Supporting Information

Zhu et al. 10.1073/pnas.1002828107

Fig. S1. Partial suppression of *suppressor of npr1-1*, *constitutive 1 (snc1)* mutant phenotypes by *modifier of snc1, 10 (mos10)/topless-related 1 (tpr1). (A)* Morphology of 4-wk-old Columbia (Col-0) wild-type, *snc1*, and *snc1-mos10* plants. (*B*) Total salicylic acid (SA) levels in wild-type, *snc1*, and *snc1-mos10* plants. Soil-grown 4-wk-old plants were collected for SA extraction. SA levels were measured with HPLC as previously described (1). Values are averages of four replicates \pm SD. (C) Growth of *Hyaloperonospora arabidopsidis (H. a.*) Noco2 on wild-type, *snc1*, and *snc1-mos10*. Two-wk-old seedlings were sprayed with *H. a.* Noco2 at a concentration of 50,000 spores/mL water. Infection was scored 7 d after inoculation by counting the number of spores per gram of leaf fresh weight (fw). Error bars represent SD from three measurements. (*D*) Real-time RT-PCR analysis of *SNC1* expression in wild-type, *snc1*, and *snc1-mos10* plants. (*E*) Sequences between nucleotides 54410 and 60349 on BAC clone T21F11 (AC018849.2) were deleted in *mos10*.

1. Li X, Zhang Y, Clarke JD, Li Y, Dong X (1999) Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of *npr1-1*. Cell 98: 329–339.

Fig. S2. Enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4 (PAD4) are required for activation of defense responses mediated by Toplessrelated 1 (TPR1) overexpression. (A) TPR1-HA protein levels in TPR1-HA transgenic lines #3 and #11. Western blot analysis was carried out on total protein extracts from the TPR1-HA transgenic lines using an HA antibody. Equal loading was monitored with a Bradford assay. (B) Suppression of the dwarfism of TPR1-HA overexpression line #3 by eds1-2 and pad4-1. (C and D) Suppression of constitutive pathogenesis-related 1 (PR1) (B) and pathogenesis-related 2 (PR2) (C) expression in TPR1-HA overexpression line #3 by eds1-2 and pad4-1. (E) Suppression of enhanced resistance to H. a. Noco2 in TPR1-HA overexpression line #3 by eds1-2 and pad4-1.

Fig. S3. TPR1 and its close homologs are required for resistance to Peronospora parasitica 2 (RPP2)-mediated immunity. Infection phenotypes of leaves inoculated with avirulent H. a. Cala2. Two-wk-old seedlings of the indicated genotypes were sprayed with H. a. Cala2 (40,000 spores/mL water) Leaves were stained with lactophenol trypan blue 7 d after inoculation to visualize pathogen hyphae and plant cell death. h, hyphae; HR, hypersensitive response; TN, trailing necrosis; tpl, topless; tpr4, topless-related 4.

Fig. S4. Analysis of suppressor mutants of the *TPR1-HA* overexpression line #3 and association of SNC1 and TPR1 in nucleus. (A) Suppression of the stunted morphology of *TPR1-HA* overexpression line #3 by three suppressor mutants, *snc1-r4*, *snc1-r5*, and *snc1-r6*. (B) Mutations in SNC1 identified from the three suppressor mutants. (C and D) Suppression of constitutive *PR1* (C) and *PR2* (D) expression in the *TPR1-HA* #3 overexpression line by the three suppressor mutants. (E) Association of SNC1 and TPR1 in nucleus. Coimmunoprecipitation of snc1-HA with TPR1-GFP in protein extracts of *TPR1-GFP* and *snc1-HA* double-tagged transgenic plants. Nuclear protein extracts were subjected to immunoprecipitation with anti-GFP magnetic beads. Crude lysates (input) and immunoprecipitated proteins (elution) were detected with anti-GFP or anti-HA antibodies.

Fig. S5. Complementation of *snc1-tpr1-tpl* mutant morphology by *TPR1-GFP* and *TPR1-HA* and localization of TPR1-GFP. (A) Complementation of *snc1-tpr1-tpl* mutant morphology by *TPR1-GFP*. A construct expressing the TPR1-GFP fusion protein under the control of its native promoter was transformed into the *snc1-tpr1-tpl* mutant. The picture was taken from 4-wk-old soil-grown plants. (B) Complementation of *snc1-tpr1-tpl* mutant morphology by *TPR1-HA*. A construct expressing the TPR1-HA fusion protein under the control of its native promoter was taken from 4-wk-old soil-grown plants. (C) Localization of TPR1-GFP protein in leaf pavement and guard cells of *TPR1-GFP* transgenic plants. Plant cell walls were stained with 5 mg/mL propidium iodine (red). (D) Localization of TPR1-GFP protein in root hair cells of *TPR1-GFP* transgenic plants. The nuclei were stained with DAPI.

Fig. S6. Reporter and effector constructs used in the transfection assays. Luc, luciferase; GUS, GUS; β-glucuronidase.

Target	Fold enrichment	Annotation
At5g15410	8.5 ± 1.7	DND1 (Defense No Death 1)
At3g20820	11.5 ± 2.2	Leucine-rich repeat family protein
At1g51940	18.6 ± 2.2	Protein kinase family protein
At4g21960	3.1 ± 1.1	Peroxidase 42
At1g14720	7.2 ± 1.2	XRT2
At5g54250	5.4 ± 3.3	DND2 (Defense, No Death 2)
At5g56040	3.8 ± 1.6	Leucine-rich repeat protein kinase
At4g36540	7.6 ± 1.4	BR Enhanced Expression 2
At3g25500	3.9 ± 1.5	Formin Homolog 1
At5g07240	4.9 ± 1.4	IQ-domain 24; calmodulin binding
At5g61420	8.6 ± 3.1	AtMYB28
At3g19000	6.0 ± 1.7	20G-Fe(II) oxygenase family protein

Fig. S8. Real-time RT-PCR analysis of *Defense no Death 1* (*DND1*) and *Defense no Death 2* (*DND2*) expression. (A and B) Expression of *DND1* (A) and *DND2* (B) in wild-type and *eds1-2* plants in response to *Pseudomonas syringae* pv. *tomato* (*P.s.t.*) DC3000 *AvrRps4*. Plants were infiltrated with or without *P.s.t.* DC3000 *AvrRps4* (OD₆₀₀ = 0.001) in 10 mM MgCl₂. Samples were taken 12 h after inoculation. (C and D) Expression of *DND1* (C) and *DND2* (D) in wild-type and *snc1* plants. (*E* and *F*) Expression of *DND1* (*E*) and *DND2* (*F*) in wild-type and *TPR1-HA* overexpression line #3.

Table S1. Primers used for real-time PCR analysis of the promoters of target genes of TPR1

Gene	Forward primer	Reverse primer
At2g24762	gatatcatgctatcactgac	gcctacaagaactaccgcag
At5g15410	agtgaatgtacgatttaagc	agtatcaattgacggcaaac
At2g18940	caccaatttgatcacttaac	ggaggaatcggcatttacgg
At1g60990	tcatcttcatctctcacatc	ggcacaatatcaagagcagc
At1g24450	tgttaccgtaactggaacac	atcaagtactcgttgtagac
At4g17770	agagaaagatcggagaaaag	agatcagaacacacagctgg
At2g45340	catgagtcttttgttttcc	accacttgactttttatcac
At2g36870	tccaccagctttatctc	gtaaagattgaccaaacacg
At2g37450	ttagatgtgactttgtaccc	tcacaaccacataacaaacg
At3g20820	ccaaccggcaagtcgcatcg	tgtagcaataatatggccac
At4g20270	agtgcacaaataatctgctg	aacatagtcacatagtctcc
At1g62560	tcgatggatgtaatagtagc	aactagtgaaatccagtagg
At1g51940	ggttgaaagtttaagaacttcg	attctccctttcatttacac
At5g57180	gaatgaacgatcgtcgctac	agcgatatgattgtggcaac
At1g68520	ctcgtgattatgtggaaagc	ctttagtcctaataattggg
At3g62550	agctcttcacgtatttgggc	gcatacagataccttccaac
At4g21960	actcaaatgtatgctagacg	ctatctaacaagccatccac
At2g33330	ttggtgtgtgtattgcagtc	taattattgtcgaaaacgtg
At1g78020	ctgtaactttaatgaatggg	ttcttttatagacggaaagg
At3q59400	ttgacctatctataatgggc	aaaatcgctctcagtgattg
At1g14720	gatcagatctttattagtggg	ttagtgactctacctgtgac
At5q54250	cttgaaatacaaatgagtcc	acgattctacgaatgagacc
At5q56040	tagccacttcagactctccc	gacttctagacttctagttac
At5q52010	catgaatgtagtacttgacac	atggcttccgcttctctg
At3q53950	aaatgaattgagctgtagag	gaaactttggagtatacggg
At2g29320	ttggagaaatgtcacaaacc	cttgcttccttccctatatg
At1q14345	tagcagttacttctccagcg	gccagttattcatgatcagc
At5q39210	ttcgagtataggagtttagg	ccatagttgtaccacacttg
At2a28720	acgatgtcgacttagatcac	tattgcatactcattgtcgg
At4q30020	aggtcccctcaaagattatg	tttggttttggaagaaatgg
At5a64330	gaactaatcacattggaaac	atcatctctatgtacattgc
At1q17970	ggaaaggaaaacggttcagg	gaagagacacaaagtccagc
At4a36540	agtaatcatacgtcacaagg	agagagagagagagagagagagagag
At1a75500	ataaacgattgtgttttcgg	ttatctcgttttggtaacgg
At5a62920	tgaattgtggaagttcacgc	tttggtgaatgaaaaggtgg
At3a25500	tatactttcaccaaatacta	gcatgaaccatgatgtagcc
At2a21210	aactacagttacaacaaccc	agatgtcaaacgcttcacac
At1a01320	ggtgtgagagagagacacag	tcaaggtgaaacaaggaagg
At5a07240	atgaactatgcaggcataag	atctgtcataagtattgaac
At2a03550	gattetetatttttgtagg	ctagtgatttctccaagtttc
At5a61420	ataactaaagggacgtttgc	tatactttctcgttaaccag
At3a28200	tataacccattacaagacac	atggtcttaggttggatccg
Δt3α19000	atagagtaagaatatagac	cattatagcatatatatata
At3a01440	cacattcacatcacatcotc	tagggtatgtgtgtgtgtg
At1a75800	ccactaatcatacctaatta	agattataaccacataga
At5a51550	ctoacotcatcaaaccetco	tteaaactentententee
Δt1α32090	taattaaattaattaa	atteteatactetettage
Δt5a23310	ataaqqaactttcqqtqcaq	tctatttattcattcactatca
	argagggacrircggrgcag	icigiligalicacigity

PNAS PNAS