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1 Results for 2 neurons

Here we compute the noise entropy, output entropy and information for two neurons σ1,2

exposed to a binary input distribution, where h1,2 = ±1:

Ph(−1,−1) = Ph(1, 1) =
1

4
(1 + α)

Ph(−1, 1) = Ph(1,−1) =
1

4
(1− α) (1)

In this distribution, the inputs to both neurons are zero mean, 〈h1〉 = 〈h2〉 = 0, unit
variance, and the correlation between the inputs Cov(h1, h2) = α.

For two neurons, the conditional distribution of the outputs is given by Eq (2) of the
main text:

P (σ1, σ2|h1, h2) =
1

Z
eβ(h1σ1+h2σ2+Jσ1σ2), (2)

Z = eβ(h1+h2+J) + eβ(−h1−h2+J) (3)

+ eβ(h1−h2−J) + eβ(−h1+h2−J). (4)

This distribution depends on the coupling J and the neural reliability parameter β. For
output entropy, S[P (σ1, σ2)], we first evaluate P (σ1, σ2):

P (σ1, σ2) =
∑

Ph(~h)P (σ1, σ2|~h) (5)

=
1

4
(1 + α)

eβ(σ1+σ2+Jσ1σ2) + eβ(−σ1−σ2+Jσ1σ2)

eβ(2+J) + eβ(−2+J) + 2e−βJ
+

+
1

4
(1− α)

eβ(σ1−σ2+Jσ1σ2) + eβ(−σ1+σ2+Jσ1σ2)

eβ(2−J) + eβ(−2−J) + 2eβJ
.

With the distributions Eq (2,5) in hand, we can compute the output entropy:

Sout[P (σ1, σ2)] = −
∑

σ1,2=±1

P (σ1, σ2) log2 P (σ1, σ2), (6)

and the noise entropy

Snoise = −
∑

h1,2=±1

Ph(h1, h2)
∑

σ1,2=±1

P (σ1, σ2|h1, h2) log2 P (σ1, σ2|h1, h2), (7)

by simply summing over 4 and 16 terms, respectively. The mutual information I(σ1,2;h1,2)
is given by the difference between the signal and noise entropies, i.e. I(σ1,2;h1,2) =
Sout − Snoise, and depends on the parameters α, β and J . For each choice of the input
correlation α and neural reliability β, we can look for the optimal coupling J∗(α, β), as
shown in Fig. 2 of the main paper.

In the case of Gaussian inputs, averaging over Ph analytically is not easy, so we evaluate
the averages numerically by sampling from Ph (with 2000 samples for each choice of α
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and β). Figure 1 shows how the signal and noise entropies behave as β changes from
low- to high-neural-reliability regime (β = 0.5, 1, 2) with Gaussian inputs. We clearly see
how, in the case of 2 neurons, the optimal system will move from noise- to output-entropy
dominated regime as β is increased.
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Figure 1: Results for two coupled neurons with Gaussian correlated inputs. a) The
contour plot of output entropy, Sout, as a function of the input covariance α on the x-axis,
and the coupling J on y-axis, at β = 1. b) The contour plot of noise entropy, Snoise,
as a function of the input covariance α = Cov(h) and the coupling J , at β = 1. The
mutual information between the state of the two neurons and the value of the two inputs
is given by the difference Sout−Snoise. Panels c), d), e) show the mutual information (in
color), normalized to the maximum at each β, for three different values of β = 2, 1, 0.5,
respectively. Red hues indicate high information values and thus a good choice for the
optimal J(α). At high neural reliability (large β) in c), the output entropy term dominates
over small noise entropy, and high information is achieved for those values of J where the
output entropy in a) is large. At intermediate reliability (β = 1) in d) the optimal J∗

has to balance between output and noise entropy contributions of comparable size. At
low reliability (small β) the noise entropy dominates, and the maximal information is
achieved for those values of J where the noise entropy in b) is low.

2 Networks of neurons exposed to binary stimuli

To generalize our results for a system of 2 interacting neurons (see main text) to a small
network composed of N neurons, we maximized the information with respect to couplings
{hi, Jij}, when the network received either binary or Gaussian stimuli. The results for
Gaussian stimuli are presented in the main text; here we present full results for the binary
case.

We considered a network of N neurons responding to an input ensemble of K equiprob-
able N -bit binary patterns chosen randomly from the set of 2N such patterns. For N . 10
it remained possible to numerically choose couplings h0

i and Jij that maximized informa-

tion about the input ensemble represented in network responses. Since the K patterns ~hµ
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(µ = 1 · · ·K) were chosen randomly, the correlation between inputs to different neurons
is

Cov(~h) =
1

K

∑
µ

hµi h
µ
j . (8)

For any fixed K these correlations are weak, but non-zero, and thus the information-
maximizing network could tune Jij to exploit the input correlations and build an optimal
K-way discriminator, i.e. a neural representation that best separates the inputs. Adapting
to this stimulus ensemble is a difficult task for the network, because any correlations
present in the stimulus are solely a result of having a small number of patterns K, and
these correlations decay as K increases.

We numerically optimized the network interactions to maximize information, and
found that when neural reliability β is low, the optimal network represents more in-
formation than the uncoupled (Jij = 0) network (Fig. 2a). The relative increase is greater
for larger networks. The increase in information is largest when the number of input
patterns (K) is relatively small, but increasing with the size of the of the network (N)
– this is reminiscent of the slow growth of the storage capacity of Hopfield networks, an
analogy that we will return to below. When neural reliability β is high, there is less
advantage to tuning the interactions (Fig. 2b) because, in the absence of noise, binary
neurons have the capacity to encode complete information about an ensemble of binary
inputs. Hence, as neural reliability increases, the neurons tend to become independent
encoders. For any β, neurons also tend to become independent encoders as the number
of input patterns K increases. This is because when K is large, the small-sample induced
correlations between the patterns decay. Thus the network cannot use these correlations
to improve information transmission. Input decorrelation is never an optimal strategy.

When the neurons are independent and exposed to binary inputs of zero mean, i.e.
P (hi = 1) = P (hi = −1) = 0.5, we can compute the information conveyed by the single
neuron:

I1(σ;h) = S[p(σ)]− 〈S[p(σ|h)]〉p(h) (9)

= 1− [β〈E〉+ logZ] / log 2 (10)

= 1− [−∂β logZ + logZ] / log 2 (11)

= 1− [−β tanh β + log(2 cosh β)] / log 2, (12)

where in Eq (10) we used the thermodynamic identity that relates the free energy, F ,
the partition function Z, the expected value of the “energy” E = −∑i(hi + h0

i )σi −
1/2

∑
ij Jijσiσj, and the conditional entropy S: βF = − logZ = β〈E〉 − S, and the fact

that the output entropy of the neuron will optimally be 1 bit. Fig. 3 displays the match
between the results of this calculation with the numerical optimization solution for large
K where independence between neurons is expected.
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Figure 2: Information transmission in small networks with binary input distributions. a)

The increased capacity IJ∗({σi} ;~h) − IJ=0({σi} ;~h) of optimal vs uncoupled networks,
for N = 4, 6, 8, 10 neurons (crosses, triangles, dots, stars), as a function of the number
K of equiprobable, randomly chosen, binary input patterns. The numbers at the peaks
denote the relative increase in information capacity at that point. As K is increased, the
input correlations decay and the optimal solution approaches the independent solution.
The neural reliability parameter is β = 1/2. b) The same plot for β = 1 shows that
the capacity of the optimal network increases less (although the baseline capacity of the
uncoupled network is larger), and the peak is reached at larger K.
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Figure 3: Line: The information per neuron, I1, in the uncoupled case, as a function
of 1/β ( result from Eq (12); dots: information per neuron in optimized network with
N = 10 neurons exposed to K = 104 random binary input patterns). Because K � N ,
the optimized solution is incapable of yielding more information than the independent
solution.

3 Metastable states for binary inputs, and relation

to Hopfield networks

In this section we present results related to the emergence of maximum likelihood (ML)
states for networks responding to binary inputs. These results complement Figs. 4,5 of5



the main paper that discuss Gaussian inputs.
A pattern that has locally maximal likelihood (ML), or a “meta-stable state” as it is

known in statistical physics, is a configuration of variables Gµ = {σi}µ, such that a flip of
any of the σi would decrease that pattern’s likelihood (or equivalently, increase its energy
in the analogous Ising model). ML patterns are defined when no stimulus is present, i.e.
with respect to the likelihood given by optimal parameters g =

{
h∗,0i , J∗ij

}
and zero-input,

hi(s) = 0.
For small enough networks of N neurons, such ML patterns can be found by exhaus-

tively enumerating the likelihood of all 2N patterns and examining their likelihood under
single σi flips. We numerically searched for optimal networks of N = 10 neurons at neural
reliability parameter β = 1/2, exposed to K = 10 equiprobable binary inputs. On aver-
age, we found on the order of 10 ML patterns (average ∼ 7.7 over 30 generated networks)
for each network.

For binary inputs, these ML patterns, arising purely as a result of the optimized

parameters g∗ =
{
~h∗0, J∗ij

}
, correspond well to the patterns of the input ~ht. E.g., Fig. 4

plots the overlaps (scalar products) of the 10 ML patterns, Gµ, µ = 1 . . . 10, found in one
particular optimized network, with the K = 10 input patterns that that network received:
8 of the 10 input patterns overlap perfectly with one of the ML states, i.e. |Gµ · ~ht| = 1.
This result is typical of other optimization runs.

As a result, when a particular stimulus ~ht is applied, the state of the network very
reliably collapses onto a single output pattern (which is predominantly a ML pattern
that has a high overlap with the applied stimulus). This is indicated by the histogram

of S[P ({σi})|~h] (with mean at 0.18 bits) in Fig. 4. When we look at the full distribution
of output patterns, P ({σi}), a striking difference between the optimal (J∗) vs uncoupled
(J = 0) networks emerges, consistent with the observations made in Fig. 4 of the main
paper: the distribution of output binary patterns P ({σi}) is localized more tightly around
the ML patterns in optimal networks. Effectively, strong optimal couplings exclude certain
patterns from the repertoire of binary words and thus prevent noise from driving the
system there, thus making use of only a small subset of the full 2N binary patterns to
carry information.

This result implies that when the network has adapted to the particular stimulus
ensemble Ph(~h), it has “stored” (some of) the presented patterns in the stimulus into

the structure of its optimal coupling constants, g∗ =
{
~h∗0, J∗ij

}
. Correspondingly, the

likelihood (or energy) landscape is no longer uniform, as in the case of uncoupled (J = 0)
networks, but contains∼ 10 ML patterns, surrounded by their local “basins of attraction”;
see Fig. 4 of the main paper.

The notion of the “basin of attraction” around a maximal likelihood (ML) pattern
can be made precise by introducing a so-called zero-temperature Monte Carlo (ZTMC)
dynamics: given any binary pattern {σi}, flip the σi in a random sequence until the
likelihood cannot be increased further. Then, the system must have settled into one of
the ML patterns, Gµ. As a consequence, any of the 2N possible binary patterns can be
mapped to some ML pattern. All patterns that the dynamics takes into the ML pattern
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Gµ are said to constitute the basin of attraction of Gµ. The number of distinct patterns
that are mapped by dynamics into Gµ is called the “size of the basin of attraction” of Gµ.

Thus we examined the sizes of the basins of attraction of ML patterns in 30 optimal
networks of N = 10 neurons responding to binary stimuli. For those ML patterns that had
perfect overlaps with the patterns from the stimulus set, the basins were large, peaking at
about 90 patterns. For ML patterns that had imperfect overlaps with the patterns from
the stimulus set, the basins had much smaller sizes, peaking at less than 10 patterns; see
Fig. 4.

Such behavior is strongly reminiscent of Hopfield associative memory network. We
recall that in a Hopfield net, the “memories” ~ht are given. A coupling matrix, JH =
1/N

∑
t
~ht ∗ ~ht,T is then explicitly constructed, and it is shown that such system, evolv-

ing under the zero-temperature Monte Carlo (ZTMC) dynamics, will converge to one
of the memories, if the initial state has a big enough overlap with the stored memory.
The Hopfield network is a dynamical Ising-like network, in which the dynamics maps
partial memories to complete memories (recall). When viewed as an Ising-like model in
equilibrium, such a network stores the memories as ML patterns by construction.

In contrast, in our case the matrix Jij has not been constructed by hand to contain
a chosen set memories as ML patterns. Rather, such a structure has emerged as a con-
sequence of information optimization in the low neural reliability (low β) regime. Since
it is a consequence of optimization, our network does not suffer from complete storage
capacity breakdown as more and more patterns are added – rather, the excess informa-
tion capacity peaks when the stimulus ensemble contains K∗ ∼ N patterns, and then
gracefully degrades to the performance of the uncoupled (J = 0) network (see Fig. 2).
Although we cannot numerically explore the scaling of the excess information beyond
N ∼ 10 neurons, it seems reasonable to assume that the K∗ ∼ O(N) scaling of the peak
performance, found for the Hopfield network memorizing random binary patterns, holds
for our case as well.

The primary task of the network in the present paper is to transmit information, by
mapping its inputs to the equilibrium distribution of output patterns. Hopfield networks,
on the other hand, are usually discussed as examples of computation, that is, irreversible
dynamical processes. Interestingly, if our networks, which maximize information in their
equilibrium response, are allowed to evolve under ZTMC (Hopfield) dynamics, they would
also implement dynamic associative recall, by mapping arbitrary inputs to stored ML
patterns – i.e., the memorized inputs. Equivalently, in the stimulus-free condition, the
equilibrium distribution of responses in our networks is strongly peaked at the “memories,”
reflecting the stimuli to which the network has adapted.

Finally, in our setup, ML patterns can and do appear even when the inputs are not
binary, for example, when they are drawn from the Gaussian distribution. This provides
an extension of the notion of (Hopfield-net-like) “memory” as a ML response pattern, to
continuous inputs.
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4 Creating Gaussian stimulus ensembles

To explore the optimal networks exposed to correlated Gaussian inputs, we needed to
create an ensemble Ph(~h) of N = 10-dimensional correlated Gaussian processes and draw
samples from it. Assuming that the mean values 〈hi〉 = 0, this ensemble is fully character-
ized by the spectrum of 10 real and positive eigenvalues di, and an orthonormal rotation
matrix P , such that the covariance matrix C of the samples ~h can be decomposed as:

C = PDP T , (13)

where D = diag(di). For each covariance matrix, we choose di to be exponentially dis-
tributed with a decay constant 1/ log(2). The rotation matrices P were picked in the
following way: we first created a random symmetric matrix A whose elements were inde-
pendently drawn from the normal distribution with zero mean and unit variance. Then
we decomposed A into diagonal basis, A = PQP T , and extracted the resulting matrix
P as a random choice for a rotation matrix. Having drawn the spectrum of eigenvalues
D and the rotation matrix P , we could then generate the required Gaussian inputs ~h for
each network optimization. Lastly, we subtracted a constant from each hi to fix 〈hi〉 = 0,
and normalized each hi so that the variance of each hi was 1. To illustrate the results of
the described procedure, Fig. 5 shows the spectrum of eigenvalues of covariance matrices
of stimuli.

This procedure guarantees that: i) each neuron always receives inputs with the same
statistics (gaussian distributed, zero mean, unit variance), so all the “interesting” struc-
ture is in the covariance matrix; ii) the choice of the eigenvalue spectrum ensures that the
variance along different principal axis is significantly different, so that the distribution is
not spherically symmetric and there is opportunity for the network to decorrelate (if all
di were the same, the stimulus would have been decorrelated by construction).

5 Optimal values for biases h∗0
When the firing rate is not constrained (see next section), the values of the biases h0 are
selected by the optimization procedure so that the neurons fire about half of the time,
i.e. 〈σi〉 ∼ 0. This ensures that the output entropy can be maximized, by maximizing
the first term in Eq (6) of the main paper. To check this, we histogram the mean firing
rates across all optimal networks with N = 10 neurons, exposed to Gaussian stimuli,
at reliability values ranging from β = 1/5 . . . 5. Figure 6 shows that the mean firing
probability stays close to 50% (〈σi〉 = −0.005, Std(σi) = 0.11). We can further examine,
in the mean-field approximation, the effective stimulus-averaged firing bias acting on each
neuron, heffi = 〈hti〉+h0

i +
∑

j Jij〈σj〉. To insure that the neurons are close to spiking with
probability 0.5, this average effective firing bias should be close to zero. For each neuron
in each optimal network we therefore plot the optimal bias, h0

i , against the contribution
from other neurons in the network,

∑
j Jij〈σj〉. There is a clear negative correlation over

the whole range of reliability values β, indicating that indeed the optimal h0
i has been
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chosen to realign the operating point of each neuron to the center of its tanh nonlinearity.
The anti-correlation is only aproximate because the networks are not necessarily in a
regime where the mean-field approximation is precise.

6 Optimizing information at constrained firing rate

To examine the effects of information optimization while keeping the average firing rates
of neurons pegged to a chosen value, we use the method of constrained optimization using
Lagrange multipliers. We form the functional:

L(
{
h0
i , Jij

}
, λ) = I({σi} ;~h)− λ 1

N

N∑
i=1

〈σi〉. (14)

Here, the mutual information I({σi} ;~h) is the same as in Eq (5) of the main paper, but
we have added a term that constrains the mean firing rate of the neurons; λ serves as the
Lagrange multiplier.

Using the same binary and Gaussian stimulus ensembles as in the unconstrained case
presented in the paper, we numerically optimized the couplings g = {h0

i , Jij} for N = 10
neurons, while varying the multiplier λ across a range of values. At each value of λ,
this allows us to find the optimal couplings at a particular value of the mean firing rate,
m = 1/N

∑N
i=1〈σi〉, that depends parametrically on λ.

By thus scanning through a range of values for λ, we can construct parametric plots
of I(~h; {σi}) as a function of m, shown in Fig 7 – these curves are also known as rate-
distortion (RD) plots in information theory. Consistently with the results of the main
paper, for both binary and Gaussian inputs, the optimal solution provides an improvement
of ∼ 10-50% when there is no firing rate constraint. In the binary case the improvement
decreases with increasing neural reliability (β), from ∼ 50% at β = 0.5 to negligible
improvement at β = 2; in the Gaussian case the improvement remains even at high
reliability β, because the network is able to decorrelate the stimuli.

For both types of stimuli, as the firing rate is constrained, the improvement in infor-
mation decreases in absolute magnitude (see Fig 7), but the information capacity also
decreases because the set of output binary patterns is more and more biased towards
silence ({−1} pattern), causing the output entropy (and therefore information) to fall.
Nevertheless, optimization still provides benefits across a range of firing rates.

Since the Lagrange multiplier only constraints the mean firing rate of the population,
we can ask about the distribution of rates within that population. Distributions averaged
over many solutions show that the networks receiving binary inputs tend to maximize
information at constrained rate by designating some neurons to remain silent, while uti-
lizing others fully. This results in bimodal distributions of firing rates, as seen in Fig 7. In
contrast, in the Gaussian case the firing rate distribution is a single-peaked function. We
checked that the qualitative shapes of the distributions are not a consequence of averaging
over the distributions found in many optimized networks, but rather reflect the shape of
the firing rate distributions in each optimized network.
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Figure 4: The analysis of network states of N = 10 neurons at β = 1/2, exposed to
K = 10 equiprobable binary input patterns. Upper left. An example of the probability,
P ({σi}), of network states for an independent (J = 0, black) and optimized (J∗, red)
network, for each of the 2N possible configurations {σi}. Black dashed lines show the
ML patterns of the network under no-stimulus condition. Because of the couplings, the
optimal network (red) has a much smaller probability of fluctuating into one of the states
that do not correspond well to a ML pattern. Upper right. A comparison of ML patterns
of an example network with its K = 10 possible input patterns. Shown is the overlap
(scalar product between the input and ML patterns, see text) in color code, where dark
black or bright white show perfect (anti-)overlap. For 8 out of 10 patterns the network
has “memorized” the input as a ML pattern. Lower left. The analysis of the basins
of attraction of the ML patterns, for 30 optimized networks. For each ML pattern, we
count how many of the possible 2N network states belong to that basin. Plotted is the
distribution of basin sizes for ML patterns that perfectly overlap with an input (in red),
and states that have less-than-perfect overlap (in black). Lower right. The distribution
of conditional entropies for 30 optimized networks, when an input pattern is presented.
The conditional entropy peaks close to 0, meaning that even when individual neurons are
unreliable the network interactions drive inputs into stable output patterns, albeit at the
cost of reducing output entropy.
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Figure 5: The eigenvalue spectra computed from 450 sets of Gaussian stimuli drawn from
Ph(~h) as described in the text; these stimuli were used to optimize N = 10 networks at
15 different values of neural reliability parameter β, with 30 replicate optimizations for
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Figure 6: Left. The distribution of firing rates in networks of N = 10 neurons, exposed
to Gaussian stimuli, pooled across a range of 15 values for β, β = 1/5 . . . 5 (with 30
optimized networks for each value of β). Right. The anti-correlation between the optimal
value for the bias acting on neuron σi, h

0
i , and the mean-field effect of other neurons σj,

j 6= i. Each point represents a single neuron from one of the optimal networks; shown
are 30 networks across a range of 15 values for β, from β = 1/5 (dark gray) to β = 5
(light gray). We checked that for every separate value of β, the correlation is significantly
negative.
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Figure 7: Optimization of information transmission with a mean firing rate constraint in
a population of N = 10 neurons. Upper left. The capacity-rate curve for binary input
distribution: crosses show independent (J = 0) solutions, dots show optimal J∗ solutions;
grayscale corresponds to β = 1/2, 1, 2 (grayscale, dark-to-light). Each symbol represents
one network optimized for a draw of K = 20 equiprobable binary inputs. Upper right.
The average distribution of firing rates of individual neurons measured over an interval
of mean rates. The intervals are indicated between dashed lines in the upper left panel
and in the inset in the upper right panel. The firing rate distributions are pooled over
all values of β. With a strong constraint towards silence (interval C), the distribution
of rates within the population is bimodal (some neurons stay almost completely silent).
Lower row. The same analysis for the Gaussian input distribution, at neural reliability
values β = 1/2, 1, 1.5, 2 (grayscale, dark-to-light). There are two notable differences from
the binary case. First, even at high reliability (light gray), the optimal solutions still yield
higher information transmission than the independent solutions. Second, the distribution
of firing rates is closer to unimodal.
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