
Supporting Online Material 
 
Materials and Methods 
 
Construction of library strains 
The library strains are created via λ-RED recombination using a universal primer (Fig. S10) as 
follows. Strains from an existing chromosomal fusion library (S1) were grown up to O.D600 ~0.6 
in LB from an overnight culture. The cultures were transferred to Mini-Tubes (Bel-Art F37857-
0000) for a 15-minute, 42°C heatshock, and then chilled on ice. The cells from each strain were 
centrifuged at 3,800 rpm × 10 minutes at 4°C (Sorvall Super T21, ST-H750 rotor), to remove the 
supernatant and then washed twice with cold water (Millipore) before they were concentrated 
and transferred to 1 mm gap electroporation cuvettes (VWR International). The venus- 
chloramphenicol (CAM) resistence cassette was prepared with Platinum PCR Supermix 
(Invitrogen) using primers VenF-SpaF 
(aactactgctagcgagaatttgtattttcagggtgagctcagcaagggcgaggagctgttcac) and CamR-KanR 
(ggcgtcgcttggtcggtcatttcgaaccccagagtcccgcctgccactcatcgcagtactgttgt) (Integrated DNA 
Technologies) and the PCR product was cleaned up using DNA Clean & Concentrator-5 
columns (ZymoResearch). Electroporation was performed at 1600V (BTX ECM399). Cells were 
allowed to recover for at least 3 hours before plating with chloramphenicol for selection.  
 
Colonies were screened for insertion by PCR. The PCR product from positive colonies was 
sequenced to confirm correct insertion using the Biopolymer Facility at Harvard Medical School.  
 
Microfabrication 
Photolithography and softlithography techniques were used to produce the microfluidic platform 
(S2). Poly-dimethylsiloxane (PDMS), a low-cost, optically-transparent silicon elastomer, was 
selected as the matrix of microfluidic chip. The chips were made by molding PDMS on a 
microfabricated silicon wafer. To prepare the mold, we designed a microfluidic pattern on 
AutoCAD 2004 (Autodesk Inc.) and output it into a photomask film using a commercial 
photoploting service (CAD/Art Services, Inc.) with a resolution of 20,000 dpi. We spin-coated 
an UV-curable epoxy (SU8-2025, Micro-Chem) with a 25 µm thick on a test-grade silicon wafer 
(University wafer). The designed microfluidic pattern was developed by exposing UV-light to 
the wafer through the photomask and immersing it in a developer solution. The PDMS was 
molded on the fabricated wafer by curing at 60°C in 45-60 minutes. φ0.75 mm holes were 
punched through the replicated PDMS sheet at the inlet/outlet positions. A coverslip (0.17 mm 
thick, 48 × 60 mm, Brain research laboratories) and the PDMS sheet were treated by an oxygen 
plasma cleaner and were bonded each other. 
 
Microscopy 
Single molecule fluorescent experiments were done on an inverted microscope (IX71, Olympus 
Americas, Inc.). Epi-illumination was provided by an Ar laser at 514 nm (Innova 300, Coherent) 
for Venus excitation and a fiber laser at 580 nm (VFL-P-Series, MPB Communications Inc.) for 
mCherry and Atto 594 excitation. Phase contrast illumination by a halogen lamp was also 
provided to identify the cell position and shape. Images were taken on an EM-CCD camera 
(Cascade 512B, Photometrics) with a 100 msec exposure through a 100× phase-contrast 
objective lens (NA = 1.35, Olympus). Samples were placed on a motorized 3D translational 
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stage (MS2000, Applied Scientific Instrumentation). For real-time experiments, a temperature 
controller was attached to the sample (FCS2, Bioptechs). The light source was switched by 
mechanical shutters (VMM-D3, Uniblitz) and a dichroic mirror wheel. Automatic measurements 
were done by Metamorph software (Molecular Devices), which synchronizes the stage scanning, 
shutter control and camera acquisition. 
 
Cell preparation 
Cells were grown in LB media with 20 µg/ml Chloramphenicol and subsequently were 
inoculated into M9 media supplemented with 0.4 % glucose, amino acids and vitamin with 1:400 
dilution. The cells were incubated at 30°C for 11-12 hours and were grown to OD600 = 0.1-0.5. 
To check that 4-5 cell divisions in M9 is sufficient to generate cells in a steady state, we grew 20 
randomly selected strains for >24 hours in M9 to confirm that the measured abundances were the 
same. Deep 2 ml 96-well plates (VWR) were used to culture many samples at once. During 
culturing, the plates were tightly capped and were placed on the side in a shaker to provide 
sufficient aeration. The doubling time was 150 minutes. Before imaging the cells were spun 
down in a tabletop centrifuge (Sorvall super T21, Kendro Laboratory Products) for 10 minutes at 
3,800 rpm and washed once with 0.85% NaCl solution. 
 
Chip preparation 
The microfluidic chip we designed integrates 96 independent pathways in parallel and can hold 
96 kinds of cell samples in parallel channels on a single coverslip (Fig. S11). The measurements 
were automatically performed by scanning the microfluidic chip under a microscope capable of 
single molecule detection with a PC-controlled 3D translational stage. The size of the pathway is 
150 µm (width) × 10 mm (length) × 25 µm (height). Samples with fewer than 500 cells, or that 
include many long unhealthy cells or lysed cells, were discarded and re-measured later. All 
samples were measured at least twice on two different days. The microfluidic chips used only 
once for the experiment. 
 
A multi-channel pipette (12 channels, Rainin) was used to inject solution into the channels. For 
this purpose, the spacing between every 4 channel inlets was designed to match the spacing 
between pipette tips. The elasticity of PDMS works sufficiently to seal between the φ0.75 mm 
inlet and disposable plastic tips to inject the solutions. To immobilize bacterial cells on the 
microchannels, the channels were pre-coated with 0.1 % poly-L-lysine. After pre-coating, cells 
were injected into the channels and were incubated for more than 45 minutes for stable binding 
to the channel surface. Floating cells in the channels were washed out by injecting 0.85 % NaCl 
solution, resulting in a single cell layer on the coverslip surface. 
 
Scanning measurement 
An automated scanning measurement was performed as shown in Fig. S12. A combination of a 
phase contrast image and fluorescent image was taken at different positions along the channel 
profile. Typically, 10 sets of image were acquired per channel, resulting in 500-20,000 cells 
observation. To prevent over-saturated images, the camera gain is decreased for subsequent 
images if a very bright pixel was observed in the first image. The relationship between camera 
gain and obtained pixel value has been calibrated in advance. The elapsed time was 25 seconds 
per one channel. The recorded images were saved in 16-bit TIFF format. 
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As controls for microscopy measurement, fluorescein solution and plain NaCl solution in 
separate channels were imaged respectively. The former was used to compensate for the 
heterogeneity of laser illumination in the image field. The latter was used to subtract the dark 
noise count due to the EMCCD property and the autofluorescence background from the 
microchannel and immersion oil. 
 
Image processing 
Automated image analysis was done by LabVIEW software (National instruments). Obtained 
fluorescence images were subtracted with the background image and were flattened using the 
fluorescein solution image (Fig. S13). Phase contrast images were processed through a closed 
filter and a sharpen convolution filter and were thresholded to create binary images. The binary 
images were segregated into particles, which were filtered by an area, minor and major caliper 
lengths (Fig. S14A), in order to exclude overlapped cells, long unhealthy cells, cell debris and 
the other unexpected objects from the analysis. The integrated fluorescence intensity within the 
entire cell area was obtained for each cell and was normalized by cell volume: (2/3)*(cell 
area)*(cell minor caliper length). 
 
Determination of protein copy number distribution 
The auto-fluorescence distribution, obtained from cells lacking fluorophore, was deconvoluted 
from the resulting fluorescence distribution to provide the true protein fluorescence distribution 
(Fig. S14C). The bin number of the histogram was set as the maximum bin number where all 
values of bins in the deconvoluted histogram were positive. Because the standard deviation in 
single molecule fluorescence intensity is small (65%) (Fig. S1A), the YFP intensity distribution 
was not deconvolved from the measured distribution. We expect that the contribution of the YFP 
fluorescence distribution to be negligible to the final result. We determined mean (µ), standard 
deviation (σ), skewness, kurtosis, an inverse of noise (µ2/σ2 ≡ α) and Fano factor (σ2/µ ≡ β) from 
the deconvoluted histogram. The errors of these parameters were provided by a bootstrap 
resampling method with 1,000 samples. All the distributions were fitted with both a gamma 
distribution and a sum of two gamma distributions. A least chi-square fitting was done based on 
error values for individual bins of the histogram estimated by a bootstrap. To check for 
bimodality, a likelihood-ratio test was performed using the difference in the chi-square residual 
values between one gamma and two gamma distributions. Data of the strains that have bimodal 
distributions were re-measured, and were discarded if they were not reproducible. Bimodal 
distributions are mainly observed in samples that have a mixture of healthy and unhealthy cells. 
 
We divided the obtained fluorescence count by the single molecule fluorescence, measured as 
described in Supplementary data section 1, to obtain copy numbers.  
 
Characterization of protein localization 
The characterized proteins were divided into (i) membrane/cytoplasm localization and (ii) 
punctate localization. (i) Membrane/cytoplasm localization was characterized by comparing the 
average of fluorescence values at the contour of cell and at the inside of cell. We calculated the 
ratio of fluorescence detected on the edge compared to inside of the cell (E/I) and obtained their 
mean and standard deviation. (ii) Punctate localization was characterized by counting spots in 
cells. We applied an open filter to the fluorescence image and calculate the difference between 
images before and after filtering (Fig. S15), which highlights only punctate localization. The 
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differential image was transformed to a binary image and filtered, and the number of particles 
within the cell area was counted for each cell. 
 
Parameters obtained from the automated image analysis 
From the image analysis, we determined the following parameters. 

(1) Number of analyzed cells 
(2) Mean, SD, skewness and kurtosis of single-cell fluorescence distribution 
(3) α = Mean2/SD2 and β = SD2/Mean 
(4) The error value of parameters in (2) and (3) obtained by a bootstrap 
(5) Α and Β value and their errors in fitting a i) unimodal or ii) bimodal gamma distribution 

to the histogram 
i) discrete unimodal gamma distribution: 
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ii) discrete bimodal gamma distribution: 
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(6) Chi square values and p-values for the fit of a unimodal and bimodal distribution to the 
histogram 

(7) The 2× logarithm of likelihood ratio of bimodal to unimodal distribution (= difference 
in chi square values) and p-value for unimodality 

(8) Result of bimodality test with a type I error rate of 0.1% (T ≥ 12.8) 
(9) Maximum bin number where all values of bins in the deconvoluted histogram are 

positive (maximum: 45) 
(10) Ratio of fluorescence from the edge to inside of the cell.  
(11) The number of identified fluorescent spots per cell 
(12) Cell area, width, length, and volume (= 2/3 × area × width) 

 
Z-score calculation 
To characterize the bias of parameters for each functional category, we determined the Z-score to 
describe the statistical probability of selecting the datasets using the category as a criteria. The Z-
score is defined as: 

σ
µ−

=
XZ , 

where X is the average rank of a parameter for a data subset corresponding to genes belonging in 
a certain functional category. µ and σ are the mean and standard deviation of the average ranks 
simulated by a 1000 times bootstrap resampling where an number of random subsets of genes 
equal to the size of the entire population were selected from the population. Z scores of more 
than 3 (indicated by red) represent a significantly larger than average quantity compared with the 
whole genome distribution with >99.9% confidence, and Z scores of less than -3 (indicated by 
blue) represent a significantly smaller than average quantity. 
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We also used the Z-score to characterize the deviation of the rank of parameters within a subset 
of genes to examine similarity of parameters in a category. Here µ and σ were the mean and 
standard deviation of the rank deviation obtained by a bootstrap. 
 
In addition, the correlation between parameters was characterized by the Z-score, where X is the 
average of a correlation coefficient for a data pair subset in a category. µ and σ are simulated by 
a 1000 times bootstrap where random subsets of data pairs were selected. 
 
References for data used for Z-score calculations 
 
Biological Property Reference 
Gene annotation and gene 
coding information ECOCYC (http://ecocyc.org/links.html) 

Mass spectroscopy and 2D 
gel data Lu, P. et al., Nature Biotechnology, 2007 (S4) 

Operon Regulon DB 
 (http://regulondb.ccg.unam.mx/html/Data_Sets.jsp) 

CAI index Sharp, P. M., Nucleic Acids Res., 1987 (S5) 

Gene essentiality Profiling of E. coli chromosome 
 (http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp) 

TF gene interactions Regulon DB 
 (http://regulondb.ccg.unam.mx/html/Data_Sets.jsp) 

PPI information Butland, G. et al., Nature, 2005 (S1) 
DNA and RNA folding 
energy UNAFold (http://dinamelt.bioinfo.rpi.edu/unafold/) 

Conserved protein number Comprehensive microbial resource 
(http://cmr.jcvi.org/) 

 
p-value of essential genes copy number 
We confirmed that, given the distribution of a mean abundance for all genes in Figure 2A, the 
observation of 108 out of 121 essential genes having a mean abundance greater than 10 
molecules per cells is statistically significant compared to what is expected for 121 random genes. 
We estimated the p-value to be < 10-11 from the chi-square test (χ2(1) = 50).  
 
Real-time experiment of protein expression 
Real-time observation of library strains were done as described previously (S6). Cells were 
centrifuged and placed between a 3% agarose gel pad and a glass coverslip. For low copy strains, 
the gel pad was made with M9 media supplemented with 0.4% glucose, 0.05 % casamino acid, 
0.15 µg/ml biotin and 1.5 µM thiamine. For high copy strains, the gel pad was made with M9 
media supplemented with 0.4% glucose, amino acids, vitamin and 0.2% casamino acid. The gel 
was set in an imaging chamber (FCS2, Bioptechs) and was kept at 30°C during observation. 
Image acquisition was done every 5 minutes for 5-9 hours. For low copy strains, a higher laser 
power (~600 W/cm2) was used to image single molecules where 50 ms exposure followed 
immediately by 2 additional images to completely photobleach existing fluorophores. In contrast, 
for high copy strains, a lower laser power (~1.3 W/cm2) was used for the fluorescence excitation 
to prevent photobleaching. To exclude the frame-to-frame variation of fluorescence intensity due 
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to the inconstancy of auto-focusing, shutter timing and a stage drift, we normalized the 
fluorescence values of cells by their average for each frame. 
 
Probe design for fluorescence in situ hybridization (FISH) 
The FISH probe is comprised of a 20-mer oligodeoxynucleotide (Venus495r, 5’- 
TCCTCGATGTTGTGGCGGAT -3’) with a covalently linked a dye molecule (Atto 594) on the 
5’ end. The oligonucleotide sequence was chosen such that it is the reverse complement of a 
region on the yfp mRNA that has the least frequency of secondary structures. Atto 594 (Atto-tec 
GmbH) was chosen for its brightness, photostability, and the reduced nonspecific binding during 
in situ hybridization (data not shown). The dye is linked to the oligonucleotide via NHS ester 
reaction, followed by RNase-free HPLC purification (custom made by Sigma-Aldrich). 
 
Cell preparation for FISH 
Library strains were inoculated and grown under the same condition stated above. At ~ 0.3 OD, 
950 µl of each cultured strain in the deep 2 ml 96-well plate was rapidly mixed with 950 µl of 
pre-chilled 2X fixation solution (7.4% formaldehyde and 2X RNase-free PBS in DEPC-treated 
water (Ambion)). The mixture was shaked vigorously briefly and incubated on ice for 15 min. 
The cells were then pelleted with a tabletop centrifuge (Sorvall Super T21) for 10 min at 3,800 
rpm, and washed twice with ice-cold RNase-free PBS solution (Ambion). After the wash, the 
cells were resuspended in 70% ethanol and incubated at RT for 1 hour. Finally, the cells were 
spun down and washed with the Wash Buffer (25% formamide (Ambion) and 2X SSC (Ambion) 
in RNase-free water (Ambion)). The cells were resuspended in ~20 µl of the Wash Buffer. 
 
FISH probe hybridization 
The hybridization protocol was originally adapted from Femino et al (S7), Raj et al (S8), and 
Zong et al (submitted). The condition was further optimized for the YFP probe (Venus495r) in E. 
coli. We used only one single oligonucleotide probe with only one dye molecule. This strategy 
offers an advantage of counting overlapping spots using either intensity or photobleaching steps. 
This is important for us when measuring the mRNA-protein correlation, because it requires the 
knowledge of the absolute copy number in each cell. It is still advantageous to use multiple 
probes in most cases, especially in bigger cells where single fluorophore cannot be easily 
detected. 
 
The Hybridization Buffer consists of 25% formamide, 2X SSC, 10% dextran sulfate (Sigma 
Aldrich), 0.2 mg/ml BSA (New England Biolabs), 2 mM ribonucleoside vanadyl complex 
(Sigma Aldrich), and 0.1% E. coli tRNA (Sigma Aldrich). 10 µl of the cells prepared in the 
previous step was mixed with 50 µl Hybridization Buffer and 2.5 µl of 30 nM the FISH probes 
(Atto594-Venus495r) dissolved in RNase-free water and 0.2 mg/ml BSA. The hybridization 
mixture was incubated in a 96-well plate at 30°C for 9 hours. 
 
Following the 30°C incubation, the cells were washed with the Wash Buffer twice, incubated in 
Wash Buffer at 30°C for 1 hour, and then washed once again with the Wash Buffer and with 
PBS once. The cells were resuspended in 10 µl PBS. 
 
mRNA imaging sample preparation 
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The hybridized and washed cells were immediately applied to poly-D-lysine (Sigma Aldrich) 
coated glass coverslips. The coverslips (25 mm × 75 mm, Belco) were cleaned and prepared as 
follows: 30 min sonication in 1 M potassium hydroxide, 30 min sonication in purified water 
(Millipore), 1 min blow dry by Nitrogen gas, 10 min in plasma sterilizer, 40 min in 0.03 % poly-
D-lysine (Sigma Aldrich), 1 min rinse in deionized water, and 1 min blow dry by Nitrogen gas. 
Each coverslip is then adhered to a 16-well silicone gasket (FlexWells, Grace Bio-labs). 
The cells were allowed to adhere to poly-D-lysine coated coverslip for 30 min while covered to 
prevent evaporation. Each well is then washed extensively with RNase-free PBS. After the final 
wash, each well is filled with 140 mM 2-mercaptoethanol (Sigma Aldrich) in PBS, and covered 
with a cleaned glass slide. 
 
Microscopy for FISH experiment 
Single molecule imaging was performed as described previously (S6, S9, S10). An Olympus 
IX71 microscope with a 100X NA 1.35 phase-contrast objective and an EMCCD (Cascade 512B, 
Photometrics) is used in this study. For Atto 594 imaging, a 580 nm fiber laser (MPB 
Communications Inc.) was used. An achromatic quarter waveplate (Thorlabs) was used to create 
near-circular polarization at the objective imaging plane. The fluorescence filter set includes an 
excitation filter (HQ575/50X, Chroma), a dichroic mirror (z594rdc, Chroma), and an emission 
filter (D635/55M, Chroma). The laser intensity at the image plane is ~100 W/cm2. Each image 
was recorded in 1 s. For YFP imaging, a 514 nm laser (Innova 300, Coherent) was used. The 
filter set includes an excitation filter (D510/20X, Chroma), a 525 nm longpass dichroic mirror, 
and an emission filter (HQ545/30M, Chroma). The laser intensity at the image plane is ~100 
W/cm2. Each image was recorded in 100 ms. No statistically significant crosstalk was observed 
between the YFP channel and the Atto 594 channel. 
 
Automated image acquisition using Metamorph (Molecular Devices) allows sequential imaging 
of each 16-well coverslip, as described earlier. YFP and FISH images were recorded for 20-30 
field-of-views for each strain, with an average of ~1000 cells total. Images without laser 
excitation were recorded to serve as offsets of the actual fluorescence images. Images of dilute 
dye solutions were recorded to correct for the slight inhomogeneity of the field-of-view. 
 
Image analysis for mRNA counting 
The phase-contrast images and the YFP images were analyzed as described in the earlier section. 
The FISH images were subtracted with camera offset, and the field-of-view was flattened using 
the image of dilute dye solution described in the previous section. Fluorescence spots 
corresponding to localized mRNA were identified with a peak-searching algorithm written in 
Matlab (The MathWorks). The algorithm searches for pixels that have both (i) pixel intensity 
above a pre-defined threshold and (ii) image curvature above a pre-defined threshold. The 
thresholds are adjusted so that all fluorescent spots are identified via visual inspection, and that 
all identified peaks correspond to actual spots. For each fluorescent spot, the fluorescence 
intensity above background was calculated in the 5-by-5 pixels (corresponding to 800 × 800 nm) 
surrounding the peak. If more than one peak are identified within the 5-by-5 region in a same cell, 
the masks are merged so that each pixel is counted only once. For each cell, the following 
information were recorded: the total FISH signal, the total YFP signal, the size of the cell, and 
the lengths of the major and minor axes of the cell. The accuracy of the analysis method is 

Page 7 of 48  



illustrated in the following sections, where we discuss the false-negative and false-positive rates 
of the assay. 
 
To reduce the gene dosage effect on the mRNA copy number distribution, a small set of cells 
within a certain size range was used for further analyses. The area of the cells ranges from ~1.9 
µm2 to ~4 µm2, depending on the stage of the cell cycle. We selected the cells whose sizes are 
between 1.92 µm2 to 2.30 µm2. The fluorescence signal histograms are computed for each strain, 
including a mock strain which contains no YFP gene. The resulting histograms are deconvolved 
from the histogram of the mock strain, which represents the nonspecific signal level. The 
fluorescence signal is then normalized to the signal from a single fluorophore to convert to the 
absolute number of probes. The 95% confidence level in determining the mean fluorescence 
level, the Fano factor of the distribution, and the mRNA-protein correlation were estimated by 
bootstrapping. 
 
Ensemble mRNA copy number measurement 
To independently confirm the fidelity of FISH measurement, we compared the average mRNA 
copy number per cell measured by FISH with the number measured by quantitative PCR in bulk. 
The comparison was done in the E. coli strain PC2a, in which the YFP expression is control 
under the lac promoter at the lac operon locus on chromosome. The bulk measurement is 
performed in courtesy of Professor Nam-Ki Lee, with the following procedures. The cells were 
grown overnight in M9 glycerol medium supplemented with amino acids and vitamins at 37C. 
On the next day the culture was diluted 200 times into fresh M9 glycerol medium supplemented 
with amino acids, vitamins, and 1 mM IPTG. When the O.D. of the culture reached 0.2-0.3, 300 
µl of the culture was transferred into 600 µl bacterial RNA stabilizer solution (Invitrogen). Total 
RNA was extracted using the RNeasy kit (invitrogen) following the manufacturer’s guide. The 
residual gDNAs was removed using the TurboDNA-free kit (Ambion). The cell density of the 
culture was measured using a cell counter (Hausser Scientific) (REF). Reverse transcription was 
performed using SuperScript III (Invitrogen) at 50°C for 1 hour with primer sequence 5’-
CGTCGTCCTTGAAGAAGATGG. Quantitative PCR was performed using the 7500 Fast Real-
Time PCR System (Applied Biosystems), with a Taqman probe (5’-
(FAM)ATCGCCCTCGCCCTC(MGB)) and two primers (5’-CGTCGTCCTTGAAGAAGATGG 
and 5'–CCGACCACTACCAGCAGAACA). Calibration was done using mRNA generated by in 
vitro transcription. The E. coli strain BW25993 was harvested, and mixed with known amount of 
venus mRNA at the amount of 1.0 × 1010, 1.0 × 109, 1.0 × 108, and 1.0 × 107 molecules, 
respectively. We extracted mRNA three times independently and for each extracted mRNA six 
RT-PCR reactions were performed. The calibration was performed in parallel with each 
measurement. 
 
RNA half-life measurement by RNA-seq 
DY330 cells were grown in M9 media (0.4% glucose, vitamins, amino acids, thiamine, biotin) at 
30°C with shaking until OD600 = 0.3. 8 ml of cells were removed to 900 µl of cold 90:10 
EtOH:phenol. Rifampicin (Sigma Aldrich) was added to a final concentration of 500 µg/ml, and 
further 8 ml aliquots of cells were removed at 2, 4, 6 and 8 min post drug. The cells were then 
harvested by centrifugation and washed once with 0.85% NaCl solution before storing in -80°C.  
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Frozen pellets were resuspended in 1 mg/ml lysozyme TE buffer and lysed by an equal volume 
of Cell Lysis Buffer (Purgene). Acidic phenol/chloroform (OmniPur) was added, and the 
aqueous layer was collected. The aqueous layer was extracted once in chloroform, and RNA was 
collected in RNA Clean and Concentrator columns (Zymo Research) and eluted in water. 
Contaminating DNA was removed by DNase I (NEB) treatment for 30 min at 37°C, and the 
resulting RNA repurified. 
 
Starting with 5 µg of RNA, rRNA was removed first using Ambion’s MICROBExpress 
following manufacturer’s protocol, except RNA was collected using Zymo’s RNA columns. A 
second rRNA removal step was performed following the protocol described in Affymetrix 
Expression Handbook, substituting enzymes MMLV (Ambion), RNase H (NEB), and DnaseI 
(Amplification grade, Invitrogen). 150-300 ng of RNA remain. 
 
The RNA was fragmented using Ambion’s Fragmentation Reagent at 70°C for 5 min, and 
collected by Zymo’s RNA columns. RNA seq libraries were prepared according to Illumna’s 
protocol, using NEB enzymes and barcoded adapters (Integrated DNA Technologies). The 
libraries were pooled and sequenced with an Illumina GA II machine (Center for Systems 
Biology, Harvard University). Sequences are available online (GEO accession number 
GSE21341). 
 
After pooling barcodes and aligning the tags to the W3110 genome, the tag count for each gene 
was divided by the gene size to obtain the expression levels as the relative copy numbers of 
mRNA. Then, the sum of expression levels was normalized to give ~1350 molecules/cell 
(Bionumbers, R. Milo, et al, NAR, 2009). 
 
 
Supplementary data 
 
1. Calibration of single molecule fluorescence 
The fluorescence count corresponding to single molecule fluorescence was calibrated in two 
ways (Fig. S1); one is a single molecule method (i) and the other is a bulk method (ii). We 
confirmed that the values from these two methods are consistent with each other. 
(i) We measured SX4 strain expressing membrane-bound Tsr-Venus (S9). We obtained 

fluorescence counts from single Venus molecules by measuring the localized fluorescent 
spots. The obtained count was 161 counts/molecule/average cell volume. The cell volume 
is an average over the population. 

(ii) We purified Venus protein and compared its fluorescence counts with that of a culture of 
a library cell strain (AcpP-Venus). The concentration of purified Venus ([Venus]) was 
measured by fluorometer (DU800, Beckman Coulter), and the density of cells (C) was 
obtained by a cell counter (Hasser Scientific Partnership). We injected cells, purified 
Venus, and 0.85% NaCl solution into different microfluidic channels pre-coated with 
BSA, and their fluorescence was observed with a 10× objective lens (Olympus). 
Comparison of fluorescence counts between those channels gives the protein number per 
cell for the cell sample, n, by the equation:  
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where NA is the Avogadro’s number, and Fc, Fv and Fw are the fluorescence counts from 
cells, Venus protein and NaCl solution, respectively. By comparing the value with the 
steady-state library data, we could obtain the calibration count consistent with the value 
determined in (i). The average fluorescence per cell for AcpP was 741,223, calculated as 
described in Methods; this gives 141 counts/molecule/average cell volume. 

 
2. Consistency with single molecule localization method 
Instead of counting protein molecules by detection by localization (S9), we used a deconvolution 
method to determine the protein count. The deconvolution method has several advantages: it can 
measure both low and high copy proteins, and is not affected by protein localization. To check if 
the deconvolution method is consistent with the results from localized single-molecule counting, 
we measured the abundance of localized Tsr-YFP molecules in strain SX701 (S6) as a function 
of an inducer, TMG. We found that the induction kinetics of tsr-venus is the same whether 
measured by counting localized molecules or by deconvolution (Fig. S2). This indicates that the 
deconvolution method has enough sensitivity and resolution to detect similar changes as the 
localization method. 
 
3. Detection limit of the measurement system 
We first confirmed the single molecule sensitivity of our microscope by observing a one-step 
photobleaching of low-copy, membrane-bound library strains (Fig. S14B). We checked the 
detection limit of our measurement system by deconvoluting the fluorescence histogram of wild 
type cells from the auto-fluorescence histogram of the control cells. The limit was determined to 
be 0.08 ± 0.08 /cell (mean ± SD, N = 15), which allows detection of 99.3% of the library data. 
We also verified the accuracy of our measurements by showing that measurements made on two 
separate occasions are largely reproducible (r = 0.92, Fig. S3A). We also determined the 
detection limit of protein noise to be ~0.01 by measuring control samples (Fig. S3B). 
 
4. Miller assay 
We use a reporter protein, LacZ, to check that fusing SPA-Venus (SPA is a scar sequence from 
the previous library) or Venus to proteins did not affect their expression levels. Assuming that 
the β-galactosidase (β-gal) activity of LacZ is unchanged by C-terminal protein fusions, we can 
use the Miller assay to report on LacZ protein abundance. We can vary inducer (IPTG or TMG) 
concentration to achieve different levels of LacZ expression, to mimic low or high copy proteins. 
The Miller assay was performed using the yeast β-galactosidase assay kit (Pierce). We measured 
three different constructs: 1) LacZ, 2) LacZ + Venus, 3) LacZ + SPA + Venus. The C-terminal 
fusions of Venus and SPA-Venus resulted in at most a 2-3 fold reduction at high expression 
levels of LacZ as measured by β-gal activity (Figure S4). There was less perturbation in protein 
expression when LacZ protein was at low concentrations. This suggests that the C-terminal SPA-
Venus tag did not cause significant changes in protein expression levels. We also confirmed that 
the β-gal activity is proportional to the observed fluorescence value (Fig. S4C). This shows that 
there is no appreciable self-quenching of fluorescence at high expression levels. Furthermore, the 
direct comparison between the fluorescence and β-gal activity shows that the fluorescent reporter 
is linear for at least three orders of magnitude. 
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5. Global relationship between parameters. 
Figure S5 shows global relationships between obtained parameters. The mean-skewness graph 
and the mean-kurtosis plots (Fig. S5) showed a monotonous decrease with a rise of mean, 
describing that the shapes of protein distributions are changed from a skewed distribution with a 
peak at zero to more symmetric distribution with a non-zero peak. The correlation coefficients 
and Z scores between these parameters are summarized in Table S2.  
 
In addition, we characterized the preference of parameters for each functional category by Z-
score. Some functional categories are strongly correlated with some parameters. For example, 
essential proteins have a strong correlation with high a (Z = 7.5) and high b (Z = 5.3). As 
expected, membrane proteins showed high edge/inside ratio (Z = 3.4-7.2), and transcriptional 
repressors indicated high punctuate localization (Z = 4.1). The mean expression levels are not 
strongly correlated with the chromosomal positions. These results describe that some protein 
expression characteristics are significantly correlated with functional properties. The results were 
summarized in Table S3 
 
6. Comparison with yeast 
Newman et al. has investigated for >2,500 high-abundance protein in yeast using a flow 
cytometry (S11). The work examined noise properties of a subset of cells in which cells were 
gated for size and granularity using forward/side scatter parameters. Figure S6A shows yeast’s 
noise and Fano factor, which is roughly estimated from the yeast data, plotted over the E. coli 
data. The E. coli data at high abundance was similar to the ungated yeast data, but differed from 
the gated data.  
 
We hypothesized that this difference is due to the fact that in E. coil the noise is not sensitive to 
cell size and granularity. Newman’s data reported that cell size or cell growth state can affect 
noise properties by 200-300 % (S11). To check this in E. coli, we analyzed cell length 
dependence on the protein distributions. The data indicated that the noise property was almost 
independent of the cell length (Fig. S6B). This means that the heterogeneity of cell size and 
granularity is not a dominant factor in E. coli protein noise, unlike in yeast, and suggests that the 
maximum noise level without gating might be similar between E. coli and yeast. 
 
7. The measurement limits of noise parameters 
We confirmed that the detection limit of the microscope system is below the noise measured for 
all strains. For this purpose, a bright cell strain (open symbols in Fig. S3B) and a fluorescent dye 
solution (closed symbols) were measured with various laser intensities. This control 
measurement showed that the fluorescence intensity was linear with respect to the concentration, 
and the instrument noise was smaller than the biological noise for the entire range of data 
collection, indicating that the observed two-scaling is not caused by measurement limitations of 
the setup or shot noise from low signal intensities. 
 
8. Noise propagation in high copy strains 
By performing a real-time observation of protein levels for four randomly selected high copy 
library strains, we demonstrated that a slowly varying heterogeneity exists between cells in a 
population (Fig. 2C). To quantitatively understand the relationship between the variation within a 
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single cell over time and the variation among different cells at a particular moment, we analyzed 
the fluorescence time traces in two ways. 
 
First, we used the F-test to show that the variation within a single cell cycle is much smaller than 
that of the population. Here F is defined as F = η2

cell-to-cell/η2
single, where η2

single is the amplitude 
of protein level fluctuations during a cell cycle, η2

cell-to-cell is the cell-to-cell variation of protein 
levels. We confirmed a significant difference between dynamical noise of single cells and 
population noise (F(2600, 2052) = 5.8-6.4, p < 0.0001). This result justifies our assumption of 
static heterogeneity in the derivation of the model used in the main text. 
 
Second, we examined the timescale it takes for the variation within a single cell lineage to reach 
that of the population. In other words, we aimed to probe the timescale for noise to be ergodic 
(population average = temporal average). We calculated the noise from temporal fluctuations of 
a single cell using time windows of varying sizes (Fig. S7A). If gene expression fluctuations are 
ergodic, the temporal fluctuations of a single cell over a very large time window should match 
the cell-to-cell variation across the population. We observe that several cell cycles is insufficient 
for the noise of a single cell to match the population noise. 
 
To estimate the timescale required for ergodicity, we approximated the temporal noise as 
asymptotically approaching the population noise in an exponential manner as we increase the 
size of the time window. This approximation is motivated by the following analogy: For a 
particle diffusing within a harmonic potential from an initial position, the accumulated variance 
of position exponentially approaches the steady state value when the time interval approaches 
infinity. 
 
Fitting an exponential function to the temporal noise versus time window gives as estimate of 8-
21 cell cycles for the timescale of long time fluctuation. Because we are extrapolating longer 
timescales from short measurements, this is only an estimate.  
 
We also found that applying an autocorrelation analysis provided a decay time of 1-2 cell cycles, 
as previously observed (S18). However, we conclude that this almost linear decay in our data and 
Rosenfeld's data is the result of an insufficient time window, since our direct comparison of 
temporal and population noise indicates that 1-2 cell cycles are insufficient to average out 
extrinsic noise (Fig. S7B). We note fluctuations occur at many different time scales. Our time 
traces only have 4-5 cell cycles, i.e. 500 min. During this time, autocorrelation function is 
sufficient to determine the short timescale of fluctuation. However, fluctuations at longer time 
scales can be estimated by the method described above. 
 
How is such a long timescale generated? Our extrinsic noise is likely determined by global 
factors such as ribosomes and RNA polymerases, not specific transcription factors participating 
in a positive feedback loop for each gene. We know that ribosomal and RNAP activities have 
very complex regulation and are highly sensitive to growth conditions, but how absolute 
transcription or translation rates are regulated on a single cell basis is still largely unknown. It is 
very probable that there are feedback loops in the regulation of global factors and cell 
metabolism. The value of 8-21 cell cycles is an estimate, but there are other examples of 
epigenetic effects in bacteria with ~10 cell cycles. 
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9. Formulation of intrinsic and extrinsic noise 
We start with the model of stochastic gene expression: 

 .  
In this scheme, protein production randomly occurs in bursts, in which each mRNA molecule is 
translated into an exponentially-distributed number of protein molecules before its degradation, 
as supported by previous observations (S9, S12).  
 
We note here that mRNA life time is substantially short compared to the protein dilution time (γ1 
>> γ2) in E. coli. In E. coli, proteins are generally degraded on timescales of significantly longer 
than the cell cycle. Koch and Levy (34) found that <0.1% of protein mass is degraded per hour in 
E. coli growing in exponential phase. Therefore, most of the protein lifetime is controlled by a 
dilution due to cell division, whose timescale equals with the cell cycle (~150 minutes). In 
parallel, we have determined by RNAseq that the mRNA of most genes has lifetime between 2 to 
10 minutes (Section 13). These observations support the model of an exponential protein burst. 
 
We define the mRNA burst frequency and size as a (= k1/γ2) and b (= k2/γ1), considering that the 
mRNA life time is short compared to the protein life time (γ1 >> γ2). Assuming a and b are 
uniform among cells in a population, the steady-state distribution can be solved as a gamma 
distribution by solving a chemical master equation based on this scheme (S13). For low copy 
proteins, a discrete master equation gives a more accurate solution as a negative binomial 
distribution (S14). In the argument below, we use the negative binomial distribution for an 
accurate description. 
 
In this section, we extend it to the case that the a and b values have static cell-to-cell variation. 
We assumed that the variation of a and b are given by the stationary probability density functions 
of p(a) and p(b) and that the a and b are independent of each other. Under this assumption, the 
steady-state protein number distribution is given by: 

∫ ∫
∞ ∞

=
0 0

)()(),|()( dadbbpapbanpnp ,      (S1) 

where n is the protein number. p(n|a, b) is the conditional probability for a and b, equal to a 
negative binomial distribution: 
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where Γ(a) is the Gamma function. The first and second moments of this distribution are given 
by: 
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where 〈an〉 and 〈bn〉 are the nth moments of a and b, defined by: 〈an〉 = ∫anp(a)da and 〈bn〉 = 
∫bnp(b)db. Therefore, the noise, η2 ≡ σ2/µ2, is given by: 
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ηa
2 and ηb

2 are the noise of a and b values defined by: ηa
2 = σa

2/µa
2 and ηb

2 = σb
2/µb

2, where µξ = 
〈ξ〉 and σξ

2 = 〈ξ2〉 - 〈ξ〉2 (ξ = a or b). This noise equation can be separated into an intrinsic noise 
term independent of ηa and ηb, and an extrinsic noise term: 
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In the case of the gamma distribution for continuous variables, the noise values are the same 
except that the term 1/µ is removed in equations (S6) and (S7).  
 
The co-existence of µ-1 independent terms and µ-1 dependent terms explains the two scaling of 
noise (Fig. 2B). Without the extrinsic noise, the noise only has a µ-1 dependent term resulting in 
a single 1/µ scaling, assuming that translational efficiencies for all genes are constant or the same 
order. This constant average translational efficiency would be natural because gene-specific gene 
regulation often happens in the transcriptional process in bacteria. The incorporation of extrinsic 
noise adds µ-1 independent terms to the total noise, resulting in another flat scaling that appears 
at high expression levels as the µ-1 terms vanish. Thus, the two noise scaling is due to the 
existence of extrinsic noise in addition to intrinsic noise.  
 
This equation also explains the distributions of the noise plot in Fig. 2B. At low copy numbers, 
1/µ represents the lower limit of the noise, which is the case that no extrinsic noise (η2

a = 0 and 
η2

b = 0) and minimum protein burst size (b = 1) is assumed in Eqn. 4. The noise of each protein 
is set by adding the extrinsic noise and burst size contribution above this limit. This is why 
almost all noise plots are scattered above 1/µ, which we call as the 1/µ scaling. A different lower 
noise limit is also found at high copy numbers, which is dominated by the extrinsic noise. 
 
10. Real-time observation of low copy strain 
The heterogeneous stochastic gene expression model (Section 9 in the supporting data) predicts 
that, in low copy proteins, the α and β values obtained by the noise profiling experiments equal 
the a and b values, that is the frequency and size of the mRNA transcriptional bursts, 
correspondingly. This has been shown to be true for a selected system (S12). To confirm this 
equality more generally, we directly observed the burst occurrence of 3 low-copy membrane-
bound library strains by using the real-time method of visualizing individual protein localization 
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(S9). We found that the observed a and b values are proportional to the α and β values (Table 
S4), consistent with our prediction. The scaled difference in the b and β value would be caused 
by the difference in measurement environments between the real-time and steady-state 
experiments. For example, cells for the real-time experiment were grown on an agarose pad 
while cells for the steady-state experiments were grown in liquid culture. 
 
11. Identification of global extrinsic noise from two-color experiments 
There are two dominant classes of extrinsic noise factors affecting the noise scaling: (i) global 
extrinsic factors and (ii) gene-specific extrinsic factors. Whereas the global factors affect all the 
genes in a similar way (e.g. heterogeneity in RNA polymerase and ribosome numbers, or cell 
state), the gene-specific factors affect only specific genes (e.g. heterogeneity in transcription 
factor numbers). The dominance of the global factor noise causes a global correlation for all 
protein levels in a single cell, meaning that the extrinsic noise contributions can be determined 
by measuring correlations between multiple genes. 
 
In this section, by modeling the global extrinsic noise factors and the gene-specific extrinsic 
noise factors, we formulate the relationship between the global extrinsic noise and the global 
protein level correlation. We assume that the a and b values are provided as the result of the first 
order reaction: 

Gaaa ζ=  and ,        (S9) Gbb =

where aG and bG are the global contributions to a and b, and aζ is the gene-specific contribution 
to the a value for protein ζ. For example, aζ may be proportional to the concentration of an 
activator and aG may be proportional to the concentration of RNAP. Those factors, aG, bG and aζ, 
are assumed to have cell-to-cell variation described as probability densities, p(aG), p(bG) and 
p(aζ), respectively, and are assumed to be independent of each other, similar to Section 10. 
Under these assumptions, the distribution of the number of protein ζ, nζ, is expressed as: 
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where the conditional probability, p(nζ|aζ,aG,bG), is given by the negative binomial distribution: 
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Using (S3) and (S9) to (S11), the mean and standard deviation of protein number are given by: 
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Therefore, the total noise is described by: 
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where µξ ≡ 〈ξ〉, σξ
2 ≡ 〈ξ2〉 - 〈ξ〉2, ηξ

2 ≡ σξ
2/µξ

2 (ξ = aζ, aG, bG). η2
int is the intrinsic noise caused by 

a stochastic production and degradation of RNA and protein molecules. η2
ext-global is the global 

extrinsic noise, probably due to RNA polymerase or ribosome number fluctuations. η2
ext-gene is 

the gene-specific extrinsic noise scaled by gene-specific regulation such as transcription factors. 
 
In addition, we assumed that the parameters, aG, bG and aξ, are the only determinants of 
correlation among the protein levels of different genes. Under this assumption, the joint 
probability of the numbers of protein x and y is given by: 
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           (S18) 
and the conditional probability, p(nx,ny|ax,ay,aG,bG), has the relationship: 

),,|(),,|(),,,|,( GGyyGGxxGGyxyx baanpbaanpbaaannp = .  (S19) 
From (S3), (S9), (S11), (S18) and (S19), the first moment of the covariance of the numbers of 
protein x and y is given by:  

22

0 0

),( GGyx
n n

yxyxyx baaannpnnnn
x y

=≡ ∑ ∑
∞

=

∞

=

    (S20) 

By dividing (S20) by (S12), we obtained the relationship: 
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where ηG
2 is a sum of the global factor noise defined in (S16). The derived equation shows that 

the global noise factor is related with the normalized correlation factor, 〈nxny〉/〈nx〉〈ny〉. 
 
To determine the global factor noise, we randomly selected 13 combinations of doubly-labeled 
high expression gene pairs, where one gene is probed by Venus and the other is probed by 
mCherry. We observed positive correlations (r = 0.2-0.8) for all 13 two-protein combinations 
(Fig. 2D), confirming the existence of a global noise factor. We found that the normalized 
correlation factors, 〈nxny〉/〈nx〉〈ny〉, was very uniform for all measured strains (〈nxny〉/〈nx〉〈ny〉 = 
1.09 ± 0.03, mean ± SD, 13 strains), supporting the gene-independent property of the extrinsic 
noise. Thus, the global noise factor was determined to be 0.09. This means that the robustness of 
any gene function must take into account the unavoidable 30% variation in expression levels. 
The determined extrinsic noise limit is consistent with the limiting value of protein noise. 
 
The determined extrinsic noise limit is consistent with the limiting value of noise obtained in our 
system-wide noise measurements (Fig. 2B). At high mean expression levels, and in the absence 
of other gene-specific noise, we note that η2 ≈ ηext-global

2. Thus, the combined contributions of 
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this global noise and the µ-1-scaled intrinsic noise set the lower fundamental limit of total noise. 
Contributions from gene-specific noise, ηext-gene

2, will increase the noise value for particular 
genes above this limit. 
 
12. Real-time dynamics of correlation between two gene expressions. 
We studied the dynamic properties of global extrinsic noise by performing a real-time 
observation of the two-color strains. Figure S8 shows the real-time two-color traces. The two 
protein levels are correlated, suggesting the contribution of global extrinsic noise. We analyzed a 
correlation coefficient for different time window sizes as in Section 8. For very short observation 
time windows (<20 minutes), correlation is small because intrinsic fluctuations within each gene 
(Fig. S9). However, on longer timescales, the two colors become correlated because of the 
common extrinsic noise. Thus, one would expect a fast rise in the correlation from intrinsic noise, 
and then an eventual plateau at the level of correlation from extrinsic noise. The 20 minute 
timescale would correspond to the intrinsic noise fluctuations. 
 
13. Consistency with other bulk measurement 
In this work, we have shown that average protein abundances span five orders of magnitude. We 
note that this is consistent with previous observations. Previously a mass spec and western blot 
analysis (S4) has shown an abundance data for high copy genes in an E. coli strain (K-12, MOPS 
media), and has indicated that the average abundance spans 103-104 magnitude, which is largely 
consistent with our result. We confirmed that their data sets, despite the different growth 
condition and strain background, are largely correlated with our data (r = 0.58 and 0.48, 
respectively), especially for high copy numbers, as shown in Figure S21. In addition, for a 
specific gene (LacZ), we have already confirmed that the YFP fluorescence is linearly 
proportional to its enzymatic activity at different expression levels on 2-3 orders of magnitude 
(Section S4 and Fig. S4).  
 
14. Validation of single molecule detection in FISH 
The detection of single hybridized probes was validated by the observation of single-step 
photobleaching (Fig. S17). When multiple mRNA molecules are localized within a diffraction-
limited volume, multi-step photobleaching was also observed (Fig S18). Prior to the last 
photobleaching step, the average signal strength is the same as that of a single fluorophore with 
>95% confidence. The distribution of the signal intensities from single fluorophores (Atto 594) 
was Gaussian-like, with ~27% variation (Fig. S17).  
 
15. Determination of false-positive and false-negative in single molecule FISH 
To determine the false-positive rate (including nonspecific hybridization) in our assay, the same 
FISH method and analysis were applied to the E. coli strain BW25993 (S15) which contains no 
YFP coding sequence. One hybridization event was detected in an average of ten cells, indicating 
a false-positive rate of 0.1 per cell. Similarly, same false-positive rate was detected in an E. coli 
strain that contains the YFP coding sequence and in which the expression of the yfp mRNA was 
suppressed under the lac promoter (strain PC2a). The mRNA expression level in this strain was 
determined to be < 0.04/cell (S9), which is below our false-positive rate. The fact that we 
observed the same false-positive rate in the wild type strain and in the strain that contain the YFP 
coding sequence but no yfp mRNA indicates that there is minimal hybridization between the 
FISH probe and the genomic DNA under the experimental conditions. The intensity distribution 
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of the false-positive signals resembles that of a single fluororphore, suggesting that the signal 
arose from actual probes, rather than noise in the imaging system, that are nonspecifically bound 
in the cell. 
 
To determine the false-negative rate for our assay, we compared the mRNA copy number per 
cell measured by FISH verses that measured by quantitative PCR in bulk. E. coli strain PC2a, in 
which YFP is induced under the lac promoter, was grown in M9 glycerol minimal medium 
supplemented with 1 mM IPTG, amino acids, and vitamins, and was harvested in log phase for 
the proceeding FISH, RNA extraction, or cell counting. The average yfp mRNA copy number 
per cell measured by quantitative PCR is 4.1 ± 0.7 (SEM, N = 6), whereas that measured by 
FISH is 3.77 ± 0.07 (SEM, N = 6,528). Therefore, the detection efficiency of our FISH assay is 
~92%. 
 
16. Comparison of YFP fluorescence in live cells and in fixed cells 
Figure S19 shows that the YFP fluorescence after FISH is proportional to that in live cells. The 
fluorescence intensity after fixation is at ~70% of the original level in live cells. Comparing the 
fluorescence before and after FISH for each gene, the correlation is r = 0.88. 
 
17. Stochastic model for mRNA-protein correlation under Poissonian or non-Poissonian 
transcription 
Here we describe five basic models to quantitatively understand the lack of mRNA-protein 
correlations (Fig. 4). We show that while the difference in mRNA and protein lifetimes predicts 
a small correlation coefficient, it is not small enough to account for the near zero correlation 
observed for the majority of genes. We found that the extrinsic noise originated from 
translational heterogeneity or autorepression can further reduce the mRNA-protein correlation 
coefficient, whereas the noise from transcriptional heterogeneity can increase the correlation 
coefficient. Based on these models, the lack of correlation is primarily due to the lifetime 
differences between mRNA and protein. However, translational heterogeneity most likely further 
reduces the correlation to zero.  
 
Case 1: Constitutive promoter 
For the simplest case, we consider stochastic gene expression from a constitutive promoter: 

 . . 
In a deterministic model, every cell has the same mRNA level, µm = k1/γ1, and the same protein 
level, µp = k1k2/γ1γ2. 
 

In a stochastic model, every cell has different mRNA and protein levels. To understand 
the correlation of mRNA and protein within a single cell, we analyzed the stochastic reactions 
using the approach devised by Paulsson (S16). The steady-state solution provides the standard 
deviation of mRNA and protein distribution, σm and σp, and their covariance, σmp, to be: 
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And the Pearson correlation, r, is given by: 
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From the FISH measurement for high copy transcripts, we obtained the translation rate to be 0.6-
60/min. With mRNA lifetime of ~5 min and protein lifetime of ~180 min, the correlation would 
be r = 0.13-0.16. This is not quite small enough to explain the almost zero correlation observed 
for the majority of genes. 
 
Case2: Two-state promoter fluctuation 
Here we consider an extended model in which the transcription rate is allowed to fluctuate 
between zero and a finite value. 

  
This so-called “two-state” model has been extensively explored theoretically (S16), and can be 
used to describe many possible molecular mechanisms that causes non-Poissonian mRNA 
distribution, such as RNA polymerase poising or stalling, transcription factor binding and 
unbinding, and chromatin remodeling. It produces non-Poissonian mRNA distribution when the 
transcription fluctuation rates (k+ and k-) are comparable to or slower than the mRNA 
degradation rate (γ1). 
 
Define P ≡ k+/(k+ + k-) as the probability to beat the “on” state, and k0 ≡ k+ + k- as the rate of 
promoter fluctuation. The steady-state solution (dσ/dt = 0) for the variance and covariance is: 
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And the Pearson correlation between mRNA and protein is: 
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The correlation of the two-state model is always greater than the correlation of a constitutive 
promoter, i.e. 
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This suggests that the non-Poissonian, two-state transcription would make mRNA and protein 
more correlated, and thus cannot explain the vanishing correlation observed. 
 
Case 3: Extrinsic noise at transcription level

 

Next we take into account the extrinsic noise that dominates protein level variation. As the real-
time experiments suggested, the extrinsic noise fluctuates much slower than any other time scale, 
and can be viewed as static heterogeneity among a population. The heterogeneity can be at either 
the transcription level or the translational level. In this section we first consider the former case, 
and show that the transcriptional heterogeneity does not reduce the mRNA-protein correlation. 
 
Let’s consider again the constitutive promoter, but this time assume that the rates of transcription, 
k1 and γ1, stably varies from cell to cell, and are independent each other. Using the law of total 
variance and covariance and equations S25, we can write down the components of the 
covariance matrix: 
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where V1 = Var[k1/γ1] = 〈k1

2〉〈1/γ1
2〉 - 〈k1〉2〈1/γ1〉2. And the correlation coefficient is: 
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where V1 = Var[k1/γ1] = 〈k1

2〉〈1/γ1
2〉 - 〈k1〉2〈1/γ1〉2. The second square-root factor is greater than 

one, because the coefficients from the numerator are greater than the coefficients of the same 
order in V1 from the denominator. This can be understood by using the relationship: 〈1/(γ1(γ1 + 
γ2))〉 = (1/γ2)(〈1/γ1〉 - 〈1/(γ1 + γ2)〉) < (1/γ2)〈1/γ1〉.

 
From the Cauchy-Schwarz-Buniakowsky 
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inequality, we obtain the relationships: 〈1/γ1〉2 ≤ 〈1/(γ1(γ1 + γ2))〉〈(γ1 + γ2)/γ1〉, and 1 ≤ 〈γ1〉〈1/γ1〉. 
Using these relationships, the first square-root becomes: 
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Therefore, any heterogeneity at the transcripton level (k1 and γ1) would only result in higher 
mRNA-protein correlation, contrary to our experimental observation.  
 
Case 4: Autorepression 
Here we consider the case that the transcription is affected by negative or positive feedback, and 
the transcriptional rate is given by multiplying k1 and the feedback factor, c(p), where p is the 
protein number. Using relationships in ref. S16, the variance and covariance are given by: 
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Assuming that c(p) is a monotonous function of p, H > 0 corresponds to negative feedback, 
whereas H < 0 corresponds to positive feedback. 〈m〉 and 〈p〉 is the expectation value of the 
mRNA and protein number, respectively. The correlation coefficient is given by: 
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Therefore, in the case of autorepression, r can be negative (when H > 〈p〉r2/(〈m〉r1)).  
 
Case 5: Extrinsic noise at translation level 
Suppose the extrinsic noise arises from the heterogeneity at the translation level. Define k2 and γ2 
as the characteristic translation rate of each cell, and assume that they are independent of each 
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other. Again using the law of total variance and covariance and equations S25, the covariance 
matrix components can be written as: 
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where V2 = Var[k2/γ2] = 〈k2

2〉〈1/γ2
2〉 - 〈k2〉2〈1/γ2〉2. And the correlation coefficient is: 
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It is straightforward that the second square-root is less than one. In the case of γ1 >> γ2, using a 
derivation of the Cauchy-Schwarz-Buniakowsky inquality: 〈k2

2〉 > 〈k2〉2 and 1 ≤ 〈γ2〉〈1/γ2〉 , the 
first square-root becomes: 
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Therefore, unlike two-state transcription (Case 2) and heterogeneous transcription (Case 3), 
heterogeneity in translation rates can further reduce the mRNA-protein correlation from that of a 
constitutive promoter. This offers a plausible cause for the near zero correlation that we have 
experimentally observed. 
 
18. Goodness of fit of gamma distribution to protein number distributions 
Here we show that the gamma distribution provides the best description of protein number 
distributions over the proteome, compared to several other fitting functions, including the 
Gaussian distribution, the Poisson distribution, the lognormal distribution, the negative binomial 
distribution, and the gamma distribution. As seen in Figures 1C-E, the protein distributions are 
often asymmetric, so that Gaussian distributions do not provide a global fit. The Poisson 
distribution is also not appropriate because the ratio of variance to mean of single-cell expression 
levels (Fano factor) is much more than one at high expression levels (Fig. S5, upper middle). 
Lognormal distribution provides similar fitting shapes to the gamma distribution, but we found 
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that gamma distributions can provide comparable fitting even at high copy proteins (Fig. S20A, 
χ2 = 8.2 for a gamma distribution, whereas χ2 = 14 for a lognormal distribution in the case of 
TufA). However, the lognormal distributions fit poorly for low copy protein distributions (Fig. 
S20B, χ2 = 2.3 for a gamma distribution, whereas χ2 = 441 for a lognormal distribution in the 
case of FadB). 
 
The negative binomial is the mathematically accurate solution to Scheme 1. However, the 
gamma distribution works better for practical and experimental reasons. We have carried out a 
systematic and statistical comparison between negative binomial and gamma functions. We 
found that the gamma distribution can be used to fit 1,009 of 1,018 genes with p > 0.05, whereas 
only 823 proteins can be fit equally well by the negative binomial distribution. Practically, this is 
because the negative binomial distribution is sensitive to the calibration of fluorescence per 
protein, i.e. small changes to the calibration result in very different values of a and b in the fit, 
unlike the gamma distribution.  
 
The two-state promoter model (14, S17) has been proposed in order to consider transcriptional 
bursts due to dynamic changes such as chromatin remodeling. While this might be a possible 
model, previous work has shown that a Poisson description of transcription is sufficient to 
describe the observed protein production for low expression levels (S12). In addition, the two-
state model leads to a distribution with four adjustable parameters (S17). The cellular 
fluorescence histograms can be fit better with the resulting distribution function because of the 
higher degrees of freedom, but we found that the errors of fitting parameters became 
significantly higher (Fig. S20C), which means that the quality of our data is not enough to 
determine the four parameters. Thus, we didn’t focus on the two-state model, or any other more 
complicated model, but looked only for the best phenomenological fit. 
 
As the result of the above considerations, we concluded the gamma distribution is the most 
appropriate fitting function for our data.  
 
To show that the protein number distribution follows gamma distribution in the existence of 
extrinsic noise, we simulated the distribution with a fluctuating a and b value with a Gaussian, 
gamma, uniform and lognormal noise. We found that the resulting distributions still can be 
largely fitted to gamma distributions (p > 0.05), if the fluctuations of a and b values are less than 
30%. This confirms the validity of gamma distribution at high copy proteins. 
 
19. Number of annotated genes 
Over 60% of low expression genes had functional characterizations and full names, as opposed 
to y genes, when the nomenclature was first developed (S21). The addition of new annotations 
continues, which would further increase this percentage. 
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Figure S1. Calibration of single molecule fluorescence. 
(A) Fluorescence (left) and phase contrast (right) images of membrane-localized YFP in strain 
SX4 imaged under high magnification and high laser intensities. The fluorescence from each 
YFP molecule is recorded in a histogram. The YFP molecule produces 161 ± 105 
counts/molecule/average cell volume (mean ± SD, N = 134). This number is used to calibrate the 
absolute molecule numbers for the entire data set. (B) Purified YFP solution with known 
concentration determined from absorbance (top), AcpP-YFP library strain (middle), and 0.85% 
sodium chloride solution (bottom) imaged under low magnification and low laser intensities. The 
average number of YFP molecules per cell for this library strain is estimated to be ~5,261 using a 
comparison of fluorescence intensity with a solution of known YFP concentration. The number 
of YFP molecules per cell for AcpP-YFP calibrated by single-molecule imaging (as in (A)) is 
~6,432 molecules per cell. The two independent methods to calibrate absolute molecule numbers 
agree to within a factor of 1.2. 
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Figure S2. Consistency of the deconvolution method with the single molecule localization 
method. (A) Fluorescence images of SX701 cells grown with varying levels of TMG. At 0 µM 
of TMG, there is basal expression of Tsr-YFP. At 200 µM TMG, Tsr-YFP is highly induced. A 
non-fluorescent strain, BW25993, was used to control for autofluorescence. (B) Histogram of 
expression levels at various TMG concentrations. (C) Average count and Fano factor of Tsr-YFP 
by detection by localization (circle) and by deconvolution (square). Error bars represent SEM. N 
= 24,021 (0 µM), 20,317 (100 µM), 23,605 (200 µM) and 11,723 (400 µM). 
 

Page 25 of 48  



 
 
 
 

 
 

Figure S3. Data reproducibility and instrument noise. (A) Reproducibility of noise 
measurements of the same strains taken on two separate occasions. Abundance measurements of 
all strains grown and measured on separate days agree with each other (r = 0.92). Error bars 
represent SEM, which are calculated by bootstrapping for the data analysis procedure. (B) 
Detection limit of noise measurement. Data from two controls, a bright cell strain (open square) 
and a fluorescent dye solution (closed square), were taken at various laser intensities to simulate 
various mean abundance levels. The noise of both systems stayed constant throughout the range 
of simulated abundance, indicating that our microscope is capable of measuring noise for a wide 
range of signal levels. This indicates that instrument noise does not limit our measurement of 
biological noise. 
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Figure S4. Comparison of the fluorescent reporter assay with the Miller assay. (A) The 
change in the β-galactosidase activity with and without 1mM IPTG. (B) The dependence of β-
galactosidase activity as a function of concentrations of inducers, IPTG and TMG. (C) The 
correlation between the β-galactosidase activity and the fluorescence level in the LacZ-SPA-
Venus construct. 
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Figure S5. Global relationships of determined parameters. 
The relationship between various metrics of expression level and properties of gene expression 
are plotted, where each point represents the values for one gene. SD is the standard deviation. 
Skewness and kurtosis are calculated for the copy number distribution of each gene.  
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Figure S6. Comparison with yeast. (A) Noise and Fano factor in yeast cell. The protein copy 
numbers in yeast were roughly estimated by multiplying the flow cytometry counts with a 
scaling factor (= 10) that is estimated from apparent copy numbers indicated in the western 
blotting result reported by Newman et al. (S11). The gated data in yeast was calculated from a 
data table in their work. The ungated data was estimated from an apparent average of a noise plot 
in their work. (B) Cell length dependence. The mean and noise values of three genes, Adk, AtpD 
and YjiE were plotted as a function of cell length. For analysis, we gated as a function of cell 
length and determined the noise parameters. 
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Figure S7. Time propagation of the protein level fluctuation of AcpP. (A) The noise at a 
certain window size was calculated as the average of noises in a time trace for all the possible 
window positions. The averaged noise from all the traces, indicated by the thick dashed line, was 
fitted to an exponential curve: η2 = η2

cell-to-cell – (η2
cell-to-cell – η2

0)exp(-t/τ) with a time decay τ = 
1350 minutes and an intercept η2

0 = 0.008. The intercept should result from the intrinsic noise 
(S18). (B) Autocorrelation function of the time traces in single cells. The averages for all the 
time traces are indicated by thick dashed lines. Most of traces showed linear decay as oppose to 
exponential decay, suggesting that the correlation time is slower than the acquisition time of the 
time traces (= 500 min). 
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Figure S8. Time traces of different two protein levels in a single cell. The levels of two 
different proteins (AtpD and Lig) in a single cell were measured (first two columns). Three 
typical sample traces are shown in the display (top, middle and bottom), all indicating that the 
two different protein levels are correlated. The figures in the right column show correlation plots 
for these two protein levels over a timescale of 500 min. The data collected within a single cell 
lineage are shown in dark blue dots, whereas the data from the entire population are shown in 
light blue dots. These plots further demonstrate the difference between temporal noise in a single 
cell and population noise. 
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Figure S9. Time propagation of correlation coefficient of two protein levels. The correlation 
coefficient of two protein levels (AtpD and Lig) was calculated with different time window sizes. 
The thin dotted lines are correlation traces from all the cells in a population, and the thick dotted 
lines is their average. 
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Figure S10. Library construction. The chromosomal YFP-fusion protein library was created 
via λ-RED recombination (S19) using a universal primer targeting the sequential peptide affinity 
(SPA) tag-kanamycin resistance sequence of an existing library (S1). 
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Figure S11. Microfluidic chip design. The micropattern integrates 96 independent microfluidic 
channels within a 45 mm × 60 mm area. The circles on the right or left side are the inlet/outlet of 
the channel and φ0.75 mm holes are punched through PDMS replicas at these locations. The 
height of the channel is 25 µm. 
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Figure S12. Scanning algorithm. The tilt and orientation of the microfluidic chip against the 
stage XYZ coordinates are calibrated by three-point calibration (pink squares in the upper figure). 
The XY positions for scanning were calculated from the parameters obtained by the calibration. 
At the beginning and end point of the channels, the image was auto-focused under a phase-
contrast illumination to provide the Z position profile along the channel assuming a linear 
landscape (see the lower figure). Subsequently, phase contrast and fluorescent images are taken 
in turns at the given XYZ positions along the channel. 
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Figure S13. Compensation of laser illumination pattern. We compensated for the 
heterogeneity of laser distribution in the image field. We obtained the laser illumination pattern 
by imaging fluorescein dye solution that was injected into the channel. Flattened images were 
obtained by dividing the background-subtracted observed images by the background-subtracted 
laser intensity distribution.  
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Figure S14. Single cell identification and autofluorescence deconvolution. (A) Automated 

 
 

image analysis to obtain single-cell distributions from the obtained phase-contrast and 
fluorescence image. The phase contrast images were reduced to binary images through image 
filters to find distinct particles that correspond to cells (the different colored objects in the right 
image). The particles were then filtered by particle size, area and shape to identify single cell 
boundaries (highlighted in white). The fluorescence count was integrated for the entire area for 
each cell. (B) Fluorescence time trace of a single YbdG-Venus molecule in an E. coli cell, 
showing abrupt photobleaching. (C) Deconvolution of cell auto-fluorescence background allows 
expression profiling with single molecule sensitivity. The net protein copy number distributions 
(F) were calculated by deconvoluting the measured fluorescence histogram (F⊗G) with cell 
auto-fluorescence histogram (G). The protein copy number per average cell volume, or the 
concentration, was determined as described in the main text and in the supplementary methods. 
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Figure S15. Characterization of point-like localization. To characterize point-like localization, 
we analyzed a differential image from the recorded image before and after an open filtering ((1) 
and (2)). The spot frequency was quantified by counting spots in a binary image. 
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Figure S16. Dependence of genetic interactions on expression level 
The fraction of measured proteins with at least one genetic interaction discovered in a limited 
screen by Butland, et al (S20) is shown as a function of protein expression level. The probability 
of finding a genetic interaction is weakly dependent on protein expression. Error bars are the 
inverse square root of sample size. 
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Figure S17. Single-step photobleaching traces. 
Photobleaching traces for ten diffraction-limited spots in the FISH samples are shown here 
(grey). One representative trace is shown in the black thick line. Each trace shows abrupt single-
step photobleaching, which is a signature of a single fluorophore. Photobleaching is a stochastic 
process and occurs random time points. The distribution of fluorescence intensities from a single 
fluorophore is shown on the right panel (N = 210). The variation in intensity is 27%, which is 
low enough to allow digital counting of mRNA (See also Fig. S18). 
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Figure S18. Double-step photobleaching traces. 
Photobleaching traces for four diffraction-limited spots, each consisting of two hybridized probes, 
are shown here (grey). One representative trace is shown in the black thick line. The distribution 
of fluorescence intensities from a mixture of single fluorophores and two fluorophores is shown 
on the right panel (N = 1,700).  
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Figure S19. YFP level before and after FISH. 
The mean YFP fluorescence level for each strain is plotted as a circle. The YFP fluorescence 
measured in live cells is preserved after the mRNA FISH procedure  
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Figure S20. Gamma distribution fitting and lognormal distribution fitting to protein 
number distribution. 
(A-B) The histogram of protein numbers of TufA (A; N = 63,446 cells) and FadA (B; N = 9,124 
cells) are fitted with lognormal (left) and gamma (right) distribution, respectively. Gamma 
distribution fits well to the histogram over the entire shape including tail regions. The lognormal 
distribution is given by: p(x) = (1/(xσ(2π)1/2))exp[-(ln(x) - µ)2/2σ2]. (C) The histogram of protein 
numbers of TufA fitted with a two-state promoter model (S17). The derived distribution has four 
adjustable parameters, where a and b is k1/γ2 and k2/γ1, respectively. kON and kOFF is the rate 
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constants of the transition between the active and inactive promoter state, divided by γ2. kON and 
kOFF have substantial error/uncertainty. 
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Figure S21. Comparison of our library data with a mass spectrometry data.  
The correlation plot between protein abundance obtained by mass spectroscopy (S4) and mean 
abundance determined by our study is shown. The correlation coefficient between them is 0.58. 
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Figure S22. Comparison of mRNA copy number measured by FISH and by RNA-seq. 
The mean mRNA copy number measured by FISH is correlated with that measured by RNA-seq. 
The correlation coefficient is r = 0.51. We do not expect to see perfect correlation, however, 
because the strains used for these experiments are different. For FISH experiment, each mRNA 
is fused to the YFP coding sequence. For RNA-seq, each mRNA is in its native form and has no 
YFP attached to the 3’ end. Since the 3’ UTR can affect transcript stability in bacteria, the 
absolute mRNA copy number may differ in these strains. This does not affect our measurement 
of protein-mRNA correlation, because the same strains are being used for comparison. 
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Table S1. The list of strains measured. 
 
Table S2. Correlation coefficients (r) and Z-scores (Z) between the noise parameters. Z 
scores of more than 3 (indicated by red) represent a significantly larger quantity compared with 
the whole genome distribution with >99.9% confidence, and Z scores of less than -3 (indicated 
by blue) represent a significantly smaller quantity. 
 
Table S3. Preference of noise parameters for a subset of strains that relate to a specific 
biological function. The “essentiality” column represents the fraction of essential genes in the 
category. The “# of conserved in different organisms” represents the number of organisms that 
have similar DNA sequence for each gene to E. coli. 12 organisms (Helicobacter pylori 26695, 
Pseudomonas aeruginosa PAO1, Chlamydia trachomatis A/HAR-13, Haemophilus influenzae 86 
028NP, Neisseria meningitidis MC58, Rickettsia prowazekii Madrid E, Borrelia burgdorferi B31, 
Bacillus subtilis 168, Staphylococcus aureus Mu50, Streptococcus pneumoniae R6, Enterococcus 
faecalis V583, Mycoplasma genitalium G-37) were examined to determine the conserved 
number using a homology search (http://cmr.jcvi.org/). The table has three parts. The first shows 
the Z score of the average parameter ranks within a category. The second shows the actual 
median parameter values. The third shows the Z score of the standard deviation of the parameter 
ranks within a category. 
 
Table S4. Burst frequency (a) and size (b) of library strains compared to the steady-state 
noise (α and β) 
 
Strain Observed a (measured α) Observed b (measured β) 
CorA 11.4 (5.3 – 13.9) 3.7 (5.9 – 6.5) 
YbdG 5.9 (2.5 – 5.5) 2.1 (4.7) 
YcjF 3.75 (1.77 – 5.58) 2.3 (5.2 – 5.58) 
 
Table S5. List of previously identified genetic interactions compared with expression level 
Statistically significant genetic interactions from a screen of 39 × 4,000 double deletion mutants 
in reference (S20) and corresponding expression levels are listed. Of 448 genes we measured to 
have expression below 10 molecules/cell, 143 were found to have a genetic interaction with a |Z 
score| greater than 3. 
 
Table S6. List of a and b values and other parameters determined in this work. 
a and b values are calculated as a = µ2/σ2 and b = σ2/µ, respectively, using the mean, µ, and 
standard deviation, σ, of the histograms. 
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