Supporting Information

Burov et al. 10.1073/pnas.1003693107

SI Text

The process $\mathbf{x}(s)$ defined in Eq. [12] is a Markov process. The equation of motion for the probability density function (pdf) $P_M(x,s|x_0,0)$ is the regular Fokker–Planck equation, i.e., Eq. [10] with $\alpha=1$. The solution for the initial condition $P_M(x,0|x_0,0)=\delta(x-x_0)$ is then obtained using the eigenfunctions and eigenvalues of the Fokker–Planck operator $L_{\mathrm{FP}}\phi_n(x)=-\gamma_n$ $\phi_n(x)$ $(L_{\mathrm{FP}}=-(\partial/\partial x)[F(x)/(k_BT)]+\partial^2/\partial x^2)$ (1). A confining potential causes a discrete eigenvalue spectrum $0<\gamma_1<\gamma_2...$ and a stationary solution $L_{\mathrm{FP}}\phi_0(x)=0$. The pdf $P_M(x,s|x_0,0)$ is (1)

$$P_{M}(x,s|x_{0},0) = \sum_{n=0}^{\infty} e^{-\gamma_{n}Ks} \hat{\phi}_{n}(x_{0}) \phi_{n}(x),$$
 [S1]

with coefficients $\hat{\phi}_n(x_0) = e^{U(x_0)/k_{\rm B}T}\phi_n(x_0)$, and the orthonormality relation $\int_{-\infty}^{\infty} e^{U(x)/k_{\rm B}T}\phi_n\phi_m dx = \delta_{nm}$. Orthonormality relation $\int_{-\infty}^{\infty} e^{\Phi(x)}\phi_n\phi_m dx = \delta_{nm}$ ($\Phi(x) = \ln(D) - \frac{1}{D}\int F(x')dx'$) $P_M(x_2.s|x_1,0)$ is obtained from Eq. S1 by substituting $x \to x_2$ and $x_0 \to x_1$. The Laplace transform of $P_M(x.s|x_0.0)$, $\tilde{P}_M(x.\lambda|x_0.0) = \int_0^{\infty} e^{-s\lambda} P_M(x.s|x_0.0) ds$, is given by

$$\tilde{P}_{M}(x,\lambda|x_{0},0) = \frac{e^{-U(x)/k_{\rm B}T}}{\lambda Z} + \sum_{n=1}^{\infty} \frac{\hat{\phi}_{n}(x_{0})\phi_{n}(x)}{\lambda + \gamma_{n}K}, \quad [S2]$$

where we used the Boltzmann equilibrium pdf for the ground state solution of Fokker–Planck equation, and $Z = \int_{-\infty}^{\infty} e^{-U(x)/k_{\rm B}T} dx$ is the normalizing partition function. We are now ready to compute the correlation function (CF) $\langle x(t_1)x(t_2)\rangle$. Using the definition for the Laplace transform of the two-time CF

$$\langle x(\lambda_2)x(\lambda_1)\rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f(x_2, \lambda_2; x_1, \lambda_1) dx_1 dx_2,$$
 [S3]

and applying Eq. 20 and Eq. S2, we obtain

$$\begin{split} \langle x(\lambda_{2})x(\lambda_{1})\rangle &= \frac{\lambda_{1}^{\alpha}-\Lambda^{\alpha}+\lambda_{2}^{\alpha}}{\lambda_{1}\lambda_{2}} \bigg[\frac{\langle x^{2}\rangle_{B}}{\Lambda^{\alpha}} + \sum_{n_{1}=1}^{\infty} \frac{\hat{\phi}_{n_{1}}(x_{0})C_{n_{1}}^{(1)}}{\Lambda^{\alpha}+\gamma_{n_{1}}K_{\alpha}}\bigg] \\ &+ \frac{(\lambda_{2}^{\alpha})(\Lambda^{\alpha}-\lambda_{2}^{\alpha})}{\lambda_{1}\lambda_{2}} \bigg[\frac{\langle x\rangle_{B}^{2}}{\lambda_{2}^{\alpha}\Lambda^{\alpha}} + \frac{\langle x\rangle_{B}}{\lambda_{2}^{\alpha}} \sum_{n_{2}=1}^{\infty} \frac{\hat{\phi}_{n_{2}}(x_{0})C_{n_{2}}^{(2)}}{\Lambda^{\alpha}+\gamma_{n_{2}}K_{\alpha}} \\ &+ \sum_{n_{3}=1}^{\infty} \frac{C_{n_{3}}^{(3)}C_{n_{3}}^{(2)}}{\Lambda^{\alpha}(\lambda_{2}^{\alpha}+\gamma_{n_{3}}K_{\alpha})} \\ &+ \sum_{n_{4}=1}^{\infty} \sum_{n_{5}=1}^{\infty} \frac{C_{n_{4},n_{5}}^{(4)}C_{n_{4}}^{(2)}\hat{\phi}_{n_{5}}(x_{0})}{(\lambda_{2}^{\alpha}+\gamma_{n_{4}}K_{\alpha})(\Lambda^{\alpha}+\gamma_{n_{5}}K_{\alpha})} \bigg] \\ &+ \frac{(\lambda_{1}^{\alpha})(\Lambda^{\alpha}-\lambda_{1}^{\alpha})}{\lambda_{1}\lambda_{2}} \bigg[\frac{\langle x\rangle_{B}^{2}}{\lambda_{1}^{\alpha}\Lambda^{\alpha}} + \frac{\langle x\rangle_{B}}{\lambda_{1}^{\alpha}} \sum_{n_{2}'=1}^{\infty} \frac{\hat{\phi}_{n_{2}}(x_{0})C_{n_{2}'}^{(2)}}{\Lambda^{\alpha}+\gamma_{n_{2}'}K_{\alpha}} \\ &+ \sum_{n_{3}'=1}^{\infty} \frac{C_{n_{3}'}^{(3)}C_{n_{3}'}^{(2)}}{\Lambda^{\alpha}(\lambda_{1}^{\alpha}+\gamma_{n_{3}'}K_{\alpha})} \\ &+ \sum_{n_{3}'=1}^{\infty} \sum_{n_{4}'=1}^{\infty} \frac{C_{n_{4}',n_{5}'}^{(4)}C_{n_{4}'}^{(2)}\hat{\phi}_{n_{5}'}(x_{0})}{(\lambda_{1}^{\alpha}+\gamma_{n_{4}'}K_{\alpha})(\Lambda^{\alpha}+\gamma_{n_{5}'}K_{\alpha})} \bigg], \quad [S4] \end{split}$$

- 1. Risken H (1984) The Fokker-Planck Equation (Springer, Berlin).
- Feller W (1969) An Introduction to Probabolity Theory and Its Applications (Wiley Eastern, New Delhi), Vol. 2.

where $\Lambda \equiv \lambda_1 + \lambda_2$ and

$$\begin{split} C_{n}^{(1)} &= \int_{-\infty}^{\infty} x^{2} \phi_{n}(x) dx \qquad C_{n}^{(2)} &= \int_{-\infty}^{\infty} x \phi_{n}(x) dx \\ C_{n}^{(3)} &= \frac{1}{Z} \int_{-\infty}^{\infty} x \hat{\phi}_{n}(x) \exp[-U(x)/k_{\rm B}T] dx \qquad \qquad \text{[S5]} \\ C_{n,n'}^{(4)} &= \int_{-\infty}^{\infty} x \hat{\phi}_{n}(x) \phi_{n'}(x) dx. \end{split}$$

 $C_n^{(3)} = \int_{-\infty}^{\infty} x \tilde{\phi}_n(x) \exp[-U(x)/k_B T]/Z dx$, and the symbol $\langle ... \rangle_B$ denotes an average over the Boltzmann distribution, e.g.,

$$\langle x^2 \rangle_B = \frac{1}{Z} \int_{-\infty}^{\infty} x^2 \exp[-U(x)/k_B T] dx.$$
 [S6]

All terms of Eq. **S4** that are γ_n dependent (n > 0) are equivalent to the transient part of the CF for a normally diffusing particle $\alpha \to 1$. Although the γ_n dependent components could be inverted into time-domain explicitly, for our purpose here it suffices to use Tauberian theorems (2) for $\lambda_1 \to 0$ and $\lambda_2 \to 0$, in the limit $\lambda_1^{\alpha} \ll \gamma_n K_{\alpha}$ and $\lambda_2^{\alpha} \ll \gamma_n K_{\alpha}$ the leading order for the power series of the transient part is of the form $\lambda^{\alpha-1}$ and therefore all transient terms decay to zero at least as $t^{-\alpha}$ for $t_2 \gg 1/(K_{\alpha}\gamma_1)^{1/\alpha}$, $t_1 \gg 1/(K_{\alpha}\gamma_1)^{1/\alpha}$, where γ_1 is the smallest nonzero eigenvalue. The remaining part

$$\frac{\lambda_{1}^{\alpha}-\Lambda^{\alpha}+\lambda_{2}^{\alpha}}{\lambda_{1}\lambda_{2}}\frac{\langle x^{2}\rangle_{B}}{\Lambda^{\alpha}}+\frac{(\lambda_{2}^{\alpha})(\Lambda^{\alpha}-\lambda_{2}^{\alpha})}{\lambda_{1}\lambda_{2}}\frac{\langle x\rangle_{B}^{2}}{\lambda_{2}^{\alpha}\Lambda^{\alpha}}+\frac{(\lambda_{1}^{\alpha})(\Lambda^{\alpha}-\lambda_{1}^{\alpha})}{\lambda_{1}\lambda_{2}}\frac{\langle x\rangle_{B}^{2}}{\lambda_{1}^{\alpha}\Lambda^{\alpha}}$$
[S7]

is equivalent to the stationary behavior of the normally diffusing particle (i.e., independent of all the nonzero eigenvalues of $L_{\rm FP}$) and depends only on equilibrium quantities. S7 is transformed into the time domain using the Laplace inversion

$$\mathcal{L}^{-1}\left\{1/(\lambda_2\lambda_1^{1-\alpha}\Lambda^{\alpha})\right\} = \theta(t_2 - t_1) + \theta(t_1 - t_2)B(t_2/t_1, \alpha, 1 - \alpha)/$$

$$[\Gamma(\alpha)\Gamma(1 - \alpha)], \qquad [S8]$$

where $B(z,a,b) = \int_0^z y^{a-1} (1-y)^{b-1} dy$ is the incomplete beta function (3). For the two -time CF we obtain

$$\langle x(t_2)x(t_1)\rangle \sim (\langle x^2\rangle_B - \langle x\rangle_B^2) \frac{B(t_1/t_2, \alpha, 1 - \alpha)}{\Gamma(\alpha)\Gamma(1 - \alpha)} + \langle x\rangle_B^2$$
 [S9]

in the limit $t_2 \ge t_1 \gg (1/K_\alpha \gamma_1)^{1/\alpha}$.

 Abramowitz M, Stegun I (1971) Handbook of Mathematical Functions (Dover, New York).