Supporting information for

On the Interfragment Exchange in the X-Pol Method

Alessandro Cembran, Peng Bao, Yingjie Wang, Lingchun Song,* Donald G. Truhlar,* and Jiali Gao*

Department of Chemistry and Minnesota Supercomputing Institute
University of Minnesota, Minneapolis, MN 55455

Computed total electronic energies and interaction energy components using the unpolarized (gas-phase), $\psi_1^0\psi_2^0\psi_3^0$, and polarized (cluster), $\psi_1\psi_2\psi_3$, monomer wave functions for two water trimer complexes, one at the cyclic, minimum energy configuration (**c-W**₃) and another that includes a symmetrically placed, repulsive pair (**s-W**₃). The 6-31+G(d) basis set were used in all calculations and energies are give in hartrees.

Table S1. Computed total energies and energy components (in hartrees) for the cyclic water trimer minimum structure (\mathbf{c} - \mathbf{W}_3) and for a symmetric trimer geometry (\mathbf{s} - \mathbf{W}_3). All calculations were performed using HF/6-31+G(d).

Method	c-W ₃	s-W ₃
$E(\psi_a^0) + E(\psi_b^0) + E(\psi_c^0)$	-228.05297	-228.05318
$E_{\text{Coulomb}}(\psi_1^0 \psi_2^0 \psi_3^0)$	-228.09376	-228.07863
$E_{\rm BLW}(\hat{A}\psi_1^0\psi_2^0\psi_3^0\})$	-228.06774	-228.06150
$E(\psi_1) + E(\psi_2) + E(\psi_3)$	-228.04723	-228.05067
$E_{\text{Coulomb}}(\psi_1\psi_2\psi_3)$	-228.09790	-228.07990
$E_{\rm BLW}(\hat{A}\psi_1\psi_2\psi_3\})$	-228.07286	-228.06382
$E_{\mathrm{HF}}(\psi_{123})$	-228.07775	-228.06724