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Quality Control. The measured intensity Bi is, in principle, uncor-
related with the intensity of (i) feature regions, (ii) neighboring
nonfeature regions, and (iii) nonfeature regions in the corre-
sponding spot for the alternate dye system. In the absence of de-
fects, intensities of the nonfeature regions represent an ensemble
of independent realizations of the same process. Uncharacteristic
values of nonfeature intensity necessarily indicate idiosyncratic
characteristics of the spot that may mask the intended measure-
ment. These include, but are not limited to, scratches and parti-
culates (1).

Specifically, the fluorescence at the nonfeature region of a spot
is expected to be near a characteristic value for the chip. We ex-
pect the largest contribution to the fluctuations of Bi to be a result
of noise from the detector system, as discussed above. Let B0

i be
the fluorescence at each nonfeature region from optical back-
ground. This quantity is identical for spots on the chip without
problems; that is, B0

i ¼ B0. Photomultiplication of this signal is
characterized by a dye-specific gain Gnf (which may be distinct
from G) and a characteristic error. Following the assumptions
of Eq. 9, the expression for the observed fluorescence at nonfea-
ture region is Bi ¼ B0Gnfeε

nf , where εnf is a normally distributed
variate with zero mean. Thus, Bi will be a log-normal variate.

We suspected, based on visual inspection of microarray
images, that surface flaws are pervasive in publicly available data,
and use this model of nonfeature intensity to screen for flawed
spots. Because the source of these defects is often not conclu-
sively known, and because their effect on spot feature intensities
is unknown, it is prudent to exclude these spots from analysis. To
this end, we identify spots that do not follow the above model and
are, therefore, subject to exogenous factors such as scratches and
particulates.

One expects a physical defect on a chip to affect the nonfeature
intensities in both channels of a two-color microarray, and the
chance that both channels have extreme nonfeature intensities
is remote—assuming the spot has no defect. We take advantage
of this to build a statistic for assessing the irregularity of a spot,
Ii ¼ z1i z

2
i , where z1i and z2i are the z scores of logB1

i and logB2
i ,

the nonfeature intensities recorded in the two channels, respec-
tively (Fig. 1). Extreme values of Ii are rare in the absence of sur-
face flaws. Spots for which jIij > 3 have less than a 2% probability
of occurring by chance and are likely to be defective. More
sophisticated filters could incorporate spatial correlation of
extreme values into a metric of spot quality, resulting in a more
specific metric.

PCR-Based Amplification. An alternative amplification procedure
to the T7 expression system is PCR, a branching process in which
stages are separated discretely. The fundamental difference be-
tween sample amplification by T7 expression and PCR is that the
latter is a branching process in which products become reactants
in successive rounds, while T7 transcripts do not. Each step in
PCR amplification process can be modeled as a multiplicative
growth process, yielding

nlþ1
i ¼nlið2−δþϵpilÞ: [S1]

For simplicity, we assume that ϵpil is a Gaussian variate with mean
zero and standard deviation σp, whereas δ ≪ 1. The parameters δ
and σp are related to the probability of a duplication event for a
species in a single round of the PCR branching process. If the
PCR amplification involves k steps, then the number of copies
in the sample will be

nPCRi ¼Ei

Yk
l¼1

ð2−δþϵpilÞ; [S2]

¼Ei

Yk
l¼1

ð2−δÞ
�
1þ ϵpil

2−δ

�
; [S3]

¼Eið2−δÞkexp
�
∑
k

j¼1

ϵpil
ð2−δÞ

�
; [S4]

¼EiApe
νpi ; [S5]

where, by the conditions of the central limit theorem, νpi is a
Gaussian variate with mean zero.

Distribution of Fluorescence Intensities.The fluctuations arising in a
microarray experiment are nontrivial, but as we have shown, can
be modeled explicitly. A successful model of microarray data
should, among other things, describe the distribution of Fi mea-
sured in a single experiment. Assessment of quality of fit (Fig. 2)
between the two discussed models and the observed distribution
of Fi requires an expression for the probability density predicted
by both models. Here, we derive an expression for the distribution
of observed fluorescence intensities from a single microarray
experiment for both the physically grounded model and the stan-
dard statistical model. Generally, we derive pðFijRðθRÞ;MEðθEÞÞ,
an expression for the probability density of a value Fi, which
depends on a model for the response function RðθRÞ and on a
model for the expression levels in the sample MEðθEÞ. Here,
we define MEðθEÞ by Eq. 10.

Physically Grounded Model. The probability density functions for
the Gaussian stochastic variables νspi and νnspi can be written as

ϕspðνspi Þ¼ϕðνspi jσspÞ¼
1

σsp
ffiffiffiffiffi
2π

p e−
1
2
ðν

sp
i
σspÞ2 ;

ϕnspðνnspi Þ¼ϕðνnspi jσnspÞ¼ 1

σnsp
ffiffiffiffiffi
2π

p e−
1
2ð

ν
nsp
i

σnspÞ2 ; [S6]

where ϕðxjσÞ denotes the probability density function of a Gaus-
sian variate with zero mean and standard deviation σ.

Let us now consider the distribution of expression levels in
a sample. Generally, a model MEðθEÞ for expression levels spe-
cifies a probability density pðEijMEðθEÞÞ of a value Ei that will
depend on the set of parameters θE. Following Eq. 9, the prob-
ability of a spot having fluorescence level Fi is

pðFijRphysðθRÞ;MEðθEÞÞ¼
Z

∞

0

dEi

Z
∞

−∞
dνspi

Z
∞

−∞
dνnspi

×pðFi;Ei;ν
sp
i ;ν

nsp
i jRphysðθRÞ;MEðθEÞÞ;

[S7]

where pðFijRphysðθRÞ;MEðθEÞÞ denotes the conditional probabil-
ity of observing Fi, given our physically grounded model
RphysðθRÞ with parameters θR ¼ ðσsp;σnsp;A;UÞ. Because in our
model Ei, ν

sp
i , and νnspi are independent, we can marginalize over

their distributions, obtaining
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Following Eq. 9, we can write,

pðFijRphysðθRÞ;MEðθEÞÞ¼
Z

∞

−∞
dνspi

Z
∞

−∞
dνnspi

Z
∞

0

dEi

×ϕspðνspi Þϕnspðνnspi ÞpðEijMEðθEÞÞ
×δ½EiAe

νspi −ðFi−Ueν
nsp
i Þ�; [S9]

where δ½•� is the Dirac delta function. Here we make the substi-
tution γ ¼ EiAe

νspi , which allows us to write the delta function as
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Because the delta function in Eq. S10 is single-valued, the inte-
gral over this product is only nonzero when γ ¼ EiAe

νspi ¼
Fi − Ueν

nsp
i , allowing the substitution,
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Following Eq. 10, we complete the derivation by incorporating
MEðθEÞ,
pðFijRphysðθRÞ;MPLðαÞÞ
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Standard statistical model. The standard statistical model (Eq. 2)
involves two measured quantities at each spot, Fi and Bi. Here we
derive an expression for the difference between these variates,

pðF0
ijRstatðθRÞ;MEðθEÞÞ¼

Z
∞

−∞
dνspi

Z
∞

0

dEi

×pðF0
i;Ei;ν
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i jRstatðθRÞ;MEðθEÞÞ;

[S13]

where F0
i ¼ Fi − Bi. Marginalizing over Ei and νspi , as above, we

obtain,
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Incorporating the expression from Eq. 2, we can write,
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Again, we make the substitution γ ¼ EiAe
νspi , allowing us to re-

write the integrals,
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Integrating over this delta function, as above, yields

pðF0
ijRstatðθRÞ;MEðθEÞÞ¼

Z
∞

−∞
dνspi

1

Aeν
sp
i

ϕspðνspi Þp
�

F0
i

Aeν
sp
i

jMEðθEÞ
�
;

[S17]
and adding the expression from Eq. 10, we can write,
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Heuristics for estimating model parameters. Our physically
grounded model is simple enough that one can obtain maxi-
mum-likelihood estimates of A, U, σsp, σnsp, and α by the method
of steepest descent. However, because of the large number of
data in microarray experiments, this is computationally expen-
sive. Thus, in general, we turn to heuristics to more quickly
estimate model parameters.

If one knew which genes were unexpressed, contributions from
nonspecific binding could be estimated directly. Unfortunately,
we have little knowledge about the set of unexpressed genes a
priori, but we can infer them from pðFÞ. Because they are con-
ditionally expressed, tissue specific, or cell-cycle dependent, a sig-
nificant fraction of the genes in a cell are not being expressed at
any particular time—that is, Ei ¼ 0. We exploit this fact to esti-
mate U. For these genes, Eq. 9 reduces to

FEi¼0
i ¼Ueν

nsp
i : [S19]

The distribution of observed feature intensities must be the sum
of discrete valued mRNA counts, fEig, subject to the noises dis-
cussed previously (Eq. 9). We show a cartoon of this in Fig. S1.

Spots with very low fluorescence have a high likelihood of be-
longing to the set FEi¼0

i . Note that, from Eq. S19, the values FEi¼0
i

are log-normally distributed. We have developed a heuristic for
identifying the largest set of Fi that is consistent with this log-
normal distribution as a means of estimating U and σnsp.

We define a critical feature intensity Fc such that there is a high
probability that features below this threshold belong to the set of
unexpressed genes, fFcjFi < Fc ∈ FE¼0

i g. From this set, we can
estimate U and σnsp by fitting it to a right-truncated Gaussian
distribution,

pðlogFijFi<FcÞ¼
ϕ
�
logFi−logÛ

σ̂nsp

�

Φ
�
logFc−logÛ

σ̂nsp

�; [S20]

where ϕ and Φ are the probability density function and cumula-
tive distribution functions for a Gaussian distribution, respec-
tively.

Extraneous Quality Issues.Our model is inherently flexible to many
chip-based technologies. Nevertheless, its scope here is limited to
describing data for which consequences of amplification, hybridi-
zation, and detection determine the feature fluorescence in the
manner we have described. A number of other effects, due to
technical limitations or flawed equipment or protocol, have been
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previously shown to affect results. Care must be taken to avoid or
(if possible) correct these sources of bias, lest they influence the
predictions of our physically grounded model. Here we discuss
how some of these common biases can be identified.

Sequence-specific dye bias.Factors that affect data in a spot-depen-
dent manner are particularly dangerous to microarray data (2–4).
Because changes in expression level are sequence/gene- and dye/
condition-dependent effects, these are difficult to distinguish
from sequence-specific dye bias, in which a differential fluores-
cence is observed at a spot in the absence of expression change.
Furthermore, in many cases, the extent of this bias has been ob-
served to vary between experiments performed using the same
system, making generalization difficult (4). It has recently been
suggested that sequence-specific dye bias results from differences
in the extent of label incorporation (4), indicating that many of
these effects can be ameliorated through optimization of labeling
protocols.

Detector saturation. Saturation during detection is a natural chal-
lenge when measuring fluorescences that span many orders of
magnitude and has been shown to be widespread in microarray
data (5–9). In many cases, affected spots are easily identified by
truncated intensity values in one or both channels. However,
saturation near detector limits may result in nonlinear gamma
saturation (5) that is more difficult to identify. A hallmark of this
saturation is a dependence of R̂ on Ê for spots with large Ê.
Avoiding detector saturation requires careful calibration of the
detector during data acquisition. Employing multiple scans of
the chip, at varying sensitivities, allows saturation to be addressed
during analysis (5).

Sensitivity of nonspecific binding parameters. Small variations in the
estimates of U, the characteristic nonspecific noise contribution,
may result in changes in the predictions of up- and down-regu-
lated genes, particularly for weakly expressed genes. If the model
disagrees with the data—that is, if there are processes at work
other than amplification, hybridization, and detection as we have
described in the text—the extent of nonspecific binding will be
difficult to estimate. We have found the distribution of feature
fluorescence intensities predicted by the model to provide a
prudent assessment of the fit of the model to the data.

Spot quality. Scratches, particulates, or manufacturing flaws may
influence spot feature intensities in an idiosyncratic way. We have
described a procedure to identify spots influenced by these and
other exogenous factors. Parameter estimates for our model are,
in principle, sensitive to these irregular spots, and they should be
removed.

Similarly, we have observed examples of severe spatial corre-
lation in nonfeature intensities on some chips. This can occur
such that the distribution of nonfeature intensities is well
behaved—that is, that nonfeature intensities are log-normally dis-
tributed. The extent to which this “drift” affects feature intensi-
ties is difficult to determine, and special care must be taken when
fitting model parameters for these chips. We recommend fitting
parameters for different regions of the chip separately.

Microarray Quality Control Project Data. We next investigate the
implications of our model in the context of published data from
the Microarray Quality Control Project (10). This study used
commercially available Stratagene Universal Human Reference
and Ambion Human Brain Reference RNA samples to assess
technical concerns regarding the reproducibility of microarray re-
sults. These two samples were used by three different labs in four
different array experiments (Fig. 4A and Fig. S4), each performed
five times. We denote the vector of expression levels over all

genes on a chip for these samples Relr , where e ∈ fA;B;C;Dg is
the experiment type, l ∈ f1;2;3g is the lab index, and
r ∈ f1;…;5g is the replicate index.

In two of these experiments (A and B), there is no difference in
the underlying expression levels for the two samples on the chip;
that is RA··

i ¼ RB··
i ¼ 0 for all spots on the chip. Deviations of the

best estimate R̂ predicted by a model from the expected value
R̂ ¼ ð0;…;0Þ are the result of our inability to precisely estimate
stochastic fluctuations in the experiment. For the other two
experiments (C and D), the two samples hybridized to the chip
are different. We thus expect that RC·· ¼ RD··. Furthermore,
we expect many components of R to be significantly different
from zero.

For experiments A and B, there is no difference in expression
between the two samples (RA··

i ¼ RB··
i ¼ 1); therefore R̂A and R̂B

are the exact residuals of an estimation procedure. For a well-
posed estimation procedure, the residuals are independent and
uncorrelated across spots on a chip and across replicated experi-
ments. Thus, the linear correlation of R̂elr and R̂e0 l0r0 is approxi-
mately zero when e;e0 ∈ fA;Bg and ðe;l;rÞ ≠ ðe0;l0;r0Þ—the
correlation is 1 when ðe;l;rÞ ¼ ðe0;l0;r0Þ because these are the same
array. An idealization of this expected behavior is depicted gra-
phically in the correlation matrix in Fig. 4A.

Experiments C and D are designed to measure the differences
in expression levels in the two samples. We expect R̂e·· ≈ Re··,
where e ∈ fC;Dg. Deviations of R̂e·· from Re·· are of the same or-
der and have the same properties discussed above for the resi-
duals of experiments A and B. It follows then that the
correlation of R̂elr and R̂e0 l0r0 is large when e;e0 ∈ fC;Dg and
ðe;l;rÞ ≠ ðe0;l0;r0Þ.

Biases in MAQC Data. Spatial biases. Following recent reports of
sequence-specific dye bias (2, 3, 11), we investigated whether es-
timates of Ri depend on i. The MAQC project provided an ideal
opportunity to evaluate this effect and, if necessary, to identify
probe sequences for which the effect is prominent. We calculated
R for protocols A and B for lab 1 and used these to screen for
spots that may be affected by this bias. Because these protocols
are not measuring any change in expression, components of R
should be zero-centered Gaussian variates. Following from the
central limit theorem, the distribution of the sum of a sample
of 10 instances (chips GSM128989–GSM128998) of R0

i is also
a zero-centered Gaussian variable. Indeed, we find this to be true
in general, but that this distribution has heavier tails than one
would expect. Because our model does not address this problem
directly, we restricted the set of spots used to compute these cor-
relations using a Monte Carlo approach. From the 10 sampled
chips, we permuted the spot assignments of the Ri values, thereby
removing any sequence dependence of the estimates. Then we
calculated the mean value hRshuf

i i across the 10 chips. The result-
ing distribution of the means of hRshuf

i i is equivalent to the
distribution of the actual hRii if there exists no sequence-specific
dye bias. As such, we restricted the set of spots we used for the
correlation matrices to those with hRii falling within the 95%
confidence interval of the distribution of hRshuf

i i.
By plotting the dependence of spot nonfeature fluorescent in-

tensity on chip position, we found substantial spatial trending in
the chips in this study (Fig. S2). Because the specific mechanism
of this trend is difficult to determine, and because it is difficult to
estimate its effect on Fi, we determined parameters separately for
each quadrant of the chips.

Intensity-dependent dye bias. Plots of pðlogE1E2;RÞ, often called
MA plots, are often considered during microarray experiments.
When they exist, nonlinearities are typically approached in one
of two ways: (i) thresholding of weakly expressed genes and
(ii) nonlinear detrending. Next, we discuss both of these ap-
proaches.
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Most microarray feature extraction software packages flag
spots as “present” or “absent,” depending on how close the spot
feature intensity is to the spot nonfeature intensity. This designa-
tion, which is consistent with the classical concept of the spot non-
feature intensity as a measure of additive background, suggests
whether a signal is present in sufficient quantity that it is recog-
nizable over the local additive noise. Absent flags at a spot are
used to demark low-quality estimates of expression change. Re-
cognizing that in practice, these spots are often excluded from
analysis, we computed correlation matrices as in Fig. S3, exclud-
ing spots marked with absent flags (Fig. S4). It is important to
note that, typically, a substantial fraction of spots are marked
as such—43% of the spots in the MAQC arrays. If this method
is used to filter estimates, nearly half of the potential information
obtained in the experiment is lost.

Locally Weighted Regression (LOWESS) is a scatterplot
smoothing algorithm commonly used to detrend intensity-depen-
dent dye bias in microarray data (12). Indeed, this procedure does

improve Ri estimates, but at the cost of mechanistic interpreta-
tion and perhaps overfitting the data (Fig. S3). Furthermore,
LOWESS detrending inappropriately adjusts saturated data,
hiding these effects from the user and potentially misconstruing
the results.

Analysis of Resveratrol Data. Because the experimental design was
slightly unbalanced due to poor quality RNA for one of the HCR
chips, we removed one SD chip and one HC chip from our ana-
lysis (13). Incidentally, we suspect that the database labeling for
one SD chip (GSM140958) and one HC chip (GSM140962) may
have been inadvertently switched (Fig. S6). As such, we removed
these from further analysis.

We did not find spatial correlations for these chips, as we did
with the MAQC chips, so this correction was unnecessary. How-
ever, we found that sequence-specific dye bias was prevalent with
these chips, so we eliminated affected spots as described above
using the SD chips as training.
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Fig. S1. The microarray experiment is a process that converts gene expression levels to observed feature intensities. Observed intensities Fi are a function of Ei

and stochastic noises that convolute the readout. We observe the black distribution fFg but wish to estimate fEig (the points at left). To do this one must
determine the parameters that define these stochastic fluctuations.
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Fig. S2. Spatial bias in MAQC data. (A) The nonfeature intensity (standard score, znf1i ) has a strong dependence on the position of the spot in the chip. (B) The
distributions pðFiÞ are drastically different for the four quadrants (I–IV) of the chip. (B Inset) Log-linear representation of the distributions. To address this
problem, we determine model parameters for each quadrant separately.

Fig. S3. Correlation of Ri in the MAQC project (Fig. 4). Pairwise correlations of R̂i estimates derived from the statistical model, the MAQC model (10), the
lowess-corrected MAQC model, and our physically grounded model. Our model imparts a much higher signal-to-noise ratio than the other models.
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Fig. S4. A common strategy for improving expression estimate correlations for statistical models. Correlation matrix for MAQC arrays (see Fig. 4) using only
spots flagged present. This approach reduces the information extracted from the array experiment by nearly a factor of 2.
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Fig. S5. For any level of expression, Ei , one can derive the corresponding distribution pðR0jEiÞ to accompany the null model that there is no expression change.
Imparting significance criteria to this distribution for each gene allows one to establish the significance of any observed expression change (Fig. 5). Traditionally,
this exercise has required arbitrary thresholding in the absence of a model-based expression for how experimental fluctuations vary with E.

Fig. S6. There exists a possibility that the database labels on two of the chips (GSM140958 and GSM140962) for the Baur data (13) may have been inad-
vertently switched in the Gene Expression Omnibus database. Note that chip GSM140958 is muchmore similar the HC chips than to the SD chips. Since we could
not unambiguously attribute these chips to either class, and because their removal balances the experimental design, we removed them from downstream
analysis.
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Fig. S7. Correlation matrices for Resveratrol chips (Fig. 6B). We computed the pairwise correlation of R̂ for samples derived from animals fed standard diet
(SD), high-calorie diet (HC), and high-calorie diet supplemented with resveratrol (HCR) for four different models. The physically grounded model yields much
higher statistical power, as evidenced by the high correlation of HC chips, relative to the correlations of SD and HCR chips.
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