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SI Text
SI Methods. Peptide synthesis and characterization.All peptides used
in this study were synthesized, purified, quantified, analyzed by
circular dichroism (CD), and subjected to in vitro proteolysis test-
ing as previously described (1). Peptides were produced on an
Apex 396 (Aapptec) automated peptide synthesizer using Rink
amide AM LL resin (EMD Biosciences, 0.2 mmol∕g resin), at
50 μmol scale. The standard Fmoc protocol employed 2 ×
10 min deprotections in 20% piperidine/NMP followed by a pair
of consecutive methanol and dimethylformamide washes. The in-
corporated nonnatural amino acids were treated with 4 × 10 min
incubations in 20% piperidine/NMP to achieve complete depro-
tection. Amino acid coupling was performed using 0.4 M stock
solutions of Fmoc-protected amino acids, 0.67 M 2-(6-chloro-
1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluoro-
phosphate, and 2 M N,N-diisopropyl ethylamine, yielding
1 mL of 0.2 M active ester (4 equivalents). Coupling frequency
and incubation times were 2 × 30 min for standard residues, 2 ×
45 min for the olefinic nonnatural amino acids, and 3 × 45 min
for the residue following a nonnatural amino acid. For CD spec-
tra, peptides were dissolved in 5 mM potassium phosphate (pH
7.5) or 10 mM HCl (pH 2) to a final concentration of 50 μM.
Protease reaction samples contained 5 μL peptide in DMSO
(1 mM stock) and 195 μL of buffer consisting of 50 mM phos-
phate buffer pH 7.4 with 2 mM CaCl2 for chymotrypsin
(0.5 ng∕μL) or 10 mMHCl pH 2 for pepsin (0.5 ng∕μL). Chymo-
tryptic peptide fragments were analyzed by liquid chromatogra-
phy/mass spectrometry (Agilent 1200).

NMR spectroscopy. Peptides were dissolved in 20% and 75% per-
deuterated DMSO∕H2O (1–1.5 mM). One dimensional 1HNMR
spectra were obtained on a CMR E 600 MHz instrument (Mas-
sachusetts Institue of Technology/Harvard Magnetic Resonance
Center) at 30 °C and 37 °C (WATERGATE pulse sequence, spec-
tral width 10,000 Hz, 4096 complex data points collected over 128
scans, relaxation delay 3 s). NMR spectra were processed and
analyzed with NMRPIPE (2) and iNMR (www.iNMR.net).

HIV infectivity assay. Single-round HIV-1 infectivity luciferase as-
says were performed using 293T human embryonic kidney and
Cf2Th-CD4-CCR5 and Cf2Th-CD4-CXCR4 canine thymocytes
as previously described (3). Cf2Th-CD4-CCR5 cells were used
for infections by viruses with the YU2 and A-MLV envelope gly-
coproteins, and Cf2Th-CD4-CXCR4 cells for infection by viruses
with HXBc2 and AMLV envelope glycoproteins. On the day of
infection, peptide (0–3 μM) was added to recombinant viruses
(10,000 RT units) to a final volume of 50 μL and incubated at
37 °C for 30 min. The medium was subsequently removed from
the target cells, the cells incubated with virus-peptide mixture for

48 h at 37 °C, the medium again removed, cells lysed with 30 μL of
passive lysis buffer (Promega) and three freeze—thaw cycles, and
then luciferase activity measured upon addition of 100 μL of lu-
ciferin buffer (15 mMMgSO4, 15 mM KPO4, pH 7.8, 1 mM ATP,
and 1 mM dithiothreitol) and 50 μL of 1 mM D-luciferin potas-
sium salt. Trimeris enfuvirtide, obtained from the NIH AIDS Re-
search and Reference Reagent Program, was used as a positive
control for the enfuvirtide peptide synthesized in our laboratory.

Native polyacrylamide gel electrophoresis (native PAGE) assay. Dou-
bly mutant V38A/N42T and V38E/N42S HR1 peptides (HXBc2
gp41 residues 29–79) (4, 5) were incubated with the indicated
FITC-labeled HR2 peptides (40 μM, 1∶1) for 30 min at 37 °C.
The peptide mixtures were then analyzed by native PAGE (6, 7)
using 18% tris-glycine precast gels and native sample and running
buffers (Invitrogen). Fluorescent bands were imaged with Gel
Doc XR (BioRad) and subjected to densitometric analysis
using Quantity One v4.5.2 software (BioRad). The fraction of
FITC-HR2 peptide complexed to mutant HR1 peptide was cal-
culated according to the following formula: complex∕ðcomplexþ
free FITC-HR2 peptideÞ.

Pharmacokinetic studies.Peptides were dissolved in sterile aqueous
5% dextrose (1 mg/mL) and administered to 8–10 wk old male
C57BL/6 mice (Jackson Laboratory) by bolus tail vein injection
(10 mg/kg) or oral gavage (10 and 20 mg/kg). Blood was collected
by retroorbital puncture at 5, 30, 60, 120, and 240 min after in-
travenous dosing and at 30 min after oral dosing from 3 animals at
each time point. Plasma was harvested after centrifugation
(2;500× g, 5 min, 4 °C) and stored at −70 °C until assayed. Pep-
tide concentrations in plasma were determined by reversed-phase
high performance liquid chromatography with electrospray ioni-
zation mass spectrometric detection (8, 9). Study samples were
assayed together with a series of 7 calibration standards of either
peptide in plasma at concentrations ranging from 1.25 to
50.0 μg∕mL, drug-free plasma assayed with and without addition
of the internal standard (enfuvirtide), and 3 quality control
samples (3.75, 15.0, and 45.0 μg∕mL). Standard curves were con-
structed by plotting the analyte/internal standard chromato-
graphic peak area ratio against the known drug concentration
in each calibration standard. Linear least squares regression
was performed with weighting in proportion to the reciprocal
of the analyte concentration normalized to the number of calibra-
tion standards. Values of the slope and y-intercept of the best-fit
line were used to calculate the drug concentration in study
samples. Plasma concentration-time curves were analyzed by
standard noncompartmental methods using WinNonlin Profes-
sional 5.0 software (Pharsight Corp.).
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Fig. S1. Synthesis and purity of SAH-gp41ð626–662Þ(A, B). HPLC analysis of crude product from the automated peptide synthesis of SAH-gp41ð626–662Þ(A, B)
revealed the desired full-length peptide as the predominant species at >85% purity even before HPLC purification. HPLC affords 98% pure product, which
compares favorably with the purity of the corresponding unmodified peptide, T649v.
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Fig. S2. Superior proteolytic resistance of a doubly stapled exenatide peptide. Like SAH-gp41 peptides, singly stapled exenatide derivatives show enhanced
chymotrypsin resistance compared to the template peptide, and the doubly stapled peptide is more resistant than the unmodified and singly stapled peptides.
X, substitution sites for crosslinking nonnatural amino acids; B, norleucine (substituted for methionine to optimize activity of the ruthenium catalyst). Fraction
intact, mean� s:d:

Fig. S3. Helical reinforcement of enfuvirtide by hydrocarbon stapling. Circular dichroism demonstrates that enfuvirtide is predominantly a random coil in
solution, whereas SAH-gp41ð638–673Þ peptides exhibit increased α-helical content. Like SAH-gp41ð626–662Þ(A, B), SAH-gp41ð638–673Þ(C, D), displays a percent α-he-
licity that lies in between that of the corresponding singly stapled peptides.
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Fig. S4. Native gel electrophoresis of enfuvirtide, T649v, and SAH-gp41ð626–662Þ(A, B). Native PAGE analysis demonstrated that SAH-gp41ð626–662Þ(A, B) migrates
as a monomeric species, with the doubly stapled peptide even running faster than the unmodified peptide standards (MW, approximately 4.9–5 kD). HR1/HR2
six-helix bundle standard (MW, approximately 33 kD).
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Fig. S5. Size-exclusion chromatography of SAH-gp41ð626–662Þ(A, B). The doubly stapled peptide elutes as a monomeric species by gel filtration analysis. Mo-
lecular weight standards, RNAse A (13.7 kD) and aprotinin (6.5 kD).
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Fig. S6. Comparative 1H NMR analysis of T649v and SAH-gp41ð626–662Þ(A, B). The indole protons (approximately 10.6 ppm) corresponding to the two N-term-
inal tryptophan residues of the T649v template peptide are represented by two sharp peaks in T649v, consistent with fast exchange between multiple con-
formations. In contrast, the indole proton peaks in the 1H NMR spectrum of SAH-gp41ð626–662Þ(A, B) are broadened and split, reflective of a discretely structured
N-terminus.
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Fig. S7. Antiviral specificity of enfuvirtide and T649v-based peptides. (A, B) None of the peptides affected the infectivity of control virus bearing the A-MLV
envelope glycoproteins. % viral infection, mean� s.e.m.
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Fig. S8. Enhanced complex assembly of SAH-gp41ð626–662Þ(A, B) with doubly mutant HR1 peptides. Densitometric analyses of native PAGE fluorescence scans
(Fig. 3 C and D) documented an up to 2-fold enhancement in binding activity of FITC-SAH-gp41ð626–662Þ(A, B) toward HR1 peptides bearing enfuvirtide resistance
mutations, as compared to FITC-T649v. Fraction bound, mean� s.e.m.
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Fig. S9. Acid protease resistance of SAH-gp41 peptides. Upon exposure to pepsin, the doubly stapled SAH-gp41 peptides again demonstrate striking protease
resistance compared to the corresponding unmodified and singly stapled peptides. The number of pepsin cleavage sites is unaffected by nonnatural amino acid
substitution. Fraction intact, mean� s:d:
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