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SI Results
The AWM dissects biological information from GWASs in three
steps as follows: The first step is to estimate trait correlations from
all ∼50,000 SNP effects; the second step is to select SNPs for the
AWM considering these trait correlations; and the third step is
to use the AWM to build a gene network.
Initially, the SNP effect data from the total of available SNPs

(50,070) were used to calculate correlations between the 22 traits.
As a result, AGECL correlates with WTCL (R = 0.64) and with
PPAI (R = 0.31) (Table S1). Second, the selected set of SNPs
included in the AWM (3,159 SNPs) was also used to calculate
the correlations between the 22 traits. This second analysis re-
vealed a correlation of R = 0.82 when compared with the results
obtained with the full 50,070 SNPs.
When selecting SNPs to build the AWM, we considered their

distance to the nearest gene (as per Fig. S1). SNPswere considered
in four categories according to SNP-to-gene distance: “close,”
“far,” “very far,” and “unmapped.” A comparison between SNP
categories was made to determine if SNP-to-gene distance could
influence either the size of the SNP effect or the significance of its
association to traits. SNPs from the unmapped category were ex-
cluded from the comparison because their distance to the nearest
gene is unknown. We compared the close, far, and very far cate-
gories within three groups of SNPs (full 50,070 SNPs, AWMSNPs,
and top SNPs). First, when the full 50,070 SNPs were examined,
the SNP categories were not different in terms of SNP effect.
However, we observed decay in the SNP significance with the in-
creasing SNP-to-gene distance, as measured by P value (Fig. S2).
Second, among the AWM selected SNPs, the far category had
a higher overall SNP effect. This result reflects the selection cri-
teria bias for theAWMSNPs, because far SNPswere includedonly
if they were the top SNPs (P < 0.05 in ≥10 traits). Third, consid-
ering the group of top SNPs, the close category of SNPs had
a higher effect across traits. Furthermore, not one very far SNP
could be included in the top group, indicating a negative associa-
tion between distance to a gene and SNP significance. Overall, the
interaction between the SNP group and SNP-to-gene distance
influenced SNP effect significantly (P < 0.0001).
The AWM is presented in Fig. S3A, highlighting a few selected

rows from the total of 3,159 SNPs. These selected rows correspond
to genes that clustered with the three transcription factors that
were further scrutinized in the regulatory sequence analysis: es-
trogen related receptor γ (ESRRG), prophet of the pituitary-
specific transcription factor 1, or prophet of PIT-1 (PROP1), and
peroxisome proliferator-activated receptor γ (PPARG). SPOCK1
andZNF462, genes previously associated with puberty (1, 2), were
present in the AWM and are shown in Fig. S3A. Fig. S3A also
shows a pair of highly correlated genes: RUN domain containing
1 (RUNDC1) and breast cancer 1 (BRCA1). The gene–gene in-
teraction between RUNDC1 and BRCA1 is a unique prediction
made by the AWM analysis.
Columnwise, the AWM renders itself to the calculation of cor-

relationsbetween the22 traits under scrutiny.This calculation result
is visualized in PermutMatrix as a hierarchical tree where AGECL
clusters withWTCL and both are close to PPAI (Fig. S3B). On the
hierarchical tree cluster, a strong positive correlation is displayed
as proximity, whereas a strong negative correlation is displayed
as a large distance. To observe negative and positive correlations
equally, we developed the quantitative trait network (QTN) from
SNPeffect data ofAWMselectedSNPs,which shows a great degree
of interaction between all 22 traits (Fig. S3C). For visual compari-

son, we also present a QTN based on the genetic correlations de-
rived from quantitative genetic approaches (3, 4) (Fig. S3D).
A formal comparisonbetweenpublished genetic correlations (3,

4) and AWM-derived correlations was completed using the pair-
wise correlations between 19 traits, AGECL,WTCL, FATCL, and
all T1 and T2 traits (ADG,CS,HH, IGF1, SEMA, SP8, SRIB, and
WT). The scatter plot of this formal comparison is illustrated in
Fig. 1, revealing a moderate agreement between both approaches
(R2 = 0.6439). Importantly, when all 50K SNPs were considered,
the trait correlations were even closer to the genetic estimates
(R2 = 0.7034; Fig. 1). We conclude that SNP effects via the
AWM methods can be used to recover the genetic correlations
between traits.
The number of SNPs used for the SNP effect-based correlations

impactson the similarity betweengenetic andSNP-basedestimates
of trait correlations. Linearly, the higher the number of SNPs
analyzed, the higher is the recovery of genetic correlations, even
when significance levels are considered. In other words, even if the
SNPs with lower P values were selected for the comparisons with
genetic estimates, the actual number of SNPs is still important. As
mentioned earlier, the trait correlations based on all 50K SNPs
were similar to genetic correlations (R2 = 0.7034). But, this simi-
larity decreased when fewer SNPs were used to calculate the trait
correlations. This linear relationship between SNP numbers and
similarity to genetic correlations is presented in Fig. S4. The
equation of best fit presented in Fig. S4 might be used to estimate
the number of SNPs required to recover 100% of the genetic
correlations, which were REML estimated. Solving the equation
results in >200,000 SNPs required to fully recover genetic corre-
lations between traits. This value agrees with the estimated
200,000–300,000 SNPs required to fully exploit GWASs or geno-
mic selection across cattle breeds (5).
PairwisecorrelationsacrossAWMrowsareusedtopredictgene–

gene (or gene–SNP) interactions and hence build a network. In this
network, every gene (or SNP when mapped as very far) is a node
and every significant interaction is an edge. Significant interactions
were identified according to thePCITweightednetworkalgorithm.
We identified 287,465 significant edges between 3,159 nodes,
which were subsequently visualized in Cytoscape. This network is
illustrated in Fig. 2A where the colors of the nodes follow the
MCODE score (6), which indicates network density: Red nodes
have high score, yellow a middle score, and green a low score.
Once the network was built, it was subjected to gene ontology

and pathway analyses to mine the predicted drivers of puberty.
Gene Ontology (GO) analyses performed by BiNGO and GOrilla
showedmany similar results, but somedifferenceswere also noted.
These differences likely reflect the different background lists
used in each analysis. BiNGO analysis used National Center for
Biotechnology Information full Bos taurus annotation as a back-
ground list, whereas for the GOrilla analysis we created a back-
ground list that contained all genes located close to a SNP in our
GWAS. These analyses revealed GO term overrepresentation for
the molecular functions “binding” (P = 8.62E-10), “metal ion
binding” (P = 6.38E-3), “ATP binding” (P = 4.28E-9), and
“GABA receptor activity” (P = 2.51E-2). Similarly, there were
overrepresented GO terms for biological processes including
“fatty acid metabolic process,” “signal transduction,” “protein
modification processes,” “regulation of epidermal growth factor,”
and “small GTPases signaling,” as well as a number of processes
associated with gene transcription (Fig. S5A). In addition, there
were 539 genes in the AWM associated with the GO term “de-
velopmental process,” which was highly enriched (P < 1.00E-09).
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Importantly, these genes along with the genes associated with fatty
acid metabolic process would have been missed if the traditional
single-trait analysis was performed (Fig. S5B). In addition, path-
way analyses of the network revealed an enrichment (P< 0.001) for
“calcium signaling,” “axon guidance,” and “neuroactive ligand–
receptor interaction.” This last pathway includes ligands and re-
ceptors considered to be involved with pubertal signaling such as
GABA receptor activity, glutamate receptor activity, follicular
stimulant hormone (FSH) receptor activity, and leptin receptor
activity. These pathway analyses also revealed enrichment for cell
growth, cell survival, and factors controlling cell cycle progression.
This last result supports a theory that implicates a role in puberty
for tumor-related genes, which are involved in control of cell
proliferation. Both literature-derived theory and these results help
to justify the large number of tumor-related genes found using the
AWM. These gene ontology and pathway analyses were useful to
mine the drivers of puberty from our AWM gene network.
To provide an in silico validation for gene–gene interactions

predicted by the AWM, we performed regulatory sequence anal-
ysis for predicted targets of selected key TFs.We could select from
34 TFs in the network, which had DNA sequence-binding motif
information available in the Genomatix suite of tools. These
34 TFs were BACH2, BSX, ELF2, ESRRG, ETS1, GLI3, GLIS3,
GRHL1, GRHL3, HIVEP1, HNF4A, IRX2, JARID2, LHX3,
LHX4, LHX8, LHX9, LMX1A, LMX1B, MEOX1, MYT1,
PAX2, PBX1, POU2F3, PPARG, PROP1, RORA, RREB1,
SATB1, SMAD4, SOX5, SRF, STAT6, and TLX1. From the 34,
PROP1, PPARG, and ESRRG were the top 3 TFs according to
their reported functional role in the context of reproduction and
their position in the gene network.
PROP1, PPARG, ESRRG, and their in silico validated target

genes are shown inFig. 2B.Detailed gene lists of the validated target
genes, which were 114 for PROP1, 22 for PPARG, and 76 for
ESRRG, are as follows: (i) List of genes, AWM-predicted partners,
with in silico binding site for ESRRG:UNC5A, SDCCAG1,GLIS1,
ACACB,ADAMTSL1,CCDC86,CD47,CDH4,CEP76,COL27A1,
ETS1, GTF3C5, HERC1, JMJD2B, SRP72, HORMAD2, MSH3,
SNCAIP, TRPM7, ACVR2A, ACVR2B, ADAMTS9, AGRN, AIG1,
ALK, ARHGAP21, BBX, CAPN3, CNO, DCLK2, DST, EFCAB5,
EPB41L3, EXOC1, FBXW8, FRMPD4, FRYL, FSHR, FYN, GA-
BRA1, GLT1D1, GRIN2B, HIVEP2, IKZF1, KCNH5, KLHL5,
KRT17, MAN2A1, MON2, NID2, NLN, PCSK6, PDLIM1, PGC,
PPP2R2C, RAB35, RAB8B, RALGDS, RNF115, RNF122, RTL1,
SCML4, SF3B3, SI, SLC13A1, SLC26A8, SPG7, STXBP1, TCF7,
TMEM163,TMEM2,TPM1,TYRP1,WDR66,WNT3A, andWNT6.
(ii) List of genes, AWM-predicted partners, with in silico binding
site for PROP1: ACACA, ACTR1A, ADAM12, ADAMTS3, ADD1,
AKAP10, AKAP9, AKR1C4, ALDH1A1, ALDH7A1, ANGEL2,
ANKRD35, ANKRD40, ARHGAP26, ARMC4, ASRGL1, AZI2,
BAZ2B, BCAS3, BRCA1, CACHD1, CCDC25, CDC20B, CDH7,
CDH8, CDKAL1, CHD2, CNTNAP2, CRLF3, CROP, CSMD1,
CSMD3,CSNK1E,DIO1,DNAH7,DYM, EDIL3, ENOX1, EPS15,
EXT1, FANCC, FBLN7, GARNL1, GBF1, GNL2, HEATR1,
HRNBP3, HTR4, HUNK, IPO8, JAKMIP1, KCNIP4, LARGE,
MAP2,MAPK10,MGAT4A,MSRA,NAALADL2,NBR1,NCOA2,
NEDD4, NFATC3, NFXL1, NLGN1, NLK, OXR1, PARD6G,
PCMTD1, PDE11A, PDE3A, PDLIM5, PHF17, PINX1, PKD2,
PLEKHA6, PLEKHA7, PPM1E,PSD3, PTGFRN, PTPRF,PTPRK,
PTPRM,QSER1,RANBP17,RASAL2,RGS6,RUNDC1, SCARB2,
SESTD1, SETD5, SFRS5, SH3TC2, SLFN14, SMG7, SOX5, SPA-
TA6, SPOCD1, SPOP, SPRY1, STIM2, SYNE1, TCERG1, TFB1M,
TJP1, TOX, TRIM23, TRIM3, TRIO, TRPS1, TYW1, UBASH3B,
UBE2K,USO1, andWBSCR17. (iii) List of genes, AWM-predicted
partners, with in silico binding site for PPARG: ARHGAP21,
BAALC, BTBD9, CHODL, COL4A3, GABRA2, GFM1, LBH,
MPPED2, MYOM2, OTOF, PDZD2, PEPD, PPP2R2C, PRLR,
SMC2, SPINK5, SPRY3, TYRP1, UFD1L,WDR70, and ZNF592.

Further evidence for the interactions predicted by the AWM
could be found for ESRRG and 19 of its partners. These partners
presented a promoter model derived from experimental data. A
promoter model consists of various individual regulatory ele-
ments such as TFBSs, repeats, hairpins, their strand orientation,
their sequential order, and their distance ranges. In our dataset of
76 target genes with ESSRG binding sites, promoter models were
found for 19 genes in tandem with other TFBSs including E-box
binding factors (EBOX), PAR/bZIP family (PARF), and verte-
brate steroidogenic factor (SF1F) (Table S3).

SI Discussion
The AWM is constructed with as many columns as related traits
and as many rows as genes selected from GWASs. In our GWAS,
the selected genes were the nearest from a selected SNP, which
was, in brief, a SNP with P < 0.05 in ≥3 related traits. The exact
selection criteria and thresholds proposed to include or exclude
SNPs from the AWM may vary according to each GWAS under
investigation. In our case study, on average, SNPs that were min-
imally significant (P < 0.05) for AGECL were also significant for
two more traits. Therefore the AWM selection was expanded by
adding all SNPs that were significant for any ≥3 traits. This crite-
rion forces the selection of all SNPs that exceed the minimum
significance for AGECL and, at the same time, controls bias by
selecting other SNPs with the same overall significance (P < 0.05
in ≥3 traits). Thus, none of the related traits are penalized. This is
important, considering the connectivity of theQTNpresented and
because this is the power of a network approach. Our approach is
such that up to 22 traits were considered and priority for SNP se-
lectionwas given to those SNPs associatedwith>1 trait. Of course,
the possibility of a SNP being significant for one trait and again for
another trait by chance alone is reduced, minimizing false dis-
covery rate issues of a relaxed threshold (P< 0.05). The number of
traits available as well as the strength of their joint correlation
structure will impact the power to detect the genetic drivers of
a complex trait. Also, we proposed a selection criterion focused on
gene-based SNPs (SNPs at least 2.5 kb close to a gene) for two
reasons: biological interpretation of results (gene-centered in-
ference) and overall SNP significance. SNPs with higher signifi-
cance across 22 traits tend to be close to a gene. SNPs located very
far (1.5 Mb) from genes were selected using the same criteria for
the genes that were close as an inbuilt control for the method (i.e.,
to avoid biasing toward cis-acting SNPs). Nonetheless, we ac-
knowledge an indisputable bias on the close, far, and very far
numbers of SNPs available to the study. This bias is imposed by the
heterogeneous nature of the genome with unevenly spaced genes
and that of theBovineSNP50BeadChipwith equally distant SNPs.
Once again, this will vary with the genome under investigation and
the genotyping platform used and, accordingly, it will require ad-
aptation of the method to a particular study. Finally, the GWAS
results might present some SNPs that are far from any annotated
gene but should be included in the AWM on account of overall
significance exceeding the selection threshold by 3-fold. In our
case study, we selected the SNPs that were far but presented sig-
nificant associations (P < 0.05) with ≥10 traits, rather than 3 traits
(the standard threshold for close SNPs). The inclusion of far and
very far SNPsmight allow the discovery of putative regulatory sites
by verifying the correlation between these SNPs and SNPs that are
close to genes. In conclusion, all of the steps for constructing an
AWM were carefully reasoned beforehand.
SNP effects can recover the correlation existing among traits.

However, thenegative or positive natureof a correlation estimated
by SNP effect must be viewed with caution. Each SNP effect has
a positive or negative signal attributed to it as an artifact of allele
order computed in the ASREML software (7). In the Permut
Matrix display of the AWM(distance on hierarchical tree cluster),
a strong negative correlation between traits or genes might be an
artifact from the signal of the SNP effect and it does not imply that
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the gene products are opposite in function. This signal issue is
minimized as it occurs evenly throughout the dataset and we ad-
dress this difficulty by using the network theory and building
a quantitative trait network from the AWM columns and a gene
network from the AWM rows.
Here we acknowledge a limitation of our methods. Given the

expected relevance of GnRH for the initiation of puberty, the
gene encoding the hormone (GNRH1) should be in our network.
However, the nearest SNP from GNRH1 is ≈12 kb from it, which
means it would classify as far by AWM criteria. Also, this SNP is
located within KCDT9 and so it would represent KCDT9 in the
AWM and not GNRH1. Therefore, there were no SNPs in
GNRH1 accessed by our GWAS effort and this “wet lab” limi-
tation is carried on to our AWM approach.
Despite the absence ofGNRH1, aspects of thebrain remodeling

that changes the input in GnRH neurons and triggers the increase
in GnRH release were captured. From our network view-
point, ESRRG targeting GABRA1 and NMDAR2B indicates
a link between estrogen pathways and GABA and glutamate sig-
naling. GABAergic and glutamatergic synaptic inputs are impor-
tantdriversofGnRHneuronremodeling,knowntoinfluenceageof
puberty (8, 9).
PPARGis an important regulator of energy balance.Among the

124AWM-predicted targets, 22presentedTFBSs forPPARG.The
presence of PPARG and its 23 targets in common with ESRRG in
our network is evidence for theAWMcapturing the knownbiology
behind puberty. There are demonstrated associations between
energybalance and reproduction (10, 11).The genesARHGAP21,
PPP2R2C, and TYRP1 are ESRRG and PPARG targets and
present binding sites for both. These three targets might be com-
ponents of the known metabolic link between estrogen-related
receptors and PPARG (12). Additionally, PPARG is a predicted
regulator of GABRA2 and so it could also be influencing GnRH
neurons remodeling.

SI Methods
Animals, Traits, and Genotypes. We used data from 866 cows rep-
resenting the genotyped subset of animals froma larger population
bred by the Cooperative Research Centre for Beef Genetic
Technologies (Beef CRC) previously described in detail (3, 4, 13–
15). Briefly, tropical composite animals are 50% taurine and 50%
tropically adapted breeds. The tropically adapted component was
either zebu (Brahman) or taurine adapted breeds, such as Afri-
cander, and theN’Damanonadapted componentwas from taurine
breeds, which originate from continental Europe and Britain.
In broad terms, there are only two seasons in the tropical re-

gions of Queensland, Australia: the wet and the dry. The wet sea-
son begins with the first monsoonal rains, usually around No-
vember, and ends around May (http://www.tropicalaustralia.com.
au/about_tropical_queensland/climate).
We consider a total of 22 traits from measurements taken on

three occasions: (i) at the end of the cows’ first wet season (T1),
when the mean age of animals was 18 mo; (ii) at the time of
observation of the first corpus luteum (CL), when the mean age
of the animals was 22 mos; and (iii) at the end of the cows’
second dry season (T2), when the mean age was 24 mo. A brief
description of the 22 traits along with a summary of descriptive
statistics for this population is provided in Table S4.
The cows’ first CL was detected through regular ovarian scans

(every 4–6 wk), performed when the heifers’ average body weight
reached ∼200 kg (or ∼12 mo of age). We consider the age at first
observed CL (AGECL) as a trait for age of puberty (16), although
we recognize that puberty is a developmental process that takes
place over a period. The presence (1) or absence (0) of a CL close
to thefirst day of joining, i.e., when the cows arefirst joined to bulls,
was also recorded (CLJOIN).When the first CLwas observed, live
weight (WTCL, kg) and s.c. fat depth at the rump or P8 site
(FATCL, mm) were measured. The P8 site is located over the

gluteus muscle on the rump, at the intersection of a line through
the ischiatic tuberosity parallel to the spine and its perpendicular
through the third sacral crest (17).
At T1 and T2, eight growth and growth-related traits were

measured, including live weight (WT, kg), hip height (HH, cm),
serumconcentrationof insulin-like growth factor I (IGF-I, ng/mL),
average daily weight gain (ADG, kg/d), body condition score (CS,
score 1–10), ultrasound scanned eye muscle, or longissimus dorsi,
area (SEMA, cm2), scanned fat depth at theP8 site (SP8,mm), and
scanned fat depthmeasured between the last two ribs (SRIB,mm).
A full description of these trait measurements is published else-
where (3, 4).
Heifers that reached puberty before the first mating season,

conceived during this season, and later calved had an additional
trait measured: postpartum anoestrus interval (PPAI). PPAI is
defined as the interval, in days, between calving and first CL ob-
served after calving. For this study, we also used a related binary
trait: PPAI with respect to weaning time (PW), for cows that either
had a CL (score 0) or did not have a CL (score 1) recorded before
weaning of their calves.
LD between all possible SNP pairs was calculated using two

metrics: D′ and R2. For a review on these metrics refer to ref. 18.
SNP effects were calculated via single-trait–single-SNP asso-

ciation analysis. The additive effect of a SNP on each trait, or the
allele substitution effect, was calculated by regression analysis,
with values in the covariate coded as zero, one, or two copies of
the variant allele, and after fitting the following mixed model,

yi;j  ¼  Xβ þ  Zu þ  sj;k þ   ei;j; [S1]

with terms defined as follows: yi,j represents the vector of ob-
servations from the ith cow at the jth trait; X is the incidence
matrix relating fixed effects in β with observation in yi,j; Z is the
incidence matrix relating random additive polygenic effects in u
with observation in yi,j; sj,k represents the additive association of
the kth SNP on the jth trait; and ei,j is the vector of random
residual effects.
Fixed effects included in β were contemporary groups (i.e.,

group of cows raised together), herd of origin, sex of calf,
month of calving, and sire of calf. Polygenic effects were in-
cluded to reduce the effect of family structure on family-specific
alleles (19).
Standard stochastic assumptions were applied to the random

effects in model [S1], which were assumed to be distributed as
multivariate normal with zero mean and variance, as

V
�
u
e

�
  ¼  

�
Aσ2u 0
0 Iσ2e

�
; [S2]

where A is the numerator relationship matrix across all cows and
derived from the pedigree structure (20), σ2u is the additive
polygenic component of variance, I is an identity matrix, and σ2e
is the residual component of variance.
Solutions to the effects in model [S1] as well as variance com-

ponents [Eq. S2] were estimated using the ASREML software
(http://www.vsni.co.uk/software/asreml/) (7). The log inverse of
the P value of each SNP, for AGECL, was plotted according to
genomic positions.

Association Weight Matrix (AWM). Constructing an AWM starts
with the selection of relevant SNPs from a GWAS to represent
genes. A diagrammatic representation of the selection criteria is
shown in Fig. S1. In detail, these criteria were applied in a se-
quential fashion as follows.
First, the allele substitution effect of the ith SNP on the jth trait

was z-score standardized to allow comparison across traits as

Fortes et al. www.pnas.org/cgi/content/short/1002044107 3 of 11

http://www.tropicalaustralia.com.au/about_tropical_queensland/climate
http://www.tropicalaustralia.com.au/about_tropical_queensland/climate
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002044107/-/DCSupplemental/pnas.201002044SI.pdf?targetid=nameddest=ST4
http://www.vsni.co.uk/software/asreml/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002044107/-/DCSupplemental/pnas.201002044SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/content/short/1002044107


zij  ¼  
xij −�xj
sj

; [S3]

where zij is the standardized effect of the ith SNP on the jth
trait, xij is the effect of the ith SNP on the jth trait in the original
units, �xj is the mean of xij over all SNPs, and sj is the SD of xij
over all SNPs.
Second, regardless of their genomic position, SNPs with P <

0.05 in ≥10 traits were included in the AWM. These SNPs
represent the top 0.2% SNPs of our GWAS (Fig. S2), which
were associated at the 0.05 level with 45% of the traits. Selecting
for ≥10 traits means these top SNPs were associated either di-
rectly with AGECL or at least with one correlated trait (mini-
mum R = 0.28).
Third, we classified each SNP as close, far, very far, or unmapped

according to its mapped distance from the nearest annotated gene
(BTAU4.0 assembly, ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/).
SNPs considered close were located at≤2.5 kb from the nearest gene
(either 5′ or 3′). SNPs considered very far were≥1.5Mb distant from
the nearest gene. Accordingly, any SNP-to-gene distance that fell be-
tween close and very far was annotated as far.
The remaining far or unmapped SNPs were discarded from

further analysis and we continued to select from the close and very
far groups only. The very far group is intended as an inbuilt control
for the AWM associations. As puberty was our primary trait, all
SNPswithP<0.05 forAGECLwere selected.Then, andgiven that
on average, SNPs that were significant for AGECL were also sig-
nificant for two more traits, the AWM selection was expanded by
adding all SNPs that were significant for any three or more traits.
Finally, the marker density of the BovineSNP50 resulted in

some genes being represented in the AWM by more than one
SNP. In these cases, the SNP with a P < 0.05 in the largest
number of traits was chosen to represent that gene. If still more
than one SNP in the same gene had a significant P value in the
same number of traits, the selection was based on the lower sum
of P values.
An AWM was constructed with as many rows as selected SNPs

(according to Fig. S1) and as many columns as traits. The rows
are identified as genes or SNPs according to each SNP location.
The SNPs selected from the close group were identified in the
AWM by the official symbol of the nearest gene. The SNPs se-
lected from the far, very far, or unmapped groups were desig-
nated by the SNP name (Illumina code). Each {i, j} cell value in
the AWM corresponds to the z-score normalized additive effect
of the ith SNP on the jth trait. The AWM approach explores trait
correlations columnwise and gene correlations rowwise.
Pearson correlations between AGECL and the other 21 traits

were calculated using the SNP effect values. We call this pro-
cedure SNP-based correlations and they were compared with
the genetic correlations, estimated via pedigree-based restricted
maximum likelihood (REML), established for the same pop-

ulation previously (3, 4). Genetic correlations for PPAI and PW
were not available for comparison with SNP-based correlations.
Furthermore, we used the previous genetic correlations across

traits (3, 4) and the SNP-based correlations to form QTNs for
puberty. In the genetic QTN each of 19 traits is a node and each
significant genetic correlation (r2 > 2 × SD) is represented by an
edge, which is a line linking the correlated traits. In the AWM-
derived QTN all 22 traits were considered. Both QTNs were
analyzed with MCODE (6) for exploring network density and
clustering of traits.
Rowwise AWM explores the correlations between SNP effects

to predict gene interactions. We studied the predicted gene in-
teraction using a combination of hierarchical clustering, weighted
gene network, and pathway analyses to identify genetic drivers
of puberty.
Visualizations of AWM and hierarchical clustering analyses for

rows and columns were performed using the PermutMatrix soft-
ware (21). The significant correlations between rows were identi-
fied with the PCIT algorithm (22) and reported as gene–gene or
gene–SNP interactions in a network. Cytoscape (23) was used to
visualize these networks, where genes and SNPs were nodes and
significant correlations were edges, linking the genes. The BiNGO
plug-in (24) of Cytoscape was used to test for gene ontology (GO
term) enrichment in the network. BiNGOwas used in the GO-full
mode, retrieving National Center for Biotechnology Information
annotations (http://www.ncbi.nlm.nih.gov/Ftp/) for biological pro-
cesses, molecular functions, and cellular components, all of which
were specific for B. taurus.
Genes included in the AWM were further analyzed using (i)

DAVID (25, 26) to review knownpathways and (ii)GOrilla (27) to
infer GO term enrichment for biological processes in a tree-based
structure. When applying GOrilla, genes in the AWM were con-
trasted against a background list that contained all genes located
close to a SNP in ourGWAS.Thus, the background list considered
all genes that could have been selected from our GWAS. When
using DAVID,Homo sapiens full genome annotation was used as
a background list. Using different background lists, H. sapiens in
DAVID and B. taurus in BiNGO, allows input from different da-
tabases, not limiting the retrieval of biological information.
To provide an in silico validation for gene–gene interactions

predicted by the AWM, we performed regulatory sequence anal-
ysis for predicted targets of selected key TFs. Among the 3,159
genes (or SNPs) in theAWM, there were 236 TFs according to the
original census of 1,391 TFs (28). Of these 236 TFs, 34 had DNA
sequence binding motifs information available in the Genomatix
suite of tools. Finally, this list of 34 TFs was further scrutinized on
a 2-fold basis: their reported functional role in the context of re-
production and their position in the gene network (i.e., separated
enough to guarantee a maximum coverage of the landscape
spanned by the network). On the basis of these criteria, three TFs
(PROP1, PPARG, and ESRRG)were deemed to be “key” and we
focused on them.
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Fig. S1. Method for selecting SNPs from GWASs to perform the AWM. SNPs were selected from the genome-wide study using both their distance to the
nearest gene and their overall significance level (smallest P value) across 22 traits. SNPs were considered close to a gene (within 2,500 bp up or downstream), far
(distance >2,500 bp but <1.5 Mb), very far (distance >1.5 Mb), or unmapped.
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Fig. S2. Significance vs. SNP effect and gene distance for AGECL and across all traits. Clockwise from Upper Left the four graphs represent the −log(P) for
AGECL of each SNP plotted against its distance to the nearest gene, the average −log(P) across 22 traits of each SNP plotted against its distance to the nearest
gene, the average −log(P) across 22 traits of each SNP plotted against its average z-normalized effect, and the −log(P) for AGECL of each SNP plotted against its
effect in days on AGECL. Represented in green are all SNPs, in yellow are the SNPs selected for the AWM, and in red are the top AWM SNPs.
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Fig. S3. Quantitative trait networks for puberty-related traits based on REML and SNP effect correlations. Clockwise starting from Upper Left: (A) subset of
the association weight matrix; (B) hierarchical tree cluster for the 22 traits as computed by Permut Matrix; (C) quantitative trait network analyzed by MCODE
representing significant SNP effect correlations between 22 traits, as estimated by AWM-PCIT analyses; and (D) quantitative trait network analyzed by MCODE
representing the significant genetic correlations for AGECL and 18 other traits, adapted from previously published data (4, 28). In both QTNs, the color code
represents MCODE scores related to network density, ranging from green (low density) to red (high density). Density is an expression of network connectivity.
Circles, diamonds, and squares represent the clustering status of a trait: Circles are clustered with other traits, diamonds are unclustered, and squares are
a cluster seed (MCODE analyses).

Fig. S4. Number of SNPs analyzed influences the similarity between genetic and SNP effect-driven trait correlations. R2 (comparison between SNP effect and
genetic correlations) is plotted against the number of SNPs used. The correlation of 0.86 between the number of SNPs used and the similarity (R2) with genetic
correlations is explained linearly by the equation in the Inset.
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Fig. S5. Comparison of GOrilla results between AWM genes and genes associated only with AGECL. GOrilla results were obtained using the biological process
function and two unranked gene lists for analyses: (A) AWM genes tested against all GWAS genes (background list) and (B) all genes that were significant for
AGECL alone (P < 0.05) against all GWAS genes (background list). In the two flow charts, the stronger the color is for each GO term box, the higher its sig-
nificance. The A flowchart with a number of significant results was obtained when comparing AWM genes against the background list. The B flowchart with
only one significant GO term enrichment (phospholipid transport) was the result obtained for AGECL alone. The GO terms found to be significantly enriched in
the AWM analysis would have been all missed in the AGECL solo analysis. The list of GO terms shown represents the GO terms that are most relevant, i.e., the
ones that were farthest down in the GOrilla hierarchy.
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Table S2. Percentage of validated gene–gene interactions for both the AWM gene network and the random gene network: regulatory
sequence analysis completed for the predicted targets of ESRRG, PROP1, and PPARG

AWM gene network Random gene network

TF Predicted targets Validated targets % validated Predicted targets Validated targets % validated

ESRRG 211 76 36.02 41 9 21.95
PROP1 320 114 35.63 57 11 19.30
PPARG 124 22 17.74 50 0 0.00

The random gene network predicted a significantly (P < 0.0001) smaller proportion of partners that had a binding site when compared with the AWM gene
network. The AWM network presented more validated gene–gene interactions.

Table S3. List of genes that are AWM-predicted partners of ESRRG with in silico predicted models

Target TFBS ESRRG promoter model

UNC5A 5 EBOX_EREF_01andEREF_SF1F_01
SDCCAG1 4 EREF_AP1F_01
GLIS1 3 EREF_P53F_01,EREF_SF1F_01
ACACB 4 EREF_SF1F_01
ADAMTSL1 3 EREF_SF1F_01
CCDC86 4 EREF_SF1F_01
CD47 3 EREF_SF1F_01
CDH4 5 EREF_SF1F_01
CEP76 4 EREF_SF1F_01
COL27A1 3 EREF_SF1F_01
ETS1 3 EREF_SF1F_01
GTF3C5 1 EREF_SF1F_01
HERC1 1 EREF_SF1F_01
JMJD2B 2 EREF_SF1F_01
SRP72 3 EREF_SF1F_01
HORMAD2 2 PARF_EREF_01
MSH3 1 PARF_EREF_01
SNCAIP 1 PARF_EREF_01
TRPM7 4 PARF_EREF_01
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Table S4. Definitions and descriptive statistics for the 22 traits under investigation

Phenotype Units Description Average SD

CL
CLJOIN 0 or 1 Presence of corpus luteum when bulls were placed

in same paddock as heifers
0.63 0.48

AGECL d Age at first detected CL 652.57 117.67
FATCL mm Scanned P8 fat at first CL 2.99 1.63
WTCL kg Weight at first CL 329.61 45.85

T1
ADG kg/d Average daily gain in live weight 0.58 0.14
CS Score 1–10 Condition score 7.45 0.91
SEMA cm2 Scanned eye muscle area 45.82 6.92
HH cm Hip height 125.04 6.02
IGF kg/mL Serum IGF level 225.14 76.00
SP8 mm Scanned s.c. P8 fat 3.14 1.77
SRIB mm Scanned rib fat 2.05 1.15
WT kg Live weight 313.65 41.05

T2
ADG kg/d Average daily gain in live weight 0.26 0.17
CS score 1–10 Condition score 7.01 1.09
SEMA cm2 Scanned eye muscle area 48.90 6.60
HH cm Hip height 130.16 4.79
IGF ng/mL Serum IGF level 239.60 71.62
SP8 mm Scanned s.c. P8 fat 2.93 1.67
SRIB mm Scanned rib fat 1.98 1.07
WT kg Live weight 354.30 38.95

PPAI
PPAI d Postpartum anoestrus interval following

the first calving event
141.47 108.57

PW 0 or 1 CL before (0) or after (1) weaning a calf, following
the first calving event

0.82 0.39
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