [0 -76 9] [1 -64 20] [1 -70 12] 6
6 F-OperInf G-frontal-inf-Opercular-part [-36 16 14] [40 11 12] [-61 0 -9] [59 47 32] [-52 12 14] 26 [57 14 1] [6 2 9] [47 11 -11] [63 18 10] [61 14 -0] 5
7 F-OrbInf G-frontal-inf-Orbital-part [7 42 -8] [50 17 4] [-40 25 -13] [51 66 -3] [8 38 -9] 4 [54 32 -4] [0 7 3] [54 27 -8] [55 41 -2] [55 30 -2] 3
8 F-TriInf G-frontal-inf-Triangular-part [-33 31 6] [39 13 9] [-58 10 -11] [61 58 23] [-48 26 7] 27 [56 30 10] [2 6 4] [54 23 6] [59 35 18] [56 34 8] 5
9 F-Mid G-frontal-middle [-39 36 30] [8 20 16] [-53 3 -16] [-27 73 52] [-36 32 33] 30 [40 38 30] [9 16 17] [21 10 -5] [52 66 58] [43 41 33] 19

10 F-Sup G-frontal-superior [-24 25 51] [13 21 22] [-53 7 9] [-9 72 68] [-21 20 60] 8 [6 60 27] [4 9 15] [0 39 -8] [14 76 50] [7 57 30] 15
11 F-Marg G-frontomarginal [-33 57 -7] [0 0 0] [-33 57 -7] [-33 57 -7] [-33 57 -7] 1 [34 61 18] [12 8 23] [14 44 -18] [52 74 44] [34 62 29] 15
12 F-InsLong G-insular-long 0 0
13 F-InsShort G-insular-short [-52 5 -5] [6 1 3] [-57 4 -8] [-47 7 -3] [-52 5 -5] 2 0
14 O-Inf G-and-S-occipital-inferior [5 -67 -5] [50 11 8] [-50 -89 -15][62 -48 10] [7 -67 -6] 16 [7 -69 7] [38 11 10] [-36 -84 1] [43 -56 25] [27 -66 3] 5
15 O-Mid G-occipital-middle [-42 -73 22] [5 11 23] [-51 -86 -4] [-35 -48 84] [-43 -75 16] 12 [13 -68 11] [36 7 2] [-36 -77 7] [45 -58 15] [32 -70 11] 6
16 O-Sup G-occipital-superior 0 [-0 -76 25] [1 3 10] [-1 -80 10] [1 -68 36] [-0 -78 29] 10
17 T-LTFus G-occipit-temp-lat-Or-fusiform [-20 -34 -17] [21 13 6] [-47 -55 -26][38 -11 -9] [-26 -34 -17] 11 [11 -42 -12] [27 23 5] [-23 -78 -28][37 -12 -5] [29 -40 -11] 13
18 T-MTLing G-occipit-temp-med-Lingual-part [-8 -55 -1] [5 7 5] [-13 -61 -6] [-1 -44 5] [-8 -57 -3] 4 [0 -65 -0] [8 13 6] [-13 -86 -15][25 -28 10] [-0 -67 0] 25
19 T-MTPhip G-occipit-temp-med-Parahippocampal-part[-22 -0 -18] [7 13 7] [-39 -25 -41][-12 20 -7] [-21 -0 -18] 14 [14 -31 -13] [25 13 6] [-24 -53 -23][51 -9 -3] [20 -34 -13] 13
20 F-Orb G-orbital [-16 39 -13] [28 12 13] [-55 14 -35] [50 66 15] [-21 40 -15] 40 [39 31 -14] [11 14 4] [15 12 -24] [51 59 -7] [44 25 -14] 13
21 P-ParaCen G-paracentral 0 0
22 P-AngInf G-parietal-inferior-Angular-part [-49 -55 35] [12 21 21] [-67 -75 2] [-31 -13 61] [-48 -61 44] 13 [21 -54 44] [40 16 12] [-34 -79 21] [63 -31 59] [44 -54 44] 11
23 P-SupraMargInf G-parietal-inferior-Supramarginal-part [-27 -40 36] [52 13 14] [-71 -63 12] [69 -7 64] [-48 -42 32] 32 [63 -18 46] [0 8 2] [62 -24 44] [63 -12 48] [63 -18 46] 2
24 P-Sup G-parietal-superior [-28 -35 63] [4 19 6] [-35 -66 53] [-23 -16 69] [-29 -32 65] 5 [-35 -50 60] [0 7 4] [-35 -55 57] [-35 -44 63] [-35 -50 60] 2
25 P-PostCen G-postcentral [-53 -6 44] [7 17 12] [-70 -32 20] [-46 16 61] [-52 -2 48] 12 [36 -15 56] [31 12 10] [-35 -36 38] [63 -0 67] [46 -15 58] 8
26 P-PreCen G-precentral [-33 1 36] [42 16 13] [-66 -24 12] [65 34 59] [-48 -1 35] 26 [36 -0 53] [32 13 16] [-34 -27 27] [62 16 68] [47 4 60] 7
27 P-PreCun G-precuneus 0 [0 -55 22] [0 9 10] [-0 -74 9] [2 -43 35] [1 -52 20] 14
28 F-Rectus G-rectus [9 30 -25] [0 0 0] [9 30 -25] [9 30 -25] [9 30 -25] 1 [3 40 -25] [3 3 0] [1 38 -25] [5 43 -25] [3 40 -25] 2
29 U-SCCL G-subcallosal 0 0
30 F-SubCen G-subcentral [2 -7 17] [65 7 9] [-70 -24 -1] [69 4 36] [6 -6 18] 22 0



31 T-IT G-temporal-inferior [-18 -31 -22] [50 20 9] [-72 -75 -41][71 11 3] [-45 -32 -22] 69 [5 -44 -7] [59 20 6] [-65 -72 -18][70 -11 7] [45 -45 -7] 15
32 T-MT G-temporal-middle [-22 -23 -6] [58 23 12] [-74 -68 -34][72 41 20] [-56 -25 -7] 88 [40 -27 -3] [50 19 9] [-67 -61 -18][72 13 16] [62 -29 -3] 28
33 T-Interm G-temp-sup-G-temp-transv-and-interm-S 0 0
34 T-STLat G-temp-sup-Lateral-aspect [-26 -4 2] [53 18 13] [-73 -39 -21][72 38 36] [-54 -4 2] 64 [60 6 -5] [7 16 6] [44 -21 -14] [70 33 8] [60 7 -7] 14
35 T-STPlanPol G-temp-sup-Planum-polare 0 0
36 T-STPlanTemp G-temp-sup-Planum-tempolare [-57 -53 20] [2 10 1] [-59 -60 19] [-55 -46 22] [-57 -53 20] 2 0
37 F-FrontoPol G-and-S-transverse-frontopolar 0 0
38 F-RamusH Lat-Fissure-ant-sgt-ramus-horizontal 0 0
39 F-RamusV Lat-Fissure-ant-sgt-ramus-vertical 0 0
40 P-LatFiss Lat-Fissure-post-sgt 0 0
41 U-MWL Medial-wall 0 [8 -8 3] [0 6 7] [8 -13 -2] [9 -4 8] [8 -8 3] 2
42 O-Pole Pole-occipital 0 [-4 -73 0] [14 28 14] [-23 -92 -18][11 -31 16] [-2 -85 1] 4
43 T-Pole Pole-temporal [-7 4 -31] [36 14 7] [-55 -15 -43][58 49 -13] [-23 2 -32] 44 [46 3 -19] [20 25 6] [20 -22 -28] [67 36 -11] [55 -12 -22] 7
44 O-Calc S-calcarine 0 0
45 P-Cen S-central 0 0
46 P-InsCen S-central-insula 0 0
47 F-CingMain S-cingulate-Main-part-and-Intracingulate 0 0
48 F-CingMarg S-cingulate-Marginalis-part 0 0
49 F-InsAnt S-circular-insula-anterior 0 [43 -51 -13] [0 0 0] [43 -51 -13] [43 -51 -13] [43 -51 -13] 1
50 F-InsSup S-circular-insula-inferior 0 0
51 T-InsSup S-circular-insula-superior 0 0
52 F-CollAnt S-collateral-transverse-ant [-27 -1 -21] [0 0 0] [-27 -1 -21] [-27 -1 -21] [-27 -1 -21] 1 0
53 F-CollPost S-collateral-transverse-post 0 [44 -16 -35] [0 0 0] [44 -16 -35] [44 -16 -35] [44 -16 -35] 1
54 F-IF S-frontal-inferior [-48 38 12] [1 5 2] [-49 34 9] [-46 45 14] [-49 36 13] 3 [54 28 28] [3 2 6] [51 26 24] [56 29 33] [54 28 28] 2
55 F-MF S-frontal-middle 0 [30 59 14] [0 0 0] [30 59 14] [30 59 14] [30 59 14] 1
56 F-SF S-frontal-superior 0 0
57 F-FrontMarg S-frontomarginal 0 0
58 P-Jensen S-intermedius-primus-Jensen 0 0
59 P-Intra S-intraparietal-and-Parietal-transverse 0 [39 -27 62] [0 0 0] [39 -27 62] [39 -27 62] [39 -27 62] 1
60 O-Ant S-occipital-anterior 0 0
61 O-Lunatus S-occipital-middle-and-Lunatus 0 0
62 O-Transversalis S-occipital-superior-and-transversalis 0 0
63 T-LT S-occipito-temporal-lateral 0 0
64 T-Lingual S-occipito-temporal-medial-and-S-Lingual 0 [20 -26 -6] [0 1 14] [20 -27 -16] [21 -26 3] [20 -26 -6] 2
65 F-Hshaped S-orbital-H-shapped [-22 37 -16] [19 6 9] [-43 25 -25] [20 44 7] [-25 39 -18] 8 0
66 F-OrbLat S-orbital-lateral 0 0
67 F-Olf S-orbital-medial-Or-olfactory 0 0
68 P-ParaCen S-paracentral 0 0



69 O-Parietal S-parieto-occipital 0 [1 -63 27] [0 6 5] [-0 -74 19] [2 -54 36] [1 -64 26] 14
70 P-PeriCallosal S-pericallosal 0 0
71 P-PostCen S-postcentral 0 0
72 F-PreCenInf S-precentral-Inferior-part [-50 5 33] [5 1 8] [-53 3 27] [-46 6 39] [-50 5 33] 2 0
73 F-PreCenSup S-precentral-Superior-part 0 0
74 P-SubCenAnt S-subcentral-ant 0 0
75 P-SubCenPos S-subcentral-post 0 0
76 P-SubOrb S-suborbital 0 0
77 P-SubPar S-subparietal 0 0
78 F-CingSupra S-supracingulate 0 0
79 T-IT S-temporal-inferior 0 0
80 T-ST S-temporal-superior [-62 -17 14] [1 7 1] [-63 -23 13] [-61 -12 15] [-62 -17 14] 2 0
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