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SI Text

The process x(s) defined in Eq. [12] is a Markov process. The equa-
tion of motion for the probability density function (pdf)
Py (x,slx9,0) is the regular Fokker—Planck equation, i.e.,
Eq. [10] with a = 1. The solution for the initial condition
Py(x,00x,0) = 6(x — xp) is then obtained using the eigenfunctions
and eigenvalues of the Fokker—Planck operator Lgpg, (x) = -y,
$, ) (Lip = —(0/a)[F(x)/ (ks T)] + 0*/ac*) (1. A confining po-
tential causes a discrete eigenvalue spectrum 0 < y; < y,... and a
stationary solution Lgp¢p,(x) = 0. The pdf Py, (x.s]xy,0) is (1)

w (X10,0) = Y €K, (xg) by (x). (s11
n=0

with coefficients z}),, (xy) = eV)/ksT g (x,), and the orthonormality
relatlon [ eVt g dx = 5,,,,, Orthonormality relation

/iom ¢¢ dx_‘snm ((15() /F dxl PM(XZaslxls
0) is obtained from Eq. S1 by substltutlng X = x, and x5 — x;.

The Laplace transform of Py (x.sl.0), Py (x.Al.0) =
[Py (x.s]x0,0)ds, is given by

5 UOMT 2 G (50) b (%)

Py (x.Ap0.0) = —— +3 Tt K [S2]

n=1
where we used the Boltzmann equilibrium pdf for the ground state
solution of Fokker-Planck equation, and Z = [®_e~V®/ksTgy s
the normalizing partition function. We are now ready to compute
the correlation function (CF) (x(¢;)x(t,)). Using the definition for
the Laplace transform of the two-time CF

< (/12 / / xlXZf xZ,/lz,xl, )dx dX'2, [S3]

and applying Eq. 20 and Eq. S2, we obtain
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where A =1, + 1, and

clV = /mxzqﬁn(x)dx c? = /ooxd),,(x)dx
1

) = z/_:xq?)n (x) exp|~U (x) /K T)dx [55]

e

O = f°_°mxc;§,, (x) exp[-U (x)/kpT]|/Zdx, and the symbol (...)g
denotes an average over the Boltzmann distribution, e.g.,

Wy = [ % expl-U) kTidr [S6]

All terms of Eq. S4 that are y,, dependent (n > 0) are equivalent to
the transient part of the CF for a normally diffusing particle « — 1.
Although the y, dependent components could be inverted into
time-domain explicitly, for our purpose here it suffices to use Tau-
berian theorems (2) for 4, — 0 and 4, — 0, in the limit A{ < y,K,
and 4§ < y,K, the leading order for the power series of the tran-
sient part is of the form A*~! and therefore all transient terms decay
to zero at least as % for ¢, 3 1/(Kqy1)'/%, t; > 1/(Kqy1)'/e,
where y, is the smallest nonzero eigenvalue. The remaining part
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is equivalent to the stationary behavior of the normally diffusing
particle (i.e., independent of all the nonzero eigenvalues of Lgp)
and depends only on equilibrium quantities. S7 is transformed into
the time domain using the Laplace inversion

LTHY (AN} = 0(t, = 1,) + 0(t, = ) B(t2 /11, a,1 — @)/

(M)l (1 = a), [S8]

where B(z,a.b) = [3*'(1 —y)P~'dy is the incomplete beta func-
tion (3). For the two -time CF we obtain

B(t, /t).a,1 —a)

oo —a) T @R 199

(x(e)x(t))) ~ ()5 — (¥)3)

in the limit £, > £, > (1/K )"/
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